Coursinatories of higher order ren. group equations

Let
$$H = G - algebra generated by goophs '
(free connatative)

Ex: $H = (\Theta, -\Theta, B, \Theta, X, ...)$$$

Characters H -> & are very intersting!

They form a group:

$$\phi \neq \psi = m \circ (\phi \otimes \psi) \circ A$$

the renomalization group eq. demands:
 $\phi_{L_1}^R \neq \phi_{L_2}^R = \phi_{L_1+L_2}^R$

which translules to

$$\left(\frac{\partial}{\partial L} + \beta(t_1)\frac{\partial}{\partial t_1} - g(x)\right) (6(t_1,L)=0$$

in the target space of ϕ_L^R

$$\phi(\Gamma) = (-1)^{(V_{\Gamma})}$$
 e.s. $\phi(\Theta) = (-1)^2$
 $\phi(B) = -1$

$$(f \neq (X) = \sum_{k \ge 1} \chi(comm^{k}) + u^{l'}$$

$$(f \neq (X) = \sum_{k \ge 1} \chi(comm^{k}) + u^{l'}$$

$$(f = \sum_{k \ge 1} \frac{\zeta(-u)}{k} + u^{l'}$$

$$(f = \sum_{k \ge 1} \frac{\zeta(-u)}{-k} + u^{l'}$$

$$(f = \sum_{k \ge 1} \frac{\zeta(-u)}{-k} + u^{l'}$$

$$(f = \sum_{k \ge 1} \frac{\zeta(-u)}{k} + u^{l'}$$

$$(f = \sum_{k \ge 1} \chi(cout + u^{l'}) + u^{l'}$$

$$(f = \sum_{k \ge 1} \chi(cout + u^{l'}) + u^{l'}$$

Evaluations
of churadas
$$\phi(\mathcal{X}) = \sum_{n\geq 1} a_n t_n^n$$

show interecting selections.
For instance, resurgence:
 $a_n \sim a^n T(n + \beta)(1 + \delta(f_n)) n \rightarrow \infty$
for barge classes of Y characters of
 $(MB - (8))$

-

Quentum Field Theorists dream $B_f: H \rightarrow H s.t.$ (1) Det: $\Delta \circ B_{t} = B_{t} \otimes I + (id \otimes B_{t}) \circ d$ (approprately)) analogy to rooted hees write an (appropriate) fix-point eq. (2) $X = I + B_f \circ f(X)$ (3) Apply an oppopriate character of $\phi(X) - I + \phi \circ B_{\tau} \circ f(X)$ (4) Evaluate 00 Brof to ostain a differential / integral / recursive equation for $\phi(X)$ in the target space of of!

- chord dia gran representations 4 cuts 108,...
- rooted hees Foises '11,...

Out Look: