# Bulk fields in conformal field theory

### Christoph Schweigert

Mathematics Department Hamburg University

## based on work with Jürgen Fuchs and Gregor Schaumann

August 6, 2020

# Bulk fields in 2d CFT

Long history:

- Associativity constraints for OPE (1980s)
- ADE-Classifications based on modular data (1980-1990s) and their failure
- TFT construction of RCFT correlators: from semisimple modular tensor category and a semisimple indecomposable module category over it (2000)

Focus today:

- Beyond semisimplicity (Logarithmic conformal field theory)
- still keeping finiteness properties.

A tour,

starting with some classical representation theory of finite-dimensional algebras, then turning to monoidal categories and module categories over them and ending with bulk and defect fields.

#### Overview

# Eilenberg-Watts calculus and Nakayama functors

- Finite tensor categories
- Coends
- Eilenberg-Watts equivalences and Nakayama functors

### 2 Module categories, relative Serre functors

- Radford's  $S^4$ -theorem for bimodules
- Relative Serre functors and pivotal module categories

The field content of two-dimensional local conformal field theories

- Fields in two-dimensional conformal field theories
- Frobenius bulk algebras from pivotal module categories
- Outlook



#### Finite tensor categories

Let k be a field.

#### Definition (Finite category)

- A k-linear category C is finite, if
  - O C has finite-dimensional spaces of morphisms.
  - **2** Every object of C has finite length.
  - $\bigcirc$  C has enough projectives.
  - **9** There are finitely many isomorphism classes of simple objects.

#### Remark

A linear category is finite, if and only if it is equivalent to the category A-mod of finite-dimensional A-modules over a finite-dimensional k-algebra.

#### Definition (Finite tensor category)

A finite tensor category is a finite rigid monoidal linear category.

In particular, the tensor product is exact in each argument.

### Eilenberg-Watts calculus

Classical result about finite categories:

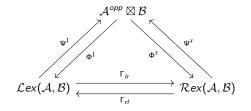
#### Proposition

Let A-mod and B-mod be finite tensor categories. Let

 $G:A\operatorname{\!-\!mod}\nolimits\to B\operatorname{\!-\!mod}\nolimits$ 

be a right exact functor. Then  $G \cong G(_AA_A) \otimes_A -$ . The B-A-bimodule  $G(_AA_A)$  is a right A-module via the image of right multiplication  $r_A : A \to A$  under  $\operatorname{End}_A(A) \xrightarrow{G} \operatorname{End}_B(G(A))$ . A similar statement allows to express left exact functors in terms of bimodules.

Morita-invariant formulation: triangle of explicit adjoint equivalences, based on the Deligne product and (co)ends.



#### Coends

Implement the "sum over all states":

- Do not sum over all irreps up to isomorphism.
- Sum over all representations up to all morphisms.

### Coend:

$$\bigoplus_{X\stackrel{f}{\rightarrow}Y}(Y^{\vee}\otimes X)_{f} \rightrightarrows \bigoplus_{X\in\mathcal{C}}X^{\vee}\otimes X \rightarrow \int^{X\in\mathcal{C}}X^{\vee}\otimes X \rightarrow 0$$

"Direct sum over all objects, with all morphisms taken into account." The components of the two maps are for  $X \xrightarrow{f} Y$ 

$$(Y^{\vee}\otimes X)_f\xrightarrow{f^{\vee}\otimes \operatorname{id}_X} X^{\vee}\otimes X \quad \text{and} \quad (Y^{\vee}\otimes X)_f\xrightarrow{\operatorname{id}_{Y^{\vee}}\otimes f} Y^{\vee}\otimes Y$$

Universal property. Coends are generalizations of direct sums. Direct sums are characterized by the fact that maps out of direct sums are families of maps:

$$\operatorname{Hom}(\oplus_i X_i, Y) \cong \prod_i \operatorname{Hom}(X_i, Y)$$

Ends are defined by reversing arrows.

Module categories, relative Serre functors

Field content of 2d CFTs 0000000

# Ends and coends

### Remarks

• Examples of coends and ends: trace and natural transformations

$$\int^{v \in \operatorname{vect}_k} v \otimes v^* = k \quad \text{and} \quad \operatorname{Nat}(F, G) = \int_{c \in \mathbb{C}} \operatorname{Hom}_{\mathcal{D}}(F(c), G(c))$$

• (Co-)Yoneda lemma:  $G: \mathcal{D} 
ightarrow \mathcal{C}$  linear, then

$$\int^{Y\in\mathcal{D}} G(y)\otimes \operatorname{Hom}_{\mathcal{D}}(y,-)\cong G(-)$$

and

$$\int_{Y\in\mathcal{D}} G(y)\otimes \operatorname{Hom}_{\mathcal{D}}(-,y)^*\cong G(-)$$

### Theorem (Fuchs, Schaumann, CS)

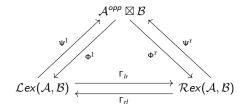
Peter-Weyl theorem: as A-bimodules

$$\int_{m\in A\operatorname{-mod}} m\otimes_k m^* = A \qquad \text{and} \qquad \int^{m\in A\operatorname{-mod}} m\otimes_k m^* = A^*$$

Module categories, relative Serre functors

Field content of 2d CFTs 0000000

# Eilenberg-Watts calculus



$$\begin{split} \Phi^{\rm l} &\equiv \Phi^{\rm l}_{\mathcal{A},\mathcal{B}} : \quad \mathcal{A}^{\rm opp} \boxtimes \mathcal{B} \xrightarrow{\simeq} \mathcal{L}ex(\mathcal{A},\mathcal{B}) \,, \\ &\overline{a} \boxtimes b \longmapsto \operatorname{Hom}_{\mathcal{A}}(a,-) \otimes b \,, \end{split} \\ \Psi^{\rm l} &\equiv \Psi^{\rm l}_{\mathcal{A},\mathcal{B}} : \quad \mathcal{L}ex(\mathcal{A},\mathcal{B}) \xrightarrow{\simeq} \mathcal{A}^{\rm opp} \boxtimes \mathcal{B} \,, \\ &F \longmapsto \int^{a \in \mathcal{A}} \overline{a} \boxtimes F(a) \,, \end{split} \\ \Phi^{\rm r} &\equiv \Phi^{\rm r}_{\mathcal{A},\mathcal{B}} : \quad \mathcal{A}^{\rm opp} \boxtimes \mathcal{B} \xrightarrow{\simeq} \mathcal{R}ex(\mathcal{A},\mathcal{B}) \,, \\ &\overline{a} \boxtimes b \longmapsto \operatorname{Hom}_{\mathcal{A}}(-,a)^* \otimes b \,, \end{split} \\ \Psi^{\rm r} &\equiv \Psi^{\rm r}_{\mathcal{A},\mathcal{B}} : \quad \mathcal{R}ex(\mathcal{A},\mathcal{B}) \xrightarrow{\simeq} \mathcal{A}^{\rm opp} \boxtimes \mathcal{B} \,, \\ &G \longmapsto \int_{a \in \mathcal{A}} \overline{a} \boxtimes G(b) \end{split}$$

In particular,  $\mathrm{id}_\mathcal{A}\in\mathcal{L}\text{ex}(\mathcal{A},\mathcal{A})$  is mapped to the right exact functor

Module categories, relative Serre functors 00000000

### Nakayama functors

$$N_{\mathcal{A}}^{r}:=\int^{a\in\mathcal{A}}\mathrm{Hom}_{\mathcal{A}}(-,a)^{*}\otimes a \quad ext{ and } \quad N_{\mathcal{A}}^{\prime}:=\int_{a\in\mathcal{A}}\mathrm{Hom}_{\mathcal{A}}(a,-)\otimes a$$

For  $\mathcal{A} = A$ -mod:

$$N_{\mathcal{A}}^{\prime} = \mathcal{A}^{*} \otimes_{\mathcal{A}} - \cong \operatorname{Hom}_{\mathcal{A}}(-,\mathcal{A})^{*} \quad \text{and} \quad N_{\mathcal{A}}^{\prime} = \operatorname{Hom}_{\mathcal{A}}(\mathcal{A}^{*},-) \;.$$

For this reason, we call  $N_{\mathcal{A}}^r$  and  $N_{\mathcal{A}}^l$  Nakayama functors.

#### Proposition

- The Nakayama functors are adjoints,  $N_{\mathcal{A}}^{\prime} \dashv N_{\mathcal{A}}^{r}$ .
- **2**  $N_{\mathcal{A}}^{\prime}$  equivalence  $\Leftrightarrow N_{\mathcal{A}}^{\prime}$  equivalence.  $\Leftrightarrow \mathcal{A}$  is selfinjective.
- $\ \, {\sf S} \ \, {\sf N}_{\cal A}^{\prime} \cong {\rm id}_{\cal A} \ \, {\sf and} \ \, {\sf N}_{\cal A}^{\prime} \cong {\rm id}_{\cal A} \ \, \Leftrightarrow \ \, {\cal A} \ \, {\sf is \ symmetric \ \, Frobenius.}$

#### Corollary

There is a canonical isomorphism

$$\int^{a\in\mathcal{A}}\overline{a}\boxtimes a=\Psi^{\prime}(\mathrm{id}_{\mathcal{A}})\cong\Psi^{r}\Phi^{r}\Psi^{\prime}(\mathrm{id}_{\mathcal{A}})=\Psi^{r}(N_{\mathcal{A}}^{r})=\int_{a\in\mathcal{A}}\overline{a}\boxtimes N_{\mathcal{A}}^{r}(a)$$

Monoidal categories, module categories and relative Serre functors

### Module categories

# Definition (Module categories)

Let  ${\mathcal A}$  and  ${\mathcal B}$  be linear monoidal categories.

• A left  $\mathcal{A}$ -module category is a linear category  $\mathcal{M}$  with a bilinear functor  $\otimes : \mathcal{A} \times \overline{\mathcal{M}} \to \overline{\mathcal{M}}$  and natural isomorphisms

 $\alpha:\otimes\circ(\otimes\times\mathrm{id}_{\mathcal{M}})\xrightarrow{\sim}\otimes\circ(\mathrm{id}_{\mathcal{A}}\times\otimes)\qquad\lambda:\otimes\circ(\mathrm{id}_{\mathcal{A}}\times-)\xrightarrow{\sim}\mathrm{id}_{\mathcal{M}}$ 

satisfying obvious pentagon and triangle axioms. We write  $a.m := a \otimes m$ .

- Isight module categories are defined analogously.
- On A-B bimodule category is a linear category D, with the structure of a left A and right D-module category and a natural associator isomorphism (a.d).b ≅ c.(d.b).
- Module functors, module natural transformations defined in obvious way.

#### Example

Any monoidal category  $\mathcal{A}$  is a bimodule category over itself.

### Internal homs

### Definition (Finite module categories)

Let A be a finite tensor category over k. A left A-module category is <u>finite</u>, if the underlying category is a finite abelian category over k and the action is k-linear in each variable and right exact in the first variable.

### Definition (Internal Hom)

Let  $\mathcal{M}$  be a  $\mathcal{C}$ -module category and  $m, m' \in \mathcal{M}$ . Then the internal Hom  $\underline{\operatorname{Hom}}(m, m') \in \mathcal{C}$  is the object such that  $\operatorname{Hom}_{\mathcal{C}}(c, \underline{\operatorname{Hom}}(m, m')) \cong \operatorname{Hom}_{\mathcal{M}}(c.m, m')$  for all  $c \in \mathcal{C}$ .

#### Examples

 C super vector spaces. Homs are grade preserving linear maps. Internal Homs are super vector spaces and have an odd component.

• For 
$$\mathcal{M} = \mathcal{C}$$
, we have  $\underline{\operatorname{Hom}}(c, c') = c' \otimes c^{\vee}$ .

Internal Homs admit an associative composition:

 $\underline{\operatorname{Hom}}(m',m'')\otimes \underline{\operatorname{Hom}}(m,m') \to \underline{\operatorname{Hom}}(m,m'')$ 

# Radford's $S^4$ -theorem

For linear functors, we have

### Theorem (Fuchs, Schaumann, CS)

Let  $\mathcal{A}, \mathcal{B}$  be finite categories. Let  $F \in \mathcal{L}ex(\mathcal{A}, \mathcal{B})$  such that  $F^{Ia}$  is left exact so that  $F^{IIa}$  exists. Assume that  $F^{IIa}$  is left exact as well. Then there is a natural isomorphism

$$\varphi_F^l: \quad N_B^l \circ F \cong F^{lla} \circ N_A^l$$

that is coherent with respect to composition of functors.

Apply this to bimodule categories over finite tensor categories:

#### Theorem (Fuchs, Schaumann, CS)

Let  $\mathcal{A}, \mathcal{B}$  be finite tensor categories and  $\mathcal{M}$  an  $\mathcal{A}$ - $\mathcal{B}$  bimodule. Then the Nakayama functor has the structure of a twisted bimodule functor:

 $N'_{\mathcal{M}}(a.m.b) \cong a^{\vee\vee}.N'_{\mathcal{M}}(m).^{\vee\vee}b$ 

Module categories, relative Serre functors

Field content of 2d CFTs 0000000

# Recovering Radford's $S^4$ -theorem

$$N'_{\mathcal{M}}(a.m.b) \cong a^{\vee\vee}.N'_{\mathcal{M}}(m).^{\vee\vee}b$$

Observe

• The finite tensor category  $\mathcal{A}$  is a bimodule over itself.

٩

$$N_{\mathcal{A}}^{\prime}(1) = \int_{a \in \mathcal{A}} \operatorname{Hom}_{\mathcal{A}}(a, 1) \otimes a = D_{\mathcal{A}}$$

is the distinguished invertible object of  $\mathcal{A}$ .

Compute

$$N_{\mathcal{A}}^{\prime}(a) = N_{\mathcal{A}}^{\prime}(a \otimes 1) = a^{\vee \vee} \otimes N_{\mathcal{A}}^{\prime}(1) = a^{\vee \vee} \otimes D_{\mathcal{A}}$$

and

$$N_{\mathcal{A}}^{\prime}(a)=N_{\mathcal{A}}^{\prime}(1\otimes a)=N_{\mathcal{A}}^{\prime}(1)\otimes {}^{\vee\vee}a=D_{\mathcal{A}}\otimes {}^{\vee\vee}a$$

 We recover Radford's S<sup>4</sup>-theorem in its categorical form D<sub>A</sub> ⊗ a ⊗ D<sub>A</sub><sup>-1</sup> = a<sup>∨∨∨∨</sup> [ENO, 2004]

### Relative Serre functors

### Definition (Fuchs, Schaumann, CS)

Let  $\mathcal M$  be a C-module. A right/left relative Serre functor is an endofunctor  $S^r_{\mathcal M} \ / \ S^l_{\mathcal M}$  of  $\mathcal M$  together with a family

$$\frac{\operatorname{Hom}(m,n)^{\vee}}{\operatorname{Hom}(m,n)} \xrightarrow{\cong} \frac{\operatorname{Hom}(n,\operatorname{S}^{\mathrm{r}}_{\mathcal{M}}(m))}{\operatorname{Hom}(m,n)} \xrightarrow{\cong} \frac{\operatorname{Hom}(\operatorname{S}^{\mathrm{l}}_{\mathcal{M}}(n),m)}{\operatorname{Hom}(\operatorname{S}^{\mathrm{l}}_{\mathcal{M}}(n),m)}$$

of isomorphisms natural in  $m, n \in \mathcal{M}$ .

- Relative Serre functors exist, iff  $\mathcal{M}$  is an exact module category (i.e. p.m is projective, if  $p \in C$  is projective).
- Serre functors are equivalences of categories.
- Serre functors are twisted module functors:

$$\phi_{c,m}: \ \mathrm{S}^{\mathrm{r}}_{\mathcal{M}}(c.m) \longrightarrow c^{\vee\vee}. \ \mathrm{S}^{\mathrm{r}}_{\mathcal{M}}(m) \quad \text{and} \quad \tilde{\phi}_{c,m}: \ \mathrm{S}^{\mathrm{l}}_{\mathcal{M}}(c.m) \longrightarrow \ ^{\vee\vee}c. \ \mathrm{S}^{\mathrm{l}}_{\mathcal{M}}(m)$$

#### Theorem

Let  $\mathcal M$  be an exact  $\mathcal A\text{-module.}$  Then

 $N_{\mathcal{M}}^{\prime}\cong D_{\mathcal{A}}.\mathrm{S}_{\mathcal{M}}^{\mathrm{l}}$  and  $N_{\mathcal{M}}^{r}\cong D_{\mathcal{A}}^{-1}.\mathrm{S}_{\mathcal{M}}^{\mathrm{r}}$ 

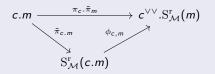
### Pivotal module categories

Serre functors are twisted module functors:

$$\phi_{c,m}: \quad \mathrm{S}^{\mathrm{r}}_{\mathcal{M}}(c.m) \longrightarrow c^{\vee \vee}. \, \mathrm{S}^{\mathrm{r}}_{\mathcal{M}}(m) \quad \text{and} \quad \tilde{\phi}_{c,m}: \quad \mathrm{S}^{\mathrm{l}}_{\mathcal{M}}(c.m) \longrightarrow \ ^{\vee \vee}c. \, \mathrm{S}^{\mathrm{r}}_{\mathcal{M}}(m) \, .$$

#### Definition (Schaumann 2015, Shimizu 2019)

A pivotal structure on an exact module category  $\mathcal{M}$  over a pivotal finite tensor category  $(\mathcal{C}, \pi)$  is an isomorphism of functors  $\tilde{\pi} : \operatorname{id}_{\mathcal{M}} \to \operatorname{S}^{r}_{\mathcal{M}}$  such that the following diagram commutes for all  $c \in \mathcal{C}$  and  $m \in \mathcal{M}$ :



- For indecomposable exact module categories, the pivotal structure is unique up to scalar.
- The algebras  $\underline{Hom}(m, m) \in C$  for m in a pivotal module category have the structure of symmetric Frobenius algebras.



The field content of two-dimensional local conformal field theories

# Reminder about chiral conformal field theory

#### Definition (Modular tensor category)

A modular tensor category  ${\mathcal C}$  is a finite ribbon category such that the braiding is maximally non-degenerate.

Various formulations exist and are equivalent [Shimizu 2016]:

- Braided equivalence  $\mathcal{C} \boxtimes \mathcal{C}^{rev} \simeq \mathcal{Z}(\mathcal{C})$
- Coend  $L := \int^{\mathcal{C}} U^{\vee} \otimes U$  has non-degenerate Hopf pairing  $\omega_{\mathcal{C}}$
- Map Hom(1, L) → Hom(L, 1) induced by ω<sub>C</sub> is isomorphism.
- $\bullet \ \mathcal{C}$  has no transparent objects.

#### Remarks

• The representation category of suitable vertex algebras or nets of observable algebras has naturally the structure of a modular tensor category:

The chiral data of a (finite) conformal field theory are described by a modular tensor category.

 $\bullet\,$  From a modular tensor category, one can construct a modular functor (Lyubashenko,  $\sim\,$  1995)

### Fields in two-dimensional local conformal field theory

- Fields + OPE  $\rightsquigarrow$  (symmetric Frobenius) algebras.
- Symmetric Frobenius algebras in the appropriate monoidal category



Additional datum to specify local CFT given a modular tensor category: Suitable module category  ${\cal M}$  over the modular tensor category  ${\cal C}.$ 

Boundary

OPF

Boundary condition: Object of  $\mathcal{M}$ Boundary fields from bc *m* to *n*  $\operatorname{Hom}(m, n) \in \mathcal{C}$ 

Object of  $\mathcal{M}$ <u>Hom</u> $(m, n) \in \mathcal{C}$ composition of inner Homs

- $\bullet\,$  Modular tensor category  ${\cal C}$  is pivotal.
- $\bullet$  Require  ${\cal M}$  to be a pivotal module category
- Then  $\underline{\operatorname{Hom}}(m,m)$  is a symmetric Frobenius algebra for each  $m \in \mathcal{M}$ .

Bulk algebra: commutative symmetric Frobenius algebra in  $\mathcal{C} \boxtimes \mathcal{C}^{rev} \simeq \mathcal{Z}(\mathcal{C})$ . Tasks:

- Obtain bulk Frobenius algebras from boundary data
- **②** Obtain also descriptions of defect fields and disorder fields.

Module categories, relative Serre functors

Field content of 2d CFTs

### Bulk fields and defect fields for a fixed modular tensor category C

Include defects and defect fields:



Defects are labelled by right exact C-module functors  $F, G : \mathcal{M}_1 \to \mathcal{M}_2$ 

For defect field, need an object  $\mathbb{D}^{F,G} \in \mathcal{Z}(\mathcal{C}) \simeq \mathcal{C}^{rev} \boxtimes \mathcal{C}$ : Fact:  $\mathcal{R}ex_{\mathcal{C}}(\mathcal{M}_1, \mathcal{M}_2)$  is a  $\mathcal{Z}(\mathcal{C})$ -module by  $(c.F)(m_1) := c.F(m_1)$ and module functor structure given by half-braiding. Consider the internal homs  $\underline{\operatorname{Nat}}(F, G) \in \mathcal{Z}(\mathcal{C})$  of this module category.

## Bulk and defect fields II

#### Theorem

$$\underline{\operatorname{Nat}}(F,G) \in \mathcal{Z}(\mathcal{C}) = \int_{m_1 \in \mathcal{M}_1} \underline{\operatorname{Hom}}(F(m_1),G(m_1)) \in \mathcal{Z}(\mathcal{C})$$

#### Remarks

• Recall natural transformations:

$$\operatorname{Nat}(F,G) = \int_{m_1 \in \mathcal{M}_1} \operatorname{Hom}(F(m_1),G(m_1)) \subset \prod_{m_1 \in \mathcal{M}_1} \operatorname{Hom}(F(m_1),G(m_1))$$

For 
$$\mathcal{C} = \mathcal{M} = A$$
-mod, get  $Z(A) = \operatorname{Nat}(\operatorname{id}, \operatorname{id}) = \int_{m_1 \in \mathcal{M}_1} \operatorname{Hom}(m_1, m_1)$ 

- Defect fields = "internalized" natural transformations. In particular, bulk algebra =  $\int_{m \in M} \underline{\text{Hom}}(m, m) =$  "internalized center".
- We have horizontal and vertical compositions of relative natural transformations, obeying the usual relations, including Eckmann-Hilton.

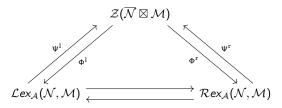
Module categories, relative Serre functors

Field content of 2d CFTs

# Symmetric Frobenius algebras

For CFT, we need symmetric Frobenius algebras.

A module Eilenberg-Watts calculus which for a pivotal tensor category  ${\mathcal C}$  yields



#### Theorem

 ${\cal C}$  be a pivotal finite tensor category and  ${\cal M}$  and  ${\cal N}$  exact  ${\cal C}\text{-modules}.$ 

- On the functor category Rex<sub>C</sub>(M, N) is an exact module category over Z(C) with relative Serre functor N<sup>r</sup><sub>N</sub> ∘ (D.−) ∘ N<sup>r</sup><sub>M</sub>.
- If C is unimodular pivotal and M and N are pivotal C-modules, then Rex<sub>C</sub>(M,N) is a pivotal Z(C)-module category.
- In particular, then <u>Nat</u>(F, F) is a symmetric Frobenius algebra in the Drinfeld center Z(C) and <u>Nat</u>(id<sub>M</sub>, id<sub>M</sub>) has a natural structure of a commutative symmetric Frobenius algebra.

Module categories, relative Serre functors 00000000

Field content of 2d CFTs

### Sewing constraints



(b)

(Lewellen, 1992) Structure morphisms:

- Multiplications and comultiplications

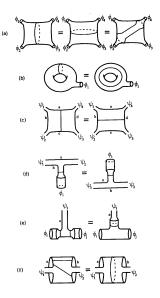
- Component maps  $\underline{\operatorname{Nat}}(\operatorname{id},\operatorname{id}) \to \underline{\operatorname{Hom}}(m,m)$ 

(c)

## Relations:

(a)

- (a), (c): bulk and boundary are Frobenius
- (e): component map is morphism of algebras
- (d) dinaturality of the (co)end component morphisms
- (b) and (f)=Cardy relation are genus 1





# Outlook

- Genus one constraints.
- ② Description of correlators via modular functors.
- Beyond rigid categories.