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Bulk fields in 2d CFT

Long history:

Associativity constraints for OPE (1980s)

ADE-Classifications based on modular data (1980-1990s)
and their failure

TFT construction of RCFT correlators:
from semisimple modular tensor category
and a semisimple indecomposable module category over it (2000)

Focus today:

Beyond semisimplicity (Logarithmic conformal field theory)

still keeping finiteness properties.

A tour,
starting with some classical representation theory of finite-dimensional algebras,
then turning to monoidal categories and module categories over them
and ending with bulk and defect fields.
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Chapter 1

Eilenberg-Watts calculus and Nakayama functors
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Finite tensor categories

Let k be a field.

Definition (Finite category)

A k-linear category C is finite, if

1 C has finite-dimensional spaces of morphisms.

2 Every object of C has finite length.

3 C has enough projectives.

4 There are finitely many isomorphism classes of simple objects.

Remark

A linear category is finite, if and only if it is equivalent to the category A-mod
of finite-dimensional A-modules over a finite-dimensional k-algebra.

Definition (Finite tensor category)

A finite tensor category is a finite rigid monoidal linear category.

In particular, the tensor product is exact in each argument.
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Eilenberg-Watts calculus

Classical result about finite categories:

Proposition

Let A-mod and B-mod be finite tensor categories. Let

G : A-mod→ B-mod

be a right exact functor. Then G ∼= G(AAA)⊗A −.
The B-A-bimodule G(AAA) is a right A-module via the image of right

multiplication rA : A→ A under EndA(A)
G→ EndB(G(A)).

A similar statement allows to express left exact functors in terms of bimodules.

Morita-invariant formulation: triangle of explicit adjoint equivalences, based on
the Deligne product and (co)ends.

Aopp � B

Lex(A,B) Rex(A,B)

Φl Φr

Γlr

Ψl

Γrl

Ψr
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Coends

Implement the “sum over all states”:
• Do not sum over all irreps up to isomorphism.
• Sum over all representations up to all morphisms.

Coend: ⊕
X

f→Y

(Y ∨ ⊗ X )f ⇒
⊕
X∈C

X∨ ⊗ X →
∫ X∈C

X∨ ⊗ X → 0

“Direct sum over all objects, with all morphisms taken into account.”

The components of the two maps are for X
f→ Y

(Y ∨ ⊗ X )f
f∨⊗idX−−−−−→ X∨ ⊗ X and (Y ∨ ⊗ X )f

idY∨⊗f
−−−−−→ Y ∨ ⊗ Y

Universal property. Coends are generalizations of direct sums. Direct sums are
characterized by the fact that maps out of direct sums are families of maps:

Hom(⊕iXi ,Y ) ∼=
∏
i

Hom(Xi ,Y )

Ends are defined by reversing arrows.
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Ends and coends

Remarks

Examples of coends and ends: trace and natural transformations∫ v∈vectk
v ⊗ v∗ = k and Nat(F ,G) =

∫
c∈C

HomD(F (c),G(c))

(Co-)Yoneda lemma: G : D → C linear, then∫ Y∈D
G(y)⊗HomD(y ,−) ∼= G(−)

and ∫
Y∈D

G(y)⊗HomD(−, y)∗ ∼= G(−)

Theorem (Fuchs, Schaumann, CS)

Peter-Weyl theorem: as A-bimodules∫
m∈A-mod

m ⊗k m
∗ = A and

∫ m∈A-mod

m ⊗k m
∗ = A∗
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Eilenberg-Watts calculus

Aopp � B

Lex(A,B) Rex(A,B)

Φl Φr

Γlr

Ψl

Γrl

Ψr

Φl ≡ Φl
A,B : Aopp � B '−−→ Lex(A,B) ,

a � b 7−→ HomA(a,−)⊗ b ,

Ψl ≡ Ψl
A,B : Lex(A,B)

'−−→ Aopp � B ,
F 7−→

∫ a∈A
a � F (a) ,

Φr ≡ Φr
A,B : Aopp � B '−−→ Rex(A,B) ,

a � b 7−→ HomA(−, a)∗ ⊗ b ,

Ψr ≡ Ψr
A,B : Rex(A,B)

'−−→ Aopp � B ,
G 7−→

∫
a∈A a � G(b)

In particular, idA ∈ Lex(A,A) is mapped to the right exact functor

N r
A :=

∫ a∈A
HomA(−, a)∗ ⊗ a .
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Nakayama functors

N r
A :=

∫ a∈A
HomA(−, a)∗ ⊗ a and N l

A :=

∫
a∈A

HomA(a,−)⊗ a

For A = A-mod:

N r
A = A∗ ⊗A − ∼= HomA(−,A)∗ and N l

A = HomA(A∗,−) .

For this reason, we call N r
A and N l

A Nakayama functors.

Proposition

1 The Nakayama functors are adjoints, N l
A a N r

A.

2 N l
A equivalence ⇔ N r

A equivalence. ⇔ A is selfinjective.

3 N l
A
∼= idA and N r

A
∼= idA ⇔ A is symmetric Frobenius.

Corollary

There is a canonical isomorphism∫ a∈A
a � a = Ψl(idA) ∼= ΨrΦrΨl(idA) = Ψr (N r

A) =

∫
a∈A

a � N r
A(a)
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Chapter 2

Monoidal categories,module categories and relative Serre functors
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Module categories

Definition (Module categories)

Let A and B be linear monoidal categories.

1 A left A-module category is a linear category M with a bilinear functor
⊗ : A×M→M and natural isomorphisms

α : ⊗ ◦ (⊗× idM)
∼→ ⊗ ◦ (idA ×⊗) λ : ⊗ ◦ (idA ×−)

∼→ idM

satisfying obvious pentagon and triangle axioms. We write a.m := a⊗m.

2 Right module categories are defined analogously.

3 An A-B bimodule category is a linear category D,
with the structure of a left A and right D-module category
and a natural associator isomorphism (a.d).b ∼= c.(d .b).

4 Module functors, module natural transformations defined in obvious way.

Example

Any monoidal category A is a bimodule category over itself.
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Internal homs

Definition (Finite module categories)

Let A be a finite tensor category over k. A left A-module category is finite,
if the underlying category is a finite abelian category over k and the action is
k-linear in each variable and right exact in the first variable.

Definition (Internal Hom)

Let M be a C-module category and m,m′ ∈M.
Then the internal Hom Hom(m,m′) ∈ C is the object
such that HomC(c,Hom(m,m′)) ∼= HomM(c.m,m′) for all c ∈ C.

Examples

C super vector spaces. Homs are grade preserving linear maps.
Internal Homs are super vector spaces and have an odd component.

For M = C, we have Hom(c, c ′) = c ′ ⊗ c∨.

Internal Homs admit an associative composition:

Hom(m′,m′′)⊗Hom(m,m′)→ Hom(m,m′′)
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Radford’s S4-theorem

For linear functors, we have

Theorem (Fuchs, Schaumann, CS)

Let A,B be finite categories. Let F ∈ Lex(A,B) such that F la is left exact so
that F lla exists. Assume that F lla is left exact as well.
Then there is a natural isomorphism

ϕl
F : N l

B ◦ F ∼= F lla ◦ N l
A

that is coherent with respect to composition of functors.

Apply this to bimodule categories over finite tensor categories:

Theorem (Fuchs, Schaumann, CS)

Let A,B be finite tensor categories and M an A-B bimodule.
Then the Nakayama functor has the structure of a twisted bimodule functor:

N l
M(a.m.b) ∼= a∨∨.N l

M(m). ∨∨b
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Recovering Radford’s S4-theorem

N l
M(a.m.b) ∼= a∨∨.N l

M(m). ∨∨b

Observe

The finite tensor category A is a bimodule over itself.

N l
A(1) =

∫
a∈A

HomA(a, 1)⊗ a = DA

is the distinguished invertible object of A.

Compute

N l
A(a) = N l

A(a⊗ 1) = a∨∨ ⊗ N l
A(1) = a∨∨ ⊗ DA

and
N l
A(a) = N l

A(1⊗ a) = N l
A(1)⊗ ∨∨a = DA ⊗ ∨∨a

We recover Radford’s S4-theorem in its categorical form
DA ⊗ a⊗ D−1

A = a∨∨∨∨ [ENO, 2004]
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Relative Serre functors

Definition (Fuchs, Schaumann, CS)

Let M be a C-module. A right/left relative Serre functor is an endofunctor
Sr
M / Sl

M of M together with a family

Hom(m, n)∨
∼=−−→ Hom(n, Sr

M(m))
∨Hom(m, n)

∼=−−→ Hom(Sl
M(n),m)

of isomorphisms natural in m, n ∈M.

Relative Serre functors exist, iff M is an exact module category
(i.e. p.m is projective, if p ∈ C is projective).

Serre functors are equivalences of categories.

Serre functors are twisted module functors:

φc,m : Sr
M(c.m) −→ c∨∨. Sr

M(m) and φ̃c,m : Sl
M(c.m) −→ ∨∨c. Sl

M(m)

Theorem

Let M be an exact A-module. Then

N l
M ∼= DA.S

l
M and N r

M ∼= D−1
A .Sr

M
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Pivotal module categories

Serre functors are twisted module functors:

φc,m : Sr
M(c.m) −→ c∨∨. Sr

M(m) and φ̃c,m : Sl
M(c.m) −→ ∨∨c.Sr

M(m) .

Definition (Schaumann 2015, Shimizu 2019)

A pivotal structure on an exact module category M over a pivotal finite tensor
category (C, π) is an isomorphism of functors π̃ : idM → Sr

M
such that the following diagram commutes for all c ∈ C and m ∈M:

c.m c∨∨.Sr
M(m)

Sr
M(c.m)

πc .π̃m

π̃c.m φc,m

For indecomposable exact module categories, the pivotal structure is
unique up to scalar.

The algebras Hom(m,m) ∈ C for m in a pivotal module category
have the structure of symmetric Frobenius algebras.
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Chapter 3

The field content of two-dimensional local conformal field theories
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Reminder about chiral conformal field theory

Definition (Modular tensor category)

A modular tensor category C is a finite ribbon category such that the braiding
is maximally non-degenerate.
Various formulations exist and are equivalent [Shimizu 2016]:

Braided equivalence C � Crev ' Z(C)

Coend L :=
∫ C

U∨ ⊗ U has non-degenerate Hopf pairing ωC

Map Hom(1, L)→ Hom(L, 1) induced by ωC is isomorphism.

C has no transparent objects.

Remarks

The representation category of suitable vertex algebras or nets of
observable algebras has naturally the structure of a modular tensor
category:
The chiral data of a (finite) conformal field theory are described by a
modular tensor category.

From a modular tensor category, one can construct a modular functor
(Lyubashenko, ∼ 1995)



Eilenberg-Watts calculus, Nakayama functors Module categories, relative Serre functors Field content of 2d CFTs

Fields in two-dimensional local conformal field theory

Fields + OPE  (symmetric Frobenius) algebras.

Symmetric Frobenius algebras in the appropriate monoidal category

666 D.C. Lewellen / Sewingconstraints

(a)

(b)

a

(c) (d =

‘5.

s,b2 iJ)~l~ ‘V3

(d) ~

(e)

(t) ~

Fig. 9. The six necessaryandsufficient basic sewing-constraintsfor amplitudeswith bulk andboundary
operators.(a)—(f) correspondto thecasesin fig. 7a, b, d, e, f ando respectively.

The sum runs over primary fields. The omitted terms are the less singular
contributionsfrom the Virasoro descendentfields. The C,,k are constantsto be
determined;the coefficientsof the descendentfields are thencompletelyfixed in
principle by the conformal symmetry.If the fields involved arediagonal(LI1 = LI1)
then the C,Jk aresymmetricin i, j and k given (3.1)

Crossing-symmetryof four-point amplitudesprovidesthebasicconstraintslimit-
ing the choicesfor C.)k. Conformal invariancefixes the form of the four-point
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Additional datum to specify local CFT given a modular tensor category:
Suitable module category M over the modular tensor category C.
Boundary

Boundary condition: Object of M
Boundary fields from bc m to n Hom(m, n) ∈ C
OPE composition of inner Homs

Modular tensor category C is pivotal.

Require M to be a pivotal module category

Then Hom(m,m) is a symmetric Frobenius algebra for each m ∈M.

Bulk algebra: commutative symmetric Frobenius algebra in C � Crev ' Z(C).
Tasks:

1 Obtain bulk Frobenius algebras from boundary data
2 Obtain also descriptions of defect fields and disorder fields.
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Bulk fields and defect fields for a fixed modular tensor category C

Include defects and defect fields:
 

G

Miauen.MY

fr
4 Mz phasesof CFT

defect

EG defects field

Poincaré dual−−−−−−−→ M1 M2

G

F

Φ

Defects are labelled by right exact C-module functors F ,G : M1 →M2

For defect field, need an object DF ,G ∈ Z(C) ' Crev � C:
Fact:
RexC(M1,M2) is a Z(C)-module by (c.F )(m1) := c.F (m1)
and module functor structure given by half-braiding.
Consider the internal homs Nat(F ,G) ∈ Z(C) of this module category.
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Bulk and defect fields II

Theorem

Nat(F ,G) ∈ Z(C) =

∫
m1∈M1

Hom(F (m1),G(m1)) ∈ Z(C)

Remarks

Recall natural transformations:

Nat(F ,G) =

∫
m1∈M1

Hom(F (m1),G(m1)) ⊂
∏

m1∈M1

Hom(F (m1),G(m1))

For C =M = A-mod, get Z(A) = Nat(id, id) =
∫
m1∈M1

Hom(m1,m1)

Defect fields = “internalized” natural transformations.
In particular, bulk algebra =

∫
m∈MHom(m,m) = “internalized center”.

We have horizontal and vertical compositions of relative natural
transformations, obeying the usual relations, including Eckmann-Hilton.
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Symmetric Frobenius algebras

For CFT, we need symmetric Frobenius algebras.
A module Eilenberg-Watts calculus which for a pivotal tensor category C yields

Z(N �M)

LexA(N ,M) RexA(N ,M)

Φl Φr

Ψl Ψr

Theorem

C be a pivotal finite tensor category and M and N exact C-modules.

1 The functor category RexC(M,N ) is an exact module category over Z(C)
with relative Serre functor N r

N ◦ (D.−) ◦ N r
M.

2 If C is unimodular pivotal and M and N are pivotal C-modules,
then RexC(M,N ) is a pivotal Z(C)-module category.

3 In particular, then Nat(F ,F ) is a symmetric Frobenius algebra in the
Drinfeld center Z(C) and Nat(idM, idM) has a natural structure of a
commutative symmetric Frobenius algebra.
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Sewing constraints

D.C. Lewd/en/ Sewingconstraints 655

(a) (b) (c)

Fig. I. The basic building blocks for sewingconformal field theory amplitudes of bulk or boundary
operators.(a)bulk (‘closedstring”) 3-point function; (b) boundary(“open string”) 3-point function; (c)

bulk—boundary(“open—closedstring”) amplitude.

Sonoda provedthat no ambiguitiesarise in a given sewing prescriptionfor any
bulk amplitude if none appearin computingfour-point treeor one-pointone-loop
amplitudes.Thesegive the constraintsof crossingsymmetry(duality) andmodular
invariance,respectively.

In this work we derive and examine the analogoussewing constraints for
conformal field theorieson surfaceswith boundaries.When boundariesare in-
cludedwe havethe possibility of operatorsliving solely there— boundaryoperators
— which, in general,mediatechangesin the boundaryconditionson the edgeof
the world-sheet.The spectrumof boundaryoperatorsdependson the boundary
conditions consideredand need not coincide with those in the bulk. For the
purposesof our analysiswe demandonly that the boundaryconditions do not
breakconformalinvariance.In the string-theorylanguage(whereboundaryopera-

tors correspondto open-stringvertex operators)the basic building blocks of
amplitudesnow include the open-stringthree-pointfunction andthe closed-string

to open-stringamplitude in additionto the closed-stringthree-pointfunction (fig.
1). The additional ingredientsaredirectly related to the coefficientsappearingin
theshort-distanceexpansionas two boundaryoperatorsapproacheachother,or as
a bulk operator approachesa boundary, respectively.Any amplitude can be
constructedby sewing some number of thesebasic amplitudestogether.Again
thereare many possiblesewingsfor a given amplitude;equatingthe possibilities
leadsto sewingconstraints.In sect. 2 we adaptandextendSonoda’sproof to find
the necessaryand sufficient set of sewingconstraintsfor correlationfunctionsof
bulk andboundaryoperators.Wefind four basicconstraintsin additionto thetwo
alreadyrequired for the consistencyof the bulk theory alone; threedefinedon
surfaceswith the topologyof the half-plane,andone on the cylinder.

The constraintsof crossing-symmetryand modular invariance are of great
practical importance in the exploration of conformal field theories. In bulk
conformalfield theoriesthe crossingconstraintscanbe usedto solve explicitly for
the OPE coefficients[1,3], ClJk, andmodular invariancerestrictsthe spectrumof
operatorswhich canappear[4]. In sect. 3 we carefully specifyour conventionsfor
bulk and boundaryoperatorsand the various OPE coefficients which connect
them,andshow how thesewingconstraintsfound in sect.2 relatethesequantities.

(Lewellen, 1992)
Structure morphisms:

– Multiplications and comultiplications
– Component maps Nat(id, id)→ Hom(m,m)

Relations:

– (a), (c): bulk and boundary are Frobenius
– (e): component map is morphism of algebras
– (d) dinaturality of the (co)end component

morphisms
– (b) and (f)=Cardy relation are genus 1
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Outlook

Outlook

1 Genus one constraints.

2 Description of correlators via modular functors.

3 Beyond rigid categories.
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