A local approach to Anosov groups

Joan Porti (joint with M. Kapovich and B. Leeb)

Universitat Autònoma de Barcelona

October 20, 2023

GEOMETRY BEYOND RIEMANN: CURVATURE AND RIGIDITY Thematic Programme at the ESI (Vienna)

Anosov representations: motivation

2006 Labourie $\rho: \pi_1(S_g) \to \mathrm{PSL}_n \mathbb{R} \ (g \ge 2)$. Gives a geometric interpretation for representations in the Hitchin component $H_n(S_g) = \hom_0(\pi_1(S_g) \to \mathrm{PSL}_n \mathbb{R})/\mathrm{PSL}_n \mathbb{R}$. $H_2(S_g) = \mathrm{Teich}(S_g), \ H_3(S_g) = \mathrm{Proj}(S_g), \ H_n(S_g) =?$

2012 Guichard-Wienhard $\rho: \Gamma \rightarrow G$, Γ Gromov hyperbolic, G semisimple Lie group

- Anosov is the higher rank analog of convex cocompact
- Anosov group: image of Anosov representation
- Symmetric space approach: X = G/K symmetric space of non-compact type
 - Kapovich-Leeb-P
 - Guéritaud-Guichard-Kassel-Wienhard
 - ...

Goal: Give a characterization of Anosov from finitely many elements of Γ .

Parabolic subgroups and flag manifolds

Def: G semisimple Lie group. P < G is parabolic if G/P is a projective variety Example: $G = \operatorname{SL}_n \mathbb{R}$ and $P = \{ \text{upper triangular matrices} \}$. G/P is the flag manifold $\operatorname{Flag}(\mathbb{P}^{n-1}) = \{ f_0 < f_1 < \cdots < f_{n-2} \subset \mathbb{P}^{n-1} \mid f_i \text{ linear and } \dim f_i = i \}$

Example: $G = SL_3\mathbb{R}$ has 3 conjugacy classes of parabolic subgroups

$$P_1 = \begin{pmatrix} * & * & * \\ 0 & * & * \\ 0 & * & * \end{pmatrix}$$
, $P_2 = \begin{pmatrix} * & * & * \\ * & * & * \\ 0 & 0 & * \end{pmatrix}$, $B = \begin{pmatrix} * & * & * \\ 0 & * & * \\ 0 & 0 & * \end{pmatrix}$

 $G/P_1 = \mathbb{P}^2$, $G/P_2 = \check{\mathbb{P}}^2$, $G/B = \{(p, l) \in \mathbb{P}^2 \times \check{\mathbb{P}}^2 \mid p \in l\}$

- P_1 is opposite to P_2 , $B^{opp} = B$
- Opposition: is an involution on the space of conjugacy classes of parabolic subgroups (duality in flag manifolds/Cartan involution in the symmetric space)
- In $\mathrm{SL}_n\mathbb{R}$, opposition is reflection with respect to the antidiagonal

More examples of parabolic subgroups and flag manifolds

Ex: $G = SL_4\mathbb{R}$ has 7 conjugacy classes of non-trivial parabolic subgroups. 3 of them are self-opposite:

$$P_{1} = \begin{pmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & 0 & 0 & * \end{pmatrix} \qquad P_{2} = \begin{pmatrix} * & * & * & * \\ * & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & * & * \end{pmatrix} \qquad B = \begin{pmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{pmatrix}$$

The flag manifolds are:

- $G/P_1 = \{(p,h) \in \mathbb{P}^3 \times \check{\mathbb{P}}^3 \mid p \in h\}$
- $G/P_2 = L(\mathbb{P}^3) = \{I \mid I \text{ proj line in } \mathbb{P}^3\}$
- $G/B = \{(p, l, h) \in \mathbb{P}^3 \times L(\mathbb{P}^3) \times \check{\mathbb{P}}^3 \mid p \in l \subset h\}$

G/B is the full flag manifold, G/P_i are partial flag manifolds

- Ex: $G = \operatorname{SL}_2 \mathbb{R} \times \operatorname{SL}_2 \mathbb{R}$, $X = G/K = \mathbb{H}^2 \times \mathbb{H}^2$.
 - *G* has 3 conjugacy classes of non-trivial parabolic subgroups: $\binom{*}{0} \underset{*}{*} \times SL_2\mathbb{R}, \qquad SL_2\mathbb{R} \times \binom{*}{0} \underset{*}{*}, \qquad \binom{*}{0} \underset{*}{*} \times \binom{*}{0} \underset{*}{*}.$
 - They are all self-opposite.
 - Flag manifolds: $\partial_{\infty}\mathbb{H}^2 \times \{*\}, \{*\} \times \partial_{\infty}\mathbb{H}^2$ and $\partial_{\infty}\mathbb{H}^2 \times \partial_{\infty}\mathbb{H}^2$.

Definition of Anosov representation

• *G* semisimple, $P \subset G$ self-opposite conjugacy class of parabolic subgroups, and Γ word-hyperbolic group.

- Def A representation $\rho \colon \Gamma \to G$ is *P*-Anosov if:
 - a) $\exists \beta \colon \partial_{\infty} \Gamma \to G/P$ antipodal Γ -equivariant embedding
 - b) $\forall r \colon \mathbb{N} \to \Gamma$ normalized geodesic ray, $r(+\infty) = \xi \in \partial_{\infty} \Gamma$,

 $\lim_{n\to+\infty}|d_{\beta(\xi)}(\rho(r(n)))|=0$

(i.e. $ho(r(n)) \in G$ contracts at $ho(\xi) \in G/P$ by factor ightarrow 0)

- Antipodal: for $\xi \neq \xi'$, $\beta(\xi)$ and $\beta(\xi')$ are antipodal flags (generic) - normalized geod ray: $r(0) = e \in \Gamma$ and $d_{\Gamma}(r(m), r(n)) = |m - n|$
- Remark: Why called Anosov? Labourie considers the geodesic flow on T^1S_g and Guichard-Wienhard, the geodesic flow on Γ
 - Anosov representations are discrete and have finite kernel.

Examples

Ex: Let $\Gamma < G = \text{Isom}(\mathbb{H}^n) \cong \text{PO}(n, 1)$ discrete with limit set $\Lambda \subset \partial_{\infty} \mathbb{H}^n$.

- convex $\operatorname{hull}(\Lambda) \subset \mathbb{H}^n$ is the smallest convex with ideal boundary Λ .
- Γ is convex cocompact if convex hull(Λ)/ Γ is compact.
- Γ cvx cocompact iff Γ is *P*-Anosov (for $P = \operatorname{Stab}_G(\xi)$, $\xi \in \partial_\infty \mathbb{H}^n$, so $G/P = \partial_\infty \mathbb{H}^n$).
- Γ cvx cocompact iff the orbit map $\Gamma \mapsto \Gamma x \subset \mathbb{H}^n$ quasi-isometric embedding.

Labourie Representations in the Hitchin component of $\hom(\pi_1(S_g) \to \operatorname{PSL}_{n+1}\mathbb{R})$ are *B*-Anosov, with $B < \operatorname{PSL}_{n+1}(\mathbb{R})$ upper triangular matrices.

Benoist: For D/Γ strictly convex closed projective manifold, $\Gamma < \operatorname{PGL}_{n+1}(\mathbb{R})$ is *P*-Anosov, where *P*=stabilizer of a partial flag in $\{(p, H) \in \mathbb{P}^n \times \check{\mathbb{P}}^n \mid p \in H\}$

$$M = D/\Gamma, \qquad D \Subset \mathbb{R}^n = \mathbb{R}\mathbb{P}^n - \mathbb{R}\mathbb{P}^{n-1}$$
$$\partial_{\infty}\Gamma \cong \{(p, H) \mid p \in \partial \overline{D}, H = T_p \partial \overline{D}\}$$

Symmetric spaces of non-compact type

• X = G/K is a symmetric space of non-compact type

- $X \cong X_1 \times \cdots \times X_n$, with X_i irreducible, non-compact, and $X_i \ncong \mathbb{R}^k$
- $G = \text{Isom}_0(X)$ is a semisimple Lie group and K < G a maximal compact subgroup

Examples $\mathbb{H}^n = \text{PSO}(1, n)/\text{SO}(n)$ $X = \text{SL}_n(\mathbb{R})/\text{SO}(n)$ $\mathbb{H}^2 \times \mathbb{H}^2 = \text{SL}_2(\mathbb{R}) \times \text{SL}_2(\mathbb{R})/\text{SO}(2) \times \text{SO}(2)$

Goal Characterize discrete $\Gamma < G$ that are Anosov according to the action on X = G/K

Def A flat is a totally geodesic $F \subset X$ isometric to \mathbb{R}^k .

Def The rank of X is the dimension of any maximal flat.

Remark: • G acts transitively on the set of maximal flats

- $\operatorname{sec}(X) \leq 0$ and $\operatorname{sec}(X) < 0$ iff $\operatorname{rank}(X) = 1$
- Higher rank: $r = \operatorname{rank}(X) \ge 2$, X contains flats of dim ≥ 2
- Anosov: negative curvature behavior in higher rank.

Maximal flats, Weyl group, and Weyl chambers

Examples • $X = \operatorname{SL}_n(\mathbb{R})/\operatorname{SO}(n)$, $\operatorname{rank}(X) = n - 1$ Maximal flat: $\exp(\mathfrak{a})$ where $\mathfrak{a} = \left\{ \begin{pmatrix} \lambda_1 \\ & \ddots \\ & & \lambda_n \end{pmatrix} \mid \lambda_1 + \cdots + \lambda_n = 0 \right\}$ • $\operatorname{rank}(\mathbb{H}^n) = 1$, $\operatorname{rank}(\mathbb{H}^m \times \mathbb{H}^n) = 2$

Def Weyl group: stabilizer of a pair (Maximal flat, point). The Weyl group W acts as a Coxeter group (with reflection walls and a fundamental domain Δ called Weyl chamber).

- For $X = \operatorname{SL}_n(\mathbb{R})/\operatorname{SO}(n)$
 - Weyl group; W= permutation group of the $\lambda_1,\ldots,\lambda_n$
 - Weyl chamber: $\Delta = \{\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n\}$

$$(n = 3) \quad \lambda_1 + \lambda_2 + \lambda_3 = 0 \qquad \qquad \lambda_1 = \lambda_2 \\ \Delta \\ \lambda_2 = \lambda_3 \\ \lambda_1 = \lambda_3$$

Weyl group (contd)

Ex: $\mathbb{H}^2 \times \mathbb{H}^2$. Maximal flats are products of lines $l_1 \times l_2$. Let $(p_1, p_2) \in l_1 \times l_2$. The Weyl group W is generated by π -rotations on a factor \mathbb{H}^2 around p_i (inversions on l_i)

 $W \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ and Δ is the product of two rays.

Remark: A line in $l_1 \times l_2$ through (p_1, p_2) is contained in more than one maximal flat iff it is a wall (constant in one factor):

- $l_1 \times \{p_2\} \subset l_1 \times l'_2$ for any line $l'_2 \subset \mathbb{H}^2$ containing p_2 .
- $\{p_1\} \times l_2 \subset l'_1 \times l_2$ for any line $l'_1 \subset \mathbb{H}^2$ containing p_1 .

Singular and regular directions

Def: A geodesic is regular if contained in a *unique* maximal flat, and singular if contained in *more that one* maximal flat.

Lemma: Singular geodesics through x_0 are those contained in walls.

Ex:
$$X = \operatorname{SL}_3(\mathbb{R})/\operatorname{SO}(3), \ \mathfrak{a} = \left\{ \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{pmatrix} \mid \lambda_1 + \lambda_2 + \lambda_3 = 0 \right\}$$

$$\lambda_1 + \lambda_2 + \lambda_3 = 0$$

$$\lambda_1 = \lambda_2$$

$$\lambda_1 = \lambda_2 \} \text{ contained in } \mathfrak{a} \cap g\mathfrak{a}g^{-1} \text{ for } g = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 1 \end{pmatrix}$$

Regularity

Def Given any two points $x \neq y \in X$ there exist always a maximal flat containing them, and Weyl chamber $V(x, y) \subset X$ with tip x and containing y

 $V(x,y) \subset X$ is unique if the segment \overline{xy} is regular (not in a wall)

• if rank X = 1, V(x, y) is just a ray.

Def For $\varepsilon > 0$, the segment \overline{xy} is ε -regular if $\frac{d(y, \partial V(x, y))}{d(x, y)} > \varepsilon$ Ex $X = \operatorname{SL}_3(\mathbb{R})/\operatorname{SO}(3)$, $x = \operatorname{Identity}$, $y = \operatorname{diag}(e^{\lambda_1}, e^{\lambda_2}, e^{\lambda_3})$, $\lambda_1 \ge \lambda_2 \ge \lambda_3$ \overline{xy} is ε -regular iff $\frac{\min(\lambda_1 - \lambda_2, \lambda_2 - \lambda_3)}{(\lambda_1^2 + \lambda_2^2 + \lambda_3^2)^{1/2}} > \varepsilon$

For x = Identity and any $y \in X$, look at singular values $\sqrt{\text{eigenvalues of } y^t y}$ Remark: A regular direction and a direction perpendicular to the Weyl chamber span a tangent plane with negative curvature

Uniform regularity, undistortedness and Anosov

Def $\Gamma < G$ is uniformly regular if, for any $\gamma_1, \gamma_2 \in \Gamma$, with $d(\gamma_1 x, \gamma_2 x) > N$ $\overline{\gamma_1 x, \gamma_2 x}$ is ε -uniformly regular.

for a given $x \in X$ and some uniform $N, \varepsilon > 0$.

Def $\Gamma < G$ is undistorted if Γ is finitely generated and the orbit map $\begin{cases} \Gamma \rightarrow X \\ \gamma \mapsto \gamma x \end{cases}$ is a quasi-isometric embedding.

Thm (Kapovich-Leeb-P 2017)

 $\Gamma < G$ is *B*-Anosov iff it is uniformly regular and undistorted

- Remark: • In particular uniformly regular and undistorted implies word hyperbolic
 - B is the smallest possible parabolic subgroup (Borel subgroup) For other parabolic subgroups, adapt the definition of regularity: allow to approach certain walls (in terms of matrices allow some singular eigenvalues be equal)
 - In rank one: Γ is convex cocompact iff it is undistorted.

Goal: find sufficient conditions for finitely many elements in Γ so that it is Anosov

Morse property

Def If the segment $\overline{xy} \subset X$ is regular, the Diamond $\Diamond(x, y) = V(x, y) \cap V(y, x)$

Def $\Gamma < G$ is Morse if for every $q \colon [0, n] \cap \mathbb{Z} \to \Gamma$ geodesic segment of length $n \ge N$

- $\overline{q(0)x, q(n)x}$ is ε -regular
- The orbit $i \mapsto q(i) \times$ is (L, A)-quasi-geodesic
- $d(q(i)x, \Diamond(q(0)x, q(n)x)) < D$

(for some uniform L, A, N, ε, D)

Thm (KLP 2017) $\Gamma < G$ is *B*-Anosov iff it is unif. regular and undistorted iff it is Morse.

- Remark: The definition of Morse is stronger that uniform regularity
 - The proof requires a higher rank Morse lemma
 - Morse property can be localized (segments up to some length)

Local Morse

• Let Γ be a word hyperbolic group and $\rho \colon \Gamma \to G$ a representation.

Def A representation $\rho: \Gamma \to G$ is local Morse with constants (L, A, ε, D) at scale S if, for every geodesic segment $q: [0, S] \cap \mathbb{Z} \to \Gamma$ with q(0) = e:

- the orbit $i \mapsto \underline{q(i)} \times is(\underline{L}, A)$ quasi-geodesic
- the segment $\overline{q(0)x, q(S)x}$ is ε -regular, and
- $d(q(i)x, \Diamond(q(0)x, q(n)x) < D$

Remark: Anosov implies local Morse for some constants (L, A, D, ε) and some scale S.

Thm (KLP) Local to global: Given X = G/K and $\varepsilon, L, A, D > 0$, there exist a scale S such that: if Γ is word-hyperbolic and $\rho: \Gamma \to G$ is a representation local Morse at scale Swith constants (L, A, D, ε) , then ρ is global Morse (hence Anosov).

Consequence: Algorithmic semi-decidability

• Γ word hyperbolic and $\rho \colon \Gamma \to G$ a representation

Corollary There exists an algorithm that stops iff ρ is Anosov

Algorithm For each n, set $\varepsilon = \frac{1}{n}$, L = A = D = n and find scale S_n provided by the theorem.

- If ρ is local Anosov at scale S with constants (L, A, D, ε) , then stop.
- Otherwise proceed to n + 1.
 - If it stops, then ρ is Anosov by the theorem
 - If it is Anosov, then it is local Anosov for some constants and *every* scale large enough.

If it is Anosov at step n, it is so at n + 1.

- $S = S(X, L, A, D, \varepsilon)$ is computable (M. Riestenberg)
- Remark: Only SEMI-decidability because it may not stop.
 - Not known before even in rank one.
 - Discreteness for two-generator groups in Isom(ℍ³) is undecidable in the Blum–Shub–Smale (BSS) computability model (M. Kapovich 2016).

Idea of the proof

Thm Given X = G/K and $\varepsilon, L, A, D > 0$, there exist a scale S such that: if Γ is word-hyperbolic and $\rho: \Gamma \to G$ is a representation local Morse at scale S with constants (L, A, D, ε) , then ρ is Anosov.

Idea: If $g : \mathbb{R} \to \mathbb{H}^n$ restricted to a any interval of length S is (L, A)-quasi-geodesic, then g is globally (L', A')-quasi-geodesic (for S = S(L, A) sufficiently large)

• Sequence $g(\frac{S}{10}\mathbb{Z})$. Take midpoints and join them.

- By comparison, the angle at m_2 between m_2m_3 and m_2m_1 is close to π if S is sufficiently large.
- In \mathbb{H}^n this yields that the path of mid-points is quasi-geodesic
- Apply the same argument but use regularity to guarantee "good negative curvature properties"

Thanks for your attention!