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Bulk fields in 2d CFT

Long history:
@ Associativity constraints for OPE (1980s)

o ADE-Classifications based on modular data (1980-1990s)
and their failure

@ TFT construction of RCFT correlators:
from semisimple modular tensor category
and a semisimple indecomposable module category over it (2000)
Focus today:
@ Beyond semisimplicity (Logarithmic conformal field theory)
o still keeping finiteness properties.
A tour,
starting with some classical representation theory of finite-dimensional algebras,

then turning to monoidal categories and module categories over them
and ending with bulk and defect fields.



Overview

© Eilenberg-Watts calculus and Nakayama functors
o Finite tensor categories
@ Coends
o Eilenberg-Watts equivalences and Nakayama functors

© Module categories, relative Serre functors
o Radford's S*-theorem for bimodules
@ Relative Serre functors and pivotal module categories

© The field content of two-dimensional local conformal field theories
@ Fields in two-dimensional conformal field theories
@ Frobenius bulk algebras from pivotal module categories
@ Outlook
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Finite tensor categories

Let k be a field.

Definition (Finite category)

A k-linear category C is finite, if
@ C has finite-dimensional spaces of morphisms.
@ Every object of C has finite length.
© C has enough projectives.

@ There are finitely many isomorphism classes of simple objects.

A linear category is finite, if and only if it is equivalent to the category A-mod
of finite-dimensional A-modules over a finite-dimensional k-algebra.

Definition (Finite tensor category)

A finite tensor category is a finite rigid monoidal linear category.

In particular, the tensor product is exact in each argument.
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Eilenberg-Watts calculus

Classical result about finite categories:

Proposition

Let A-mod and B-mod be finite tensor categories. Let

G : A-mod — B-mod

be a right exact functor. Then G = G(aAa) ®a —.

The B-A-bimodule G(aAx) is a right A-module via the image of right
multiplication ra : A — A under Enda(A) 5 Endg(G(A)).

A similar statement allows to express left exact functors in terms of bimodules.

4

Morita-invariant formulation: triangle of explicit adjoint equivalences, based on
the Deligne product and (co)ends.

AP R B

7N

Lex(A, B) Rex(A, B)

T
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Coends

Implement the “sum over all states”:
e Do not sum over all irreps up to isomorphism.
e Sum over all representations up to all morphisms.

Coend:

Xec

Py ex)=Px'ex - X'®X =0
x5y Xec

“Direct sum over all objects, with all morphisms taken into account.”
The components of the two maps are for X Ly

(Y @ X)r 9% XV o X and (Y ©X) 2 vV gy

Universal property. Coends are generalizations of direct sums. Direct sums are
characterized by the fact that maps out of direct sums are families of maps:

Hom(;X;, Y) 2 [ [ Hom(X;, Y)

Ends are defined by reversing arrows.
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Ends and coends

@ Examples of coends and ends: trace and natural transformations

vevecty
/ v Vv =k and Nat(F, G) = / Homp(F(c), G(c))
ceC

@ (Co-)Yoneda lemma: G : D — C linear, then

[ @ omaty, = 6()

/Y __ Gly) @ Homp(~.y)" = G(-)

Theorem (Fuchs, Schaumann, CS)

Peter-Weyl theorem: as A-bimodules

méeA-mod
/ mem =A and / m®rm- = A"
meA-mod
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Eilenberg-Watts calculus

AP R B

7N

Lex(A, B)

P = 5
V=)
' =P} 5
V=V 5

Rex(A, B)

APP R B — Lex(A, B),
aX b+— Homa(a,—)® b,
Lex(A,B) = AP KRB,
F— [*43R F(a),
AP K B = Rex(A, B),
aX b+— Homu(—,a)" ® b,

Rex(A, B) = A K B,
G— [, 3% G(b)

In particular, id 4 € Lex(A, .A) is mapped to the right exact functor
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Nakayama functors

acA
N ::/ Homua(—,a)*®a and N4 ::/ Homu(a,—)® a
acA

For A = A-mod:
Ny = A" @4 — = Homa(—,A)* and N4 = Homa(A*, —) .

For this reason, we call N and N/, Nakayama functors.

Proposition

© The Nakayama functors are adjoints, N’y — N'y.
@ N equivalence < Ny equivalence. < A is selfinjective.

Q N4y ~id4 and Ny =id4 < A is symmetric Frobenius.

There is a canonical isomorphism

acA
/ aNa=V(idy) 2 VOV (idg) = U (N) = / 3 N’y (a)
acA
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Chapter 2

Monoidal categories,module categories and relative Serre functors )
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Module categories

Definition (Module categories)

Let A and B be linear monoidal categories.

Q A left A-module category is a linear category M with a bilinear functor
® : Ax M — M and natural isomorphisms

a:®o(®xidm) > ®o(ida x ®) A:®o(ida x —) = idam

satisfying obvious pentagon and triangle axioms. We write a.m := a® m.
@ Right module categories are defined analogously.

© An A-B bimodule category is a linear category D,
with the structure of a left A and right D-module category
and a natural associator isomorphism (a.d).b = c.(d.b).

@ Module functors, module natural transformations defined in obvious way.

Any monoidal category A is a bimodule category over itself.
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Internal homs

Definition (Finite module categories)

Let A be a finite tensor category over k. A left A-module category is finite,
if the underlying category is a finite abelian category over k and the action is
k-linear in each variable and right exact in the first variable.

Definition (Internal Hom)

Let M be a C-module category and m,m’ € M.
Then the internal Hom Hom(m, m’) € C is the object
such that Hom¢(c, Hom(m, m")) = Homa(c.m, m’) for all ¢ € C.

| A

Examples

@ C super vector spaces. Homs are grade preserving linear maps.
Internal Homs are super vector spaces and have an odd component.

e For M =C, we have Hom(c,c') =’ @ ¢".

Internal Homs admit an associative composition:

Hom(m', m") ® Hom(m, m") — Hom(m, m")
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Radford’'s S*-theorem

For linear functors, we have

Theorem (Fuchs, Schaumann, CS)

Let A, B be finite categories. Let F € Lex(A, B) such that F? is left exact so
that F" exists. Assume that F" is left exact as well.
Then there is a natural isomorphism

ok NioF=F"onN,

that is coherent with respect to composition of functors.

Apply this to bimodule categories over finite tensor categories:

Theorem (Fuchs, Schaumann, CS)

Let A, B be finite tensor categories and M an A-B bimodule.
Then the Nakayama functor has the structure of a twisted bimodule functor:

Ni((a.m.b) = 2" N, (m). Vb
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Recovering Radford's S*-theorem

Ni((a.m.b) = 2" N, (m). Vb
Observe
@ The finite tensor category A is a bimodule over itself.

N4(1) :/ Homa(a,1)® a= Da
acA

is the distinguished invertible object of A.
o Compute
Ny(a) = Ni(a®1)=a"V @ N4(1) =a"Y @ Da
and
Ny(a)=Ni(1®a)=Ny(1)® VWa=Da® VVa

o We recover Radford's S*-theorem in its categorical form
D4®a®Dy" =a""VY [ENO, 2004]
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Relative Serre functors

Definition (Fuchs, Schaumann, CS)

Let M be a C-module. A right/left relative Serre functor is an endofunctor
S% / Shy of M together with a family

Hom(m, n)¥ — Hom(n, Si(m))
YHom(m, n) — Hom(Sly(n), m)

of isomorphisms natural in m, n € M.

o Relative Serre functors exist, iff M is an exact module category
(i.e. p.mis projective, if p € C is projective).

@ Serre functors are equivalences of categories.

@ Serre functors are twisted module functors:

\AY%

Gem: Su(c.m) — ¢VV.Su(m) and Gem: Shu(e.m) — VVe.Sh(m)

Let M be an exact A-module. Then

Ny = DaS% and Njy = D;'.Su
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Pivotal module categories

Serre functors are twisted module functors:

Gem: Su(c.m) — c"V.Su(m) and Gem:  Shi(c.m) — VVe. Sh(m).

Definition (Schaumann 2015, Shimizu 2019)

A pivotal structure on an exact module category M over a pivotal finite tensor
category (C,7) is an isomorphism of functors 7 : idaq — Sy,
such that the following diagram commutes for all ¢ € C and m € M:

em —Tefm L WV gt v (m)

Ngo T

S (c.m)

@ For indecomposable exact module categories, the pivotal structure is
unique up to scalar.

@ The algebras Hom(m, m) € C for m in a pivotal module category
have the structure of symmetric Frobenius algebras.
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Chapter 3

The field content of two-dimensional local conformal field theories J
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Reminder about chiral conformal field theory

Definition (Modular tensor category)

A modular tensor category C is a finite ribbon category such that the braiding
is maximally non-degenerate.

Various formulations exist and are equivalent [Shimizu 2016]:
@ Braided equivalence C XIC™ ~ Z(C)
e Coend L := fc UY ® U has non-degenerate Hopf pairing we
e Map Hom(1, L) — Hom(L, 1) induced by wc¢ is isomorphism.
@ C has no transparent objects.

.
Remarks

@ The representation category of suitable vertex algebras or nets of
observable algebras has naturally the structure of a modular tensor
category:

The chiral data of a (finite) conformal field theory are described by a
modular tensor category.

@ From a modular tensor category, one can construct a modular functor
(Lyubashenko, ~ 1995)
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Fields in two-dimensional local conformal field theory

@ Fields + OPE ~~ (symmetric Frobenius) algebras.
@ Symmetric Frobenius algebras in the appropriate monoidal category

4 0%, b ot ¢ % LN NP
A - R
@ = =
5 %, 98 %4, 9 %, % ‘ by ‘ ¥
Additional datum to specify local CFT given a modular tensor category:
Suitable module category M over the modular tensor category C.

Boundary
Boundary condition: Object of M
Boundary fields from bc mto n Hom(m, n) € C
OPE composition of inner Homs

@ Modular tensor category C is pivotal.

@ Require M to be a pivotal module category

@ Then Hom(m, m) is a symmetric Frobenius algebra for each m € M.
Bulk algebra: commutative symmetric Frobenius algebra in C K C™ ~ Z(C).
Tasks:

© Obtain bulk Frobenius algebras from boundary data

@ Obtain also descriptions of defect fields and disorder fields.
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Bulk fields and defect fields for a fixed modular tensor category C

Include defects and defect fields:

G /_\
)\-L Ml Poincaré dual Ml /w:

’ = \/‘
A

J M, ghan g CFT S
F.G dfe ks e

Defects are labelled by right exact C-module functors F, G : M; — M>

For defect field, need an object DF:¢ € Z(C) ~ C™ K C:

Fact:

Rexc(Mi, M) is a Z(C)-module by (c.F)(m) := c.F(m)

and module functor structure given by half-braiding.

Consider the internal homs Nat(F, G) € Z(C) of this module category.
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Bulk and defect fields Il

Nat(F, G) € Z(C) = / _, Hom(F(m), G(m)) € Z(€)

v
Remarks

@ Recall natural transformations:

Nat(F, G) :/ Hom(F(m:), G(m)) C [] Hom(F(m), G(m1)

myEM;y mEM;

For C = M = A-mod, get Z(A) = Nat(id,id) = fmleMl Hom(mz, m1)
o Defect fields = “internalized” natural transformations.
In particular, bulk algebra = fmeM Hom(m, m) = “internalized center”.

@ We have horizontal and vertical compositions of relative natural
transformations, obeying the usual relations, including Eckmann-Hilton.

v
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Symmetric Frobenius algebras

For CFT, we need symmetric Frobenius algebras.
A module Eilenberg-Watts calculus which for a pivotal tensor category C yields

Z(N R’ M)

N

Lexa(N, M) Rexa(N, M)

Theorem
C be a pivotal finite tensor category and M and N exact C-modules.
@ The functor category Rexc(M,N) is an exact module category over Z(C)
with relative Serre functor Ny o (D.—) o N},.
@ IfC is unimodular pivotal and M and N are pivotal C-modules,
then Rexc (M, N) is a pivotal Z(C)-module category.

@ In particular, then Nat(F, F) is a symmetric Frobenius algebra in the
Drinfeld center Z(C) and Nat(id a4, ida) has a natural structure of a
commutative symmetric Frobenius algebra.
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Sewing constraints

vo oo T

(Lewellen, 1992)

R b
Structure morphisms: @ 3 ( = \
T . . € ™

— Multiplications and comultiplications “ A
— Component maps Nat(id, id) — Hom(m, m) —
[C)] ’ = l,;1
. 5 W= %
Relations: % v

— (@), (c): bulk and boundary are Frobenius ¥ A

— (e): component map is morphism of algebras © "(EJ—[TIO = 0%0«#

— (d) dinaturality of the (co)end component ' '
morphisms

— (b) and (f)=Cardy relation are genus 1 ® \p,@“m%%
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Outlook

© Genus one constraints.

@ Description of correlators via modular functors.

© Beyond rigid categories.
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