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Håkan Andréasson



Motivation for studying the axially symmetric case: I

In a paper titled ”Geons” by Wheeler from 1955 one finds:

The simple toroidal geon forms the most elementary object
of geon theory much as a simple circular orbit constitutes
the first concept of planetary theory. But the simplest
physics does not go in the geon case with the simplest
mathematics.
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Motivation for studying the axially symmetric case: II

This notice refers to a work by Shapiro and Teukolsky on the weak
cosmic censorship conjecture for the axially symmetric
Einstein-Vlasov system.

Håkan Andréasson



Cosmic censorship: Black holes were disputed

The Schwarzschild solution from 1916 reads

ds2 = −(1− 2M

r
)dt2 +

1

1− 2M
r

dr2 + r2(dθ2 + sin2 θdφ2).

It is a vacuum solution. What happens when matter is included?

Schwarzschild studied a static star modeled as an incompressible
fluid and concluded that 2M/R < 8/9. The ”singularity” is thus
avoided.

Einstein studied a static star described by a compressible fluid and
concluded: ”The Schwarzschild singularity does not appear for the
reason that matter cannot be concentrated arbitrarily” (Ann.
Math. 1939).

Oppenheimer-Snyder studied spherically symmetric gravitational
collapse of dust in 1939 and concluded that a singular spacetime is
obtained and that an event horizon forms.
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Nobel prize 2020 for a theorem from 1965

What is realistic in the Schwarzschild solution and in the
Oppenheimer-Snyder dust collapse?

Could the singularity and the event horizon be a result of the
assumption of (perfect) spherical symmetry?

The Nobel prize in physics 2020 was awarded to Roger Penrose for
his celebrated singularity theorem from 1965 which (partially)
answers this question.

Nobel prize motivation: ”For the discovery that black hole
formation is a robust prediction of the general theory of relativity”.
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The Penrose singularity theorem

Penrose shows in his singularity theorem that any spacetime
(spherically symmetric or not) which satisfies some rather general
conditions contains a singularity.

Penrose wanted to understand the nature of the singularity. Is it a
black hole or a naked singularity, i.e., is the singularity clothed by
an event horizon and is curvature blowing up at the singularity?
This led him to propose the cosmic censorship conjecture.
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Penrose suggests a ”cosmic censor”

Penrose, 1969:

We are thus presented with what is perhaps the most fun-
damental question of general-relativistic collapse theory,
namely: does there exist a ”cosmic censor” who forbids
the appearance of naked singularities, clothing each one in
an absolute event horizon? In one sense, a ”cosmic censor”
can be shown not to exist. For it follows from a theorem
of Hawking that the ”big bang” singularity is, in principle,
observable. But it is not known whether singularities
observable from outside will ever arise in a generic
collapse which starts off from a perfectly reasonable
nonsingular initial state.
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Weak cosmic censorship (physical formulation)

The conjecture that Penrose proposes is called the weak cosmic
censorship conjecture: The complete gravitational collapse of a
body results in a black hole rather than a naked singularity, i.e. all
singularities of gravitational collapse are ”hidden” within black
holes and cannot be ”seen” by distant observers.

Need to specify what conditions the matter fields must satisfy. It is
natural to assume:

Tab satisfy an energy condition (such as the dominant energy
condition).

The coupled Einstein-matter system admits a well posed
initial value formulation.
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Kinetic theory

In kinetic theory an ensemble of particles (atoms, molecules, ions,
stars, galaxies) is described by a density function f on phase space,
i.e.,

f = f (t, x , p), t ∈ R, x ∈ R3, p ∈ R3.

Examples of equations in kinetic theory are:

The Boltzmann equation (collisional neutral gases)

The Vlasov-Maxwell system (collisionless plasmas)

The Vlasov-Poisson system (collisionless Newtonian gravity)

The Einstein-Vlasov system describes a collisionless ensemble
of particles (typically stars, galaxies or clusters of galaxies)
which interact through the gravitational field created
collectively.
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The Einstein-Vlasov system

The Vlasov equation for f = f (t, xa, pa) reads

∂t f +
pa

p0
∂xa f −

1

p0
Γaβγp

βpγ∂pa f = 0.

Define the energy momentum tensor by

Tαβ :=
√

|g |
∫

pαpβf
dp1dp2dp3

−p0
.

The Einstein-Vlasov system reads

Rαβ − 1

2
Rgαβ = 8πTαβ.

It has nice mathematical properties!
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Comparing Einstein-Dirac and Einstein-Vlasov

The energy density of a static solution of the spherically symmetric
ED system for 16 particles compared with a solution of the EV
system. (In preparation together with J. Blomqvist.)
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Gravitational collapse

We have carried out two studies on gravitational collapse.

In paper one the focus was to characterize the end states of
the evolution and to investigate critical collapse. The weak
cosmic censorship was challenged in the case |J| > M2.

In paper two the focus was to reconsider the simulations by
Shapiro and Teukolsky from 1991 (and by Yoo et al. (2017)
and by East (2019)). In fact these studies concern dust rather
than Vlasov matter. Moreover, we argue that the original
motivation for this study is not relevant. We investigate
gravitational collapse for the regular EV system in the case of
highly prolate initial data where we challenge weak cosmic
censorship in view of the Hoop conjecture.
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Horizon finder

We detect black hole formation by looking for an apparent horizon.
This is defined as the outermost 2-surface in a spatial slice whose
outgoing null expansion vanishes.

In our dimensional reduction, such a surface corresponds to a curve
in the (r , z) plane. We parametrize this curve as

r = R(θ) sin θ, z = R(θ) cos θ,

where R is the spherical polar radius, and θ is the polar angle.

The function R(θ) obeys a second-order ODE with the boundary
conditions R ′(0) = R ′(π) = 0. We solve this two-point boundary
value problem using the shooting method.

If an apparent horizon is found (so that R ′(π) = 0), we compute
its irreducible mass and angular momentum.
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The Kerr black hole

The Kerr black hole is a generalization of the Schwarzschild black
hole. It is described by two parameters, M and J, where J is the
angular momentum of the black hole.

In Boyer-Lindquist coordinates the metric is given by

ds2 = −
(∆− a2 sin2 θ

Σ

)
dt2 − 2a sin2 θ(r2 + a2 −∆)

Σ
)dtdΦ

+
((r2 + a2)2 −∆a2 sin2 θ

Σ

)
sin2 θ dϕ2 +

Σ

∆
dr2 +Σdθ2.

Here

Σ = r2 + a2 cos2 θ, ∆ = r2 + a2 − 2Mr and a = J/M.

If |J| > M2 then ∆ > 0 and it follows that spacetime possesses a
naked singularity.
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Threat to WCC: Gravitational collapse when |J | > M2

We try to collapse a body with an ”excess” of angular momentum,
i.e. |J| > M2. Note that angular momentum and mass are
conserved quantities.

If weak cosmic censorship holds then the body cannot collapse to
form a Kerr spacetime where |J| > M2 since such a spacetime
possess a naked singularity.

Hence we ask: What happens when you try to force a such a body
to collapse?
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Axisymmetric collapse of a highly prolate configurations

Alan Rendall criticized their work (1992) since he found indications
that they study dust rather than the regular Einstein-Vlasov
system.
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Gravitational collapse for dust versus Vlasov

Dust is a pressureless fluid which can be approximated by Vlasov
matter.

The Vlasov equation is linear in f and distributional solutions make
sense. One class of distributional solutions is given by

f (xγ , pa) = −u0|g |−1/2ρ(xγ)δ(pa − ua),

where ρ ≥ 0 and ua(xγ) is a mapping from spacetime into the
mass shell and u0 is given by ua from the mass shell relation.

Solutions of the EV system where the phase space density f has
this form are in one-to-one correspondence with dust solutions of
the Einstein equations with density ρ and four-velocity uα.

Dust may thus be considered as a singular case of matter
described by the Vlasov equation.
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The Euler-Poisson system and the Vlasov-Possion system

Let us first compare dust and Vlasov matter in Newtonian gravity.

The pressureless Euler-Poisson system reads

∂tρ+∇ · (ρu) = 0,

∂tu + (u · ∂x)u = −∂xU(t, x),

∆U = 4πρ, lim
|x |→∞

U(t, x) = 0.

The Vlasov-Possion system reads

∂t f + v · ∂x f − ∂xU · ∂v f = 0,

∆U = 4πρ, lim
|x |→∞

U(t, x) = 0,

ρ(t, x) =

∫
f (t, x , v) dv .
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A collapsing ball of dust

Let

ρ(t, x) :=
3

4π

1

r3(t)
1Br(t)(0),

where r(t) solves

r̈ = − 1

r2
, r(0) = 1, ṙ = 0.

Also, let

u(t, x) =
ṙ(t)

r(t)
x ,

then (ρ, u,U) is a solution of the Euler-Poisson system above
(where U is determined via the Poisson equation).

This solution describes a ball of dust, initially at rest, which
collapses under its own gravitational field to a point in finite time,
since it can be shown that limt→T r(t) = 0 for some T > 0.
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If we swop matter model, from dust to Vlasov, and consider the
Vlasov-Poisson system instead, then the celebrated global existence
results for the Vlasov-Poisson system guarantee that no singularity
will form (Lions-Perthame 1991, Pfaffelmoser 1992).

The global existence results say nothing about the behaviour for
such solutions, only that they will not break down. In a work by
Rein and Taegert (2016) this question is investigated carefully.

Theorem

For any constants C1,C2 > 0 there exists a smooth, spherically
symmetric solution f of the Vlasov-Poisson system such that
initially

∥ρ(0)∥∞ < C1,

but at some time t > 0

∥ρ(t)∥∞ > C2.
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Dust collapse in GR: Oppenheimer-Snyder solution

It is standard to use co-moving coordinates to describe
Oppenheimer-Snyder collapse. The metric then takes the form:

ds2 = − dt2 + e2λ(t,r)dr2 + R2(t, r)
(
dθ2 + sin2 θ dφ2

)
.

The evolution of homogeneous initial data prescribed on an interval

ρ̊ = c 1[0,1],

gives rise to the Oppenheimer-Snyder solution which reads (r ≤ 1):

R(t, r) =
(
1−

√
6πc t

)2/3
r =: γ(t)r ,

eλ(t,r) = γ(t), ρ(t, r) =
c

γ3(t)
,

Moreover,

t0(r) =
1√
6πc

, tH(r) =
1√
6πc

− 16πc

9
r3.
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Remark on stability and instability

A general feature of dust solutions is that they blow up in finite
time for any amplitude c ; if the amplitude is taken very small, the
blow up occurs later but still after a finite time.

Hence, the Einstein-Dust system might be said to be unstable. In
particular, critical collapse does not occur for dust.

How does this relate to the stability results for the EV system? For
small initial data global existence has been shown in the general
case without symmetries:

Lindblad and Taylor ’17

Fajman, Joudioux and Smulevici ’17

These results were not known in 1991 but they were known 2019.
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Approximate dust with Vlasov matter

To approximate dust with ρ̊(x) = c1[0,1] we choose

f̊ (x , v) = hϵ(v)ρ̊(x),

where hϵ is approximating a Dirac delta function.

Hence we have two parameters, ϵ and c .

If we fix c and let ϵ → 0 then f̊ → ∞.

If we fix ϵ and let c → 0 then f̊ → 0.

In the former case the global existence results for the EV system
do not apply whereas in the latter they do.
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Motivation for Shapiro and Teukolsky: Lin-Mestel-Shu
instability

The original motivation for Shapiro and Teukolsky to study
collapse of highly prolate (cigar-like) matter configurations was due
to the Lin-Mestel-Shu instability.

The Lin-Mestel-Shu instability concerns collapse of prolate (and
oblate) configurations of dust in Newtonian gravity. A prolate
spheroid of dust collapses to a spindle so that the density becomes
unbounded similarly to the situation when a uniform ball of dust
collapses to a point.

From the global existence results for the Vlasov-Poisson system we
can again conclude that the scenario is different in the case of
Vlasov matter; the density will become large but it will stay
bounded.
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The Newtonian regime

Shapiro and Teukolsky consider initial data described by the
parameters a, b and M, where a is the equatorial radius, b the
semi-major axis. They fix the ratio a/b (fixed eccentricity) and
vary the ratio b/M.

The ratio b/M determines how compact the configuration is. A
body with a large ratio is close to being Newtonian.

They consider the two cases b/M = 2 and b/M = 10. It is the
latter case, in the Newtonian regime, which indicates violation of
cosmic censorship.

Since they consider dust-like initial data it is not surprising that
their solution resembles the Lin-Mestel-Shu solution! Their original
motivation for investigating the weak cosmic censorship conjecture
is thus highly questionable.

The more recent works from 2017 and 2019 also consider dust-like
initial data (despite the critisicm raised by Alan Rendall 1992).
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Collapse of highly prolate initial data: the Hoop conjecture

Collapse of highly prolate initial data is nevertheless very
interesting in view of the Hoop conjecture.

The Hoop conjecture was formulated 1972 by Kip Thorne:

Horizons form when and only when a mass M gets com-
pacted into a region whose circumference in EVERY direc-
tion is C ≤ 4πGM/c2. (Like most conjectures, this one is
sufficiently vague to leave room for many different math-
ematical formations!)

We will only be concerned with the “only if” part of the conjecture
due to its relation to the weak cosmic censorship conjecture.
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The “only if” part of the conjecture reads:

If a horizon forms then the mass M is compacted into a
region whose circumference C in every direction satisfies
C ≤ 4πM.

Several questions can be asked. Does it refer to the initial data?
No, apparent horizons may form in the evolution of initial data
which do not satisfy this inequality (A. 2012).

How should one interpret the circumference of a body? Even if the
data is chosen in such a way that there is a clear cut boundary
initially it may not be so later on in the evolution. Typically there
is a core of the matter which is surrounded by a thin atmosphere.

Hence, it is also not clear what the mass M refers to if one cannot
naturally define the boundary of the body.
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Our formulation of the Hoop conjecture

Assume that there is no apparent horizon initially and that an
apparent horizon forms at t = tH > 0. The circumference C in the
conjecture is then the polar and the equatorial circumference of the
apparent horizon, which we denote by CH,e and CH,p respectively.

For the mass M we choose the horizon mass MH which we define
to be the irreducible mass Mirr of the apparent horizon. In the case
where the angular momentum vanishes the horizon mass is given by
MH :=

√
AH/16π, where AH is the area of the apparent horizon.

Our formulation then reads

If an apparent horizon forms then CH,e(tH) ≤ 4πMH and
CH,p(tH) ≤ 4πMH .

A similar interpretation is used by East (2019).
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Initial data of highly prolate configurations

The parameter space is enormous. We limit ourselves to three sets
of supercritical initial data: ID1, ID2 and ID3.

Although our initial configurations are not perfect ellipsoids they
are highly elongated and we associate the initial data with an
eccentricity e which we define to be

e =

√
1− r2max

z2max

.

For our choice of parameters the eccentricity is e = 0.99 (which is
larger than in previous studies).

The range of the angular momentum is smaller for ID2 than for
ID1 and ID3. Both ID1 and ID2 are time symmetric whereas ID3 is
not since the particles are shot inwards trying to ”force” collapse.
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Evolution of ID1
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Evolution of ID3

It is remarkable how the shape of the matter configuration changes
during the evolution in order not to violate weak cosmic censorship!
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Shape of the apparent horizon

The shape of the horizon at the time it forms for the three initial
data sets. In each case the horizon is mildly prolate.
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Testing the Hoop conjecture

We define the ratios κp and κe as follows:

κp :=
CH,p

4πMH
and κe :=

CH,e

4πMH
.

The Hoop conjecture holds (in the strict sense) if κp ≤ 1 and
κe ≤ 1. The spirit of the Hoop conjecture holds true:

ID Set tH MH κp κe

ID1 11.71 1.0 1.00 0.87

ID2 9.80 0.99 1.12 0.85

ID3 11.30 0.98 1.00 0.86

East (2019) tests the Hoop conjecture for dust-like initial data and
finds that κp,e(t) ≤ 1.25, t ≥ tH .
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Generic feature?

Notice that the value of κp is (exactly) one for both ID1 and ID3.

Interestingly, this feature also holds in several other cases we have
tried.

For initial data ID2, κp = 1.12. In this case the numerical error is
however bigger. The particles spend more time close to the axis
due to less angular momentum.

Hence it is still a possibility that κp = 1 is a generic feature.
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The inverse Hoop conjecture

Hod (2020) has suggested ”the inverse Hoop conjecture for black
holes” which states that 4πA ≤ C2 where A is the area of the
black hole and C is the circumference length of the smallest ring
that can engulf the black-hole horizon in every direction.

It is straightforward to imagine non-black hole objects
that violate the area-circumference relation. For exam-
ple, a moon-like object whose surface is covered with
craters can violate the relation. Likewise, a non-black
hole Coronavirus-like object, whose surface is covered with
spikes, can violate the area-circumference relation.

Since we obtain max{κp, κe} ≥ 1 in all our simulations our result
supports the inverse Hoop conjecture.

Håkan Andréasson



Open problems

Understand why κp is exactly 1 in many simulations. Generic
or not?

Investigate the stability of the highly compact stationary
configurations we have obtained which contain ergoregions.

Stationary case: The transition to a black hole.

Stationary case: Massless solutions. ”Wheeler’s dream!”
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Thank You!
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