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Anosov representations: motivation

2006 Labourie p: m1(Sz) — PSL,R (g > 2).
Gives a geometric interpretation for representations in the Hitchin component
Hn(Sg) = homg(m1(Sg) — PSL,R)/PSL,R.
H>(Sg) = Teich(Sg), H3(Sg) = Proj(Sg), Hn(Sg) =7

2012 Guichard-Wienhard p: I — G, T Gromov hyperbolic, G semisimple Lie group

® Anosov is the higher rank analog of convex cocompact

® Anosov group: image of Anosov representation
® Symmetric space approach: X = G /K symmetric space of non-compact type

e Kapovich-Leeb-P
e Guéritaud-Guichard-Kassel-Wienhard
e ...

Goal: Give a characterization of Anosov from finitely many elements of I'.



Parabolic subgroups and flag manifolds

Def: G semisimple Lie group. P < G is parabolic if G/P is a projective variety
Example: G = SL,R and P= {upper triangular matrices}. G/P is the flag manifold
Flag(P" 1) = {fy < f < -+ < fo_o CP" 1| £ linear and dim f; = i}
Example: G = SL3R has 3 conjugacy classes of parabolic subgroups
- (i) 2= (1) 5= (350
G/P1 =12 G/P, =12 G/B={(p,))eP>xP?|pel}
e Py is opposite to P,, B°°?P = B

e Opposition: is an involution on the space of conjugacy classes of parabolic
subgroups (duality in flag manifolds/Cartan involution in the symmetric space)

® In SL,R, opposition is reflection with respect to the antidiagonal



More examples of parabolic subgroups and flag manifolds

Ex: G = SL4R has 7 conjugacy classes of non-trivial parabolic subgroups.
3 of them are self-opposite:

8*** * %
* % ok x %
Pl:(O***> P2:<00

000 % 00

The flag manifolds are:
o G/P1={(p,h) e P> xP*|pec h}
e G/Py = L(P3%) = {/| I proj line in P3}
o G/B={(p,l,h) eP>x L(P>)x P3| pelcCh}
G /B is the full flag manifold, G/P; are partial flag manifolds

Ex: G = SLyR x SLR, X = G/K = H? x H2.
e G has 3 conjugacy classes of non-trivial parabolic subgroups:
(03) xSLaR,  SLoRx(g%),  (o6x)x(0%)-
e They are all self-opposite.
e Flag manifolds: 0, H? x {*}, {*} x 0. H? and O, H? x O, H.



Definition of Anosov representation

® G semisimple, P C G self-opposite conjugacy class of parabolic subgroups, and
[ word-hyperbolic group.

Def A representation p: [ — G is P-Anosov if:
a) 38: 0 — G/P antipodal -equivariant embedding
b) Vr: N — I normalized geodesic ray, r(+o00) =& € 0.,

im_[dse)(p(r())] = 0

n—-+o0o

(i.e. p(r(n)) € G contracts at 3(§) € G/P by factor — 0)
— Antipodal: for £ # &', f(€) and 5(¢’) are antipodal flags (generic)
— normalized geod ray: r(0) = e € I and dr(r(m), r(n)) = |m — n|
Remark: Why called Anosov? Labourie considers the geodesic flow on T1S,
and Guichard-Wienhard, the geodesic flow on I

® Anosov representations are discrete and have finite kernel.



Examples

Ex: Let ' < G = Isom(H") = PO(n, 1) discrete with limit set A C 0,H".

convex hull(A) C H" is the smallest convex with ideal boundary A.

e [ is convex cocompact if convex hull(A)/T is compact.

e [ cvx cocompact iff [ is P-Anosov (for P = Stabg(€), € € 0-H", so G/P = 0, H").
e [ cvx cocompact iff the orbit map I — 'x C H" quasi-isometric embedding.

Labourie Representations in the Hitchin component of hom(71(S,) — PSL,;1R) are
B-Anosov, with B < PSL,11(IR) upper triangular matrices.

Benoist: For D/I strictly convex closed projective manifold, ' < PGL,1(R) is P-Anosov,
where P=stabilizer of a partial flag in {(p, H) € P" x P" | p € H}

M = D/T, D € R" = RP" — RP"!
dsol = {(p,H) | p€ 8D, H= T,0D}




Symmetric spaces of non-compact type

® X = G/K is a symmetric space of non-compact type
e X = X; x -+ x X,, with X; irreducible, non-compact, and X; % R¥
e G = Tsomg(X) is a semisimple Lie group and K < G a maximal compact subgroup

Examples H"” = PSO(1, n)/SO(n)
X = SL,(R)/SO(n)
H? x H? = SLp(R) x SLp(R)/SO(2) x SO(2)
Goal Characterize discrete [ < G that are Anosov according to the action on X = G/K
Def A flat is a totally geodesic F C X isometric to R.

Def The rank of X is the dimension of any maximal flat.

G acts transitively on the set of maximal flats

sec(X) < 0 and sec(X) < 0 iff rank(X) =1

Higher rank: r = rank(X) > 2, X contains flats of dim> 2
Anosov: negative curvature behavior in higher rank.

Remark:



Maximal flats, Weyl group, and Weyl chambers
Examples e X = SL,(R)/SO(n), rank(X) =n—1

A1
Maximal flat: exp(a) where a = > | At 4+ A = 0}
An

e rank(H") = 1, rank(H™ x H") =2
Def Weyl group: stabilizer of a pair (Maximal flat, point).
The Weyl group W acts as a Coxeter group (with reflection walls and a
fundamental domain A called Weyl chamber).
® For X = SL,(R)/SO(n)
— Weyl group; W =permutation group of the A\, ..., \,
— Weyl chamber: A ={\; > X, > - >\, }
(n=3) M+X+A3=0 A1=X2
A
Aa=X3

A1=2A3



Weyl group (contd)

Ex: H? x H?. Maximal flats are products of lines /; x b.

Let (p1,p2) € h x k. The Weyl group W is generated by 7-rotations on a factor
H? around p; (inversions on /;)

W = 7/27 x 7./27 and A is the product of two rays.
b

Remark: A line in ; x k through (pi, p2) is contained in more than one maximal flat
iff it is a wall (constant in one factor):

e Iy x {p} C I x I} for any line /5 C H? containing p,.
e {p1} x b CI{ x k for any line /{ C H? containing p;.



Singular and regular directions

Def: A geodesic is regular if contained in a unique maximal flat,
and singular if contained in more that one maximal flat.

Lemma: Singular geodesics through xg are those contained in walls.

A1

Ex: X = SL3(R)/SO(3), a = {( X A3) | AL+ Ao+ A3 = 0}

A1=A2
A1+X2+A3=0
A2=A3

A1=2A3

a) —sin(a) 0
{A\1 = X2} contained in angag ! for g = (Z?ns((a)) css(fx)) 0)
0 0 1



Regularity

Def Given any two points x # y € X there exist always a maximal flat containing
them, and Weyl chamber V(x,y) C X with tip x and containing y

xA Vi)

V(x,y) C X is unique if the segment Xy is regular (not in a wall)
e if rank X =1, V(x,y) is just a ray.
d(y,0V
Def For € > 0, the segment Xy is e-regular if M > €
d(x,y)
Ex X = SL3(R)/SO(3), x = Identity, y = diag(ekl, e’ e’\3), AL > Mo > A3
. e Min(A1 — A2, Ao — A3)
- lar iff >
Xy is e-regular i (2 42+ 12172 £

For x = Identity and any y € X, look at singular values /eigenvalues of yty

Remark: A regular direction and a direction perpendicular to the Weyl chamber span a
tangent plane with negative curvature



Uniform regularity, undistortedness and Anosov

Def ' < G is uniformly regular if, for any 1,72 € ', with d(y1x,72x) > N
~1X, Y2X is e-uniformly regular,
for a given x € X and some uniform N, & > 0.

Def I < G is undistorted if I is finitely generated and the orbit map { =X
Ao S 04

is a quasi-isometric embedding.

Thm (Kapovich-Leeb-P 2017)
" < G is B-Anosov iff it is uniformly regular and undistorted

e In particular uniformly regular and undistorted implies word hyperbolic

e B is the smallest possible parabolic subgroup (Borel subgroup)
For other parabolic subgroups, adapt the definition of regularity: allow to approach
certain walls (in terms of matrices allow some singular eigenvalues be equal)

e In rank one: [ is convex cocompact iff it is undistorted.

Remark:

Goal: find sufficient conditions for finitely many elements in I so that it is Anosov



Morse property
Def If the segment Xy C X is regular, the Diamond O(x,y) = V(x,y) N V(y, x)

/ <>(X’ \
V(y,x) | % F V(xy)

\ /

Def I' < G is Morse if for every g: [0, n] N Z — [ geodesic segment of length n > N
- q(0)x, g(n)x is e-regular
— The orbit / — g(i)x is (L, A)-quasi-geodesic

= d(q(i)x, 0(q(0)x, g(n)x)) < D
(for some uniform L, A, N, e, D)

Thm (KLP 2017) I' < G is B-Anosov iff it is unif. regular and undistorted iff it is Morse.

Remark: e The definition of Morse is stronger that uniform regularity
e The proof requires a higher rank Morse lemma
e Morse property can be localized (segments up to some length)



Local Morse

® |Let [ be a word hyperbolic group and p: [ — G a representation.

Def A representation p: ' — G is local Morse with constants (L, A, e, D) at scale S
if, for every geodesic segment g: [0,S]N7Z — [ with g(0) = e:
— the orbit i — g(i)x is (L, A) quasi-geodesic
— the segment g(0)x, g(S)x is e-regular, and
— d(qi)x, 0(q(0)x, g(m)x) < D

Remark: Anosov implies local Morse for some constants (L, A, D, ) and some scale S.

Thm (KLP) Local to global:
Given X = G/K and ¢,L, A, D > 0, there exist a scale S such that:
if [ is word-hyperbolic and p: [ — G is a representation local Morse at scale S
with constants (L, A, D, <), then p is global Morse (hence Anosov).



Consequence: Algorithmic semi-decidability

® [ word hyperbolic and p: I — G a representation

Corollary There exists an algorithm that stops iff p is Anosov

Algorithm For each n, set e = 1, [ = A= D = n and find scale S, provided by the theorem.

n,
e If pis local Anosov at scale S with constants (L, A, D, ¢), then stop.
e Otherwise proceed to n+ 1.

e [f it stops, then p is Anosov by the theorem

e If it is Anosov, then it is local Anosov for some constants and every scale large
enough.
If it is Anosov at step n, it is so at n+ 1.

e S=5(X,L,A D,¢) is computable (M. Riestenberg)

Remark: e Only SEMI-decidability because it may not stop.

e Not known before even in rank one.
Discreteness for two-generator groups in Isom(H?®) is undecidable in the
Blum-Shub—Smale (BSS) computability model (M. Kapovich 2016).



Idea of the proof

Thm Given X = G/K and ¢,L, A, D > 0, there exist a scale S such that:
if [ is word-hyperbolic and p: [ — G is a representation local Morse at scale S
with constants (L, A, D, <), then p is Anosov.

Idea: If g: R — H" restricted to a any interval of length S is (L, A)-quasi-geodesic,
then g is globally (L', A’)-quasi-geodesic (for S = S(L, A) sufficiently large)
e Sequence g(%Z). Take midpoints and join them.

g(55) 8(

M2

e By comparison, the angle at m, between myms and mym; is close to 7 if S is
sufficiently large.
e In H" this yields that the path of mid-points is quasi-geodesic

sl

)

,25\
g(ﬁ ms

® Apply the same argument but use regularity to guarantee “good negative
curvature properties”



Thanks for your attention!



