A local approach to Anosov groups

Joan Porti (joint with M. Kapovich and B. Leeb)
Universitat Autònoma de Barcelona

October 20, 2023

Geometry beyond Riemann: Curvature and Rigidity
Thematic Programme at the ESI (Vienna)

Anosov representations: motivation

2006 Labourie $\rho: \pi_{1}\left(S_{g}\right) \rightarrow \mathrm{PSL}_{n} \mathbb{R}(g \geq 2)$.
Gives a geometric interpretation for representations in the Hitchin component $H_{n}\left(S_{g}\right)=\operatorname{hom}_{0}\left(\pi_{1}\left(S_{g}\right) \rightarrow \mathrm{PSL}_{n} \mathbb{R}\right) / \mathrm{PSL}_{n} \mathbb{R}$.
$H_{2}\left(S_{g}\right)=\operatorname{Teich}\left(S_{g}\right), H_{3}\left(S_{g}\right)=\operatorname{Proj}\left(S_{g}\right), H_{n}\left(S_{g}\right)=$?
2012 Guichard-Wienhard $\rho: \Gamma \rightarrow G, \Gamma$ Gromov hyperbolic, G semisimple Lie group

- Anosov is the higher rank analog of convex cocompact
- Anosov group: image of Anosov representation
- Symmetric space approach: $X=G / K$ symmetric space of non-compact type
- Kapovich-Leeb-P
- Guéritaud-Guichard-Kassel-Wienhard

Goal: Give a characterization of Anosov from finitely many elements of Γ.

Parabolic subgroups and flag manifolds

Def: G semisimple Lie group. $P<G$ is parabolic if G / P is a projective variety Example: $G=\mathrm{SL}_{n} \mathbb{R}$ and $P=$ \{upper triangular matrices $\} . G / P$ is the flag manifold

$$
\operatorname{Flag}\left(\mathbb{P}^{n-1}\right)=\left\{f_{0}<f_{1}<\cdots<f_{n-2} \subset \mathbb{P}^{n-1} \mid f_{i} \text { linear and } \operatorname{dim} f_{i}=i\right\}
$$

Example: $G=\mathrm{SL}_{3} \mathbb{R}$ has 3 conjugacy classes of parabolic subgroups

$$
P_{1}=\left(\begin{array}{lll}
* & * & * \\
0 & * & * \\
0 & * & *
\end{array}\right), P_{2}=\left(\begin{array}{ccc}
* & * & * \\
* & * & * \\
0 & *
\end{array}\right), B=\left(\begin{array}{lll}
* & * & * \\
0 & * & * \\
0 & 0 & *
\end{array}\right)
$$

$G / P_{1}=\mathbb{P}^{2}, G / P_{2}=\breve{\mathbb{P}}^{2}, G / B=\left\{(p, /) \in \mathbb{P}^{2} \times \breve{\mathbb{P}}^{2} \mid p \in /\right\}$

- P_{1} is opposite to $P_{2}, B^{o p p}=B$
- Opposition: is an involution on the space of conjugacy classes of parabolic subgroups (duality in flag manifolds/Cartan involution in the symmetric space)
- In $\mathrm{SL}_{n} \mathbb{R}$, opposition is reflection with respect to the antidiagonal

More examples of parabolic subgroups and flag manifolds

$E x: G=\mathrm{SL}_{4} \mathbb{R}$ has 7 conjugacy classes of non-trivial parabolic subgroups. 3 of them are self-opposite:

$$
P_{1}=\left(\begin{array}{cccc}
* & * & * \\
0 & * & * \\
0 & * & * \\
0 & 0 & * & *
\end{array}\right) \quad P_{2}=\left(\begin{array}{cccc}
* & * & * \\
* & * & * \\
0 & 0 & * \\
0 & 0 & * \\
0 & *
\end{array}\right) \quad B=\left(\begin{array}{cccc}
* & * & * \\
0 & * & * \\
0 & 0 & * \\
0 & 0 & * \\
0 & 0 & *
\end{array}\right)
$$

The flag manifolds are:

- $G / P_{1}=\left\{(p, h) \in \mathbb{P}^{3} \times \check{\mathbb{P}}^{3} \mid p \in h\right\}$
- $G / P_{2}=L\left(\mathbb{P}^{3}\right)=\left\{I \mid I\right.$ proj line in $\left.\mathbb{P}^{3}\right\}$
- $G / B=\left\{(p, I, h) \in \mathbb{P}^{3} \times L\left(\mathbb{P}^{3}\right) \times \check{\mathbb{P}}^{3} \mid p \in I \subset h\right\}$
G / B is the full flag manifold, G / P_{i} are partial flag manifolds
Ex: $G=\mathrm{SL}_{2} \mathbb{R} \times \mathrm{SL}_{2} \mathbb{R}, X=G / K=\mathbb{H}^{2} \times \mathbb{H}^{2}$.
- G has 3 conjugacy classes of non-trivial parabolic subgroups:
$\left(\begin{array}{c}* \\ 0 \\ 0\end{array}\right) \times \mathrm{SL}_{2} \mathbb{R}$,
$\mathrm{SL}_{2} \mathbb{R} \times\left(\begin{array}{c}* \\ 0 \\ { }^{*}\end{array}\right)$,
$\left(\begin{array}{ll}* \\ 0 & *\end{array}\right) \times\left(\begin{array}{ll}* \\ 0 & *\end{array}\right)$.
- They are all self-opposite.
- Flag manifolds: $\partial_{\infty} \mathbb{H}^{2} \times\{*\},\{*\} \times \partial_{\infty} \mathbb{H}^{2}$ and $\partial_{\infty} \mathbb{H}^{2} \times \partial_{\infty} \mathbb{H}^{2}$.

Definition of Anosov representation

- G semisimple, $P \subset G$ self-opposite conjugacy class of parabolic subgroups, and Γ word-hyperbolic group.
Def A representation $\rho: \Gamma \rightarrow G$ is P-Anosov if:
a) $\exists \beta: \partial_{\infty} \Gamma \rightarrow G / P$ antipodal Γ-equivariant embedding
b) $\forall r: \mathbb{N} \rightarrow \Gamma$ normalized geodesic ray, $r(+\infty)=\xi \in \partial_{\infty} \Gamma$,

$$
\lim _{n \rightarrow+\infty}\left|d_{\beta(\xi)}(\rho(r(n)))\right|=0
$$

(i.e. $\rho(r(n)) \in G$ contracts at $\beta(\xi) \in G / P$ by factor $\rightarrow 0$)

- Antipodal: for $\xi \neq \xi^{\prime}, \beta(\xi)$ and $\beta\left(\xi^{\prime}\right)$ are antipodal flags (generic)
- normalized geod ray: $r(0)=e \in \Gamma$ and $d_{\Gamma}(r(m), r(n))=|m-n|$

Remark: Why called Anosov? Labourie considers the geodesic flow on $T^{1} S_{g}$ and Guichard-Wienhard, the geodesic flow on 「

- Anosov representations are discrete and have finite kernel.

Examples

Ex: Let $\Gamma<G=\operatorname{Isom}\left(\mathbb{H}^{n}\right) \cong \operatorname{PO}(n, 1)$ discrete with limit set $\Lambda \subset \partial_{\infty} \mathbb{H}^{n}$.

- convex hull $(\Lambda) \subset \mathbb{H}^{n}$ is the smallest convex with ideal boundary Λ.
- Γ is convex cocompact if convex hull $(\Lambda) / \Gamma$ is compact.
- $\Gamma \mathrm{cvx}$ cocompact iff Γ is P-Anosov (for $P=\operatorname{Stab}_{G}(\xi), \xi \in \partial_{\infty} \mathbb{H}^{n}$, so $G / P=\partial_{\infty} \mathbb{H}^{n}$).
- $\Gamma \mathrm{cvx}$ cocompact iff the orbit map $\Gamma \mapsto \Gamma x \subset \mathbb{H}^{n}$ quasi-isometric embedding.

Labourie Representations in the Hitchin component of hom $\left(\pi_{1}\left(S_{g}\right) \rightarrow \mathrm{PSL}_{n+1} \mathbb{R}\right)$ are B-Anosov, with $B<\mathrm{PSL}_{n+1}(\mathbb{R})$ upper triangular matrices.

Benoist: For D / Γ strictly convex closed projective manifold, $\Gamma<\mathrm{PGL}_{n+1}(\mathbb{R})$ is P-Anosov, where $P=$ stabilizer of a partial flag in $\left\{(p, H) \in \mathbb{P}^{n} \times \check{\mathbb{P}}^{n} \mid p \in H\right\}$

$$
\begin{gathered}
M=D / \Gamma, \quad D \Subset \mathbb{R}^{n}=\mathbb{R P}^{n}-\mathbb{R P}^{n-1} \\
\partial_{\infty} \Gamma \cong\left\{(p, H) \mid p \in \partial \bar{D}, H=T_{p} \partial \bar{D}\right\}
\end{gathered}
$$

Symmetric spaces of non-compact type

- $X=G / K$ is a symmetric space of non-compact type
- $X \cong X_{1} \times \cdots \times X_{n}$, with X_{i} irreducible, non-compact, and $X_{i} \nsubseteq \mathbb{R}^{k}$
- $G=\operatorname{Isom}_{0}(X)$ is a semisimple Lie group and $K<G$ a maximal compact subgroup

Examples $\mathbb{H}^{n}=\operatorname{PSO}(1, n) / \mathrm{SO}(n)$
$X=\mathrm{SL}_{n}(\mathbb{R}) / \mathrm{SO}(n)$
$\mathbb{H}^{2} \times \mathbb{H}^{2}=\mathrm{SL}_{2}(\mathbb{R}) \times \mathrm{SL}_{2}(\mathbb{R}) / \mathrm{SO}(2) \times \mathrm{SO}(2)$
Goal Characterize discrete $\Gamma<G$ that are Anosov according to the action on $X=G / K$ Def A flat is a totally geodesic $F \subset X$ isometric to \mathbb{R}^{k}.
Def The rank of X is the dimension of any maximal flat.
Remark: - G acts transitively on the set of maximal flats

- $\sec (X) \leq 0$ and $\sec (X)<0$ iff $\operatorname{rank}(X)=1$
- Higher rank: $r=\operatorname{rank}(X) \geq 2, X$ contains flats of $\operatorname{dim} \geq 2$
- Anosov: negative curvature behavior in higher rank.

Maximal flats, Weyl group, and Weyl chambers

Examples • $X=\operatorname{SL}_{n}(\mathbb{R}) / \mathrm{SO}(n), \operatorname{rank}(X)=n-1$
Maximal flat: $\exp (\mathfrak{a})$ where $\mathfrak{a}=\left\{\left.\left(\begin{array}{ccc}\lambda_{1} & & \\ & \ddots & \\ & & \lambda_{n}\end{array}\right) \right\rvert\, \lambda_{1}+\cdots+\lambda_{n}=0\right\}$

- $\operatorname{rank}\left(\mathbb{H}^{n}\right)=1, \operatorname{rank}\left(\mathbb{H}^{m} \times \mathbb{H}^{n}\right)=2$

Def Weyl group: stabilizer of a pair (Maximal flat, point). The Weyl group W acts as a Coxeter group (with reflection walls and a fundamental domain Δ called Weyl chamber).

- For $X=\mathrm{SL}_{n}(\mathbb{R}) / \mathrm{SO}(n)$
- Weyl group; $W=$ permutation group of the $\lambda_{1}, \ldots, \lambda_{n}$
- Weyl chamber: $\Delta=\left\{\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}\right\}$

$$
(n=3) \quad \lambda_{1}+\lambda_{2}+\lambda_{3}=0
$$

Weyl group (contd)

Ex: $\mathbb{H}^{2} \times \mathbb{H}^{2}$. Maximal flats are products of lines $I_{1} \times I_{2}$.
Let $\left(p_{1}, p_{2}\right) \in I_{1} \times I_{2}$. The Weyl group W is generated by π-rotations on a factor \mathbb{H}^{2} around p_{i} (inversions on l_{i})
$W \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ and Δ is the product of two rays.

Remark: A line in $I_{1} \times I_{2}$ through $\left(p_{1}, p_{2}\right)$ is contained in more than one maximal flat iff it is a wall (constant in one factor):

- $I_{1} \times\left\{p_{2}\right\} \subset I_{1} \times I_{2}^{\prime}$ for any line $I_{2}^{\prime} \subset \mathbb{H}^{2}$ containing p_{2}.
- $\left\{p_{1}\right\} \times I_{2} \subset I_{1}^{\prime} \times I_{2}$ for any line $I_{1}^{\prime} \subset \mathbb{H}^{2}$ containing p_{1}.

Singular and regular directions

Def: A geodesic is regular if contained in a unique maximal flat, and singular if contained in more that one maximal flat.

Lemma: Singular geodesics through x_{0} are those contained in walls.

$$
\begin{aligned}
& \mathrm{Ex}: X=\mathrm{SL}_{3}(\mathbb{R}) / \mathrm{SO}(3), \mathfrak{a}=\left\{\left.\left(\begin{array}{lll}
\lambda_{1} & & \\
& \lambda_{2} & \\
& & \lambda_{3}
\end{array}\right) \right\rvert\, \lambda_{1}+\lambda_{2}+\lambda_{3}=0\right\} \\
& \lambda_{1}+\lambda_{2}+\lambda_{3}=0
\end{aligned}
$$

$$
\left\{\lambda_{1}=\lambda_{2}\right\} \text { contained in } \mathfrak{a} \cap \operatorname{gag}^{-1} \text { for } g=\left(\begin{array}{ccc}
\cos (\alpha) & -\sin (\alpha) & 0 \\
\sin (\alpha) & \cos (\alpha) & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Regularity

Def Given any two points $x \neq y \in X$ there exist always a maximal flat containing them, and Weyl chamber $V(x, y) \subset X$ with tip x and containing y

$V(x, y) \subset X$ is unique if the segment $\overline{x y}$ is regular (not in a wall)

- if rank $X=1, V(x, y)$ is just a ray.

Def For $\varepsilon>0$, the segment $\overline{x y}$ is ε-regular if $\frac{d(y, \partial V(x, y))}{d(x, y)}>\varepsilon$
$\operatorname{Ex} X=\operatorname{SL}_{3}(\mathbb{R}) / \mathrm{SO}(3), x=$ Identity, $y=\operatorname{diag}\left(e^{\lambda_{1}}, e^{\lambda_{2}}, e^{\lambda_{3}}\right), \lambda_{1} \geq \lambda_{2} \geq \lambda_{3}$

$$
\overline{x y} \text { is } \varepsilon \text {-regular iff } \frac{\min \left(\lambda_{1}-\lambda_{2}, \lambda_{2}-\lambda_{3}\right)}{\left(\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}\right)^{1 / 2}}>\varepsilon
$$

For $x=$ Identity and any $y \in X$, look at singular values $\sqrt{\text { eigenvalues of } y^{t} y}$
Remark: A regular direction and a direction perpendicular to the Weyl chamber span a tangent plane with negative curvature

Uniform regularity, undistortedness and Anosov

Def $\Gamma<G$ is uniformly regular if, for any $\gamma_{1}, \gamma_{2} \in \Gamma$, with $d\left(\gamma_{1} x, \gamma_{2} x\right)>N$ $\overline{\gamma_{1} x, \gamma_{2} X}$ is ε-uniformly regular,
for a given $x \in X$ and some uniform $N, \varepsilon>0$.
Def $\Gamma<G$ is undistorted if Γ is finitely generated and the orbit map $\left\{\begin{array}{lll}\Gamma & \rightarrow & X \\ \gamma & \mapsto & \gamma x\end{array}\right.$ is a quasi-isometric embedding.

Thm (Kapovich-Leeb-P 2017)
$\Gamma<G$ is B-Anosov iff it is uniformly regular and undistorted
Remark: - In particular uniformly regular and undistorted implies word hyperbolic

- B is the smallest possible parabolic subgroup (Borel subgroup)

For other parabolic subgroups, adapt the definition of regularity: allow to approach certain walls (in terms of matrices allow some singular eigenvalues be equal)

- In rank one: 「 is convex cocompact iff it is undistorted.

Goal: find sufficient conditions for finitely many elements in Γ so that it is Anosov

Morse property

Def If the segment $\overline{x y} \subset X$ is regular, the Diamond $\diamond(x, y)=V(x, y) \cap V(y, x)$

Def $\Gamma<G$ is Morse if for every $q:[0, n] \cap \mathbb{Z} \rightarrow \Gamma$ geodesic segment of length $n \geq N$

- $\overline{q(0) x, q(n) x}$ is ε-regular
- The orbit $i \mapsto q(i) x$ is (L, A)-quasi-geodesic
- $d(q(i) x, \diamond(q(0) x, q(n) x))<D$
(for some uniform L, A, N, ε, D)

Thm (KLP 2017) $\Gamma<G$ is B-Anosov iff it is unif. regular and undistorted iff it is Morse.

- The definition of Morse is stronger that uniform regularity
- The proof requires a higher rank Morse lemma
- Morse property can be localized (segments up to some length)

Local Morse

- Let Γ be a word hyperbolic group and $\rho: \Gamma \rightarrow G$ a representation.

Def A representation $\rho: \Gamma \rightarrow G$ is local Morse with constants (L, A, ε, D) at scale S if, for every geodesic segment $q:[0, S] \cap \mathbb{Z} \rightarrow \Gamma$ with $q(0)=e$:

- the orbit $i \mapsto q(i) \times$ is (L, A) quasi-geodesic
- the segment $\overline{q(0) \times, q(S) \times}$ is ε-regular, and
$-d(q(i) x, \diamond(q(0) x, q(n) x)<D$

Remark: Anosov implies local Morse for some constants (L, A, D, ε) and some scale S.
Thm (KLP) Local to global:
Given $X=G / K$ and $\varepsilon, L, A, D>0$, there exist a scale S such that: if Γ is word-hyperbolic and $\rho: \Gamma \rightarrow G$ is a representation local Morse at scale S with constants (L, A, D, ε), then ρ is global Morse (hence Anosov).

Consequence: Algorithmic semi-decidability

- 「 word hyperbolic and $\rho: \Gamma \rightarrow G$ a representation

Corollary There exists an algorithm that stops iff ρ is Anosov
Algorithm For each n, set $\varepsilon=\frac{1}{n}, L=A=D=n$ and find scale S_{n} provided by the theorem.

- If ρ is local Anosov at scale S with constants (L, A, D, ε), then stop.
- Otherwise proceed to $n+1$.
- If it stops, then ρ is Anosov by the theorem
- If it is Anosov, then it is local Anosov for some constants and every scale large enough.
If it is Anosov at step n, it is so at $n+1$.
- $S=S(X, L, A, D, \varepsilon)$ is computable (M. Riestenberg)

Remark: - Only SEMI-decidability because it may not stop.

- Not known before even in rank one.
- Discreteness for two-generator groups in Isom $\left(\mathbb{H}^{3}\right)$ is undecidable in the Blum-Shub-Smale (BSS) computability model (M. Kapovich 2016).

Idea of the proof

Thm Given $X=G / K$ and $\varepsilon, L, A, D>0$, there exist a scale S such that: if Γ is word-hyperbolic and $\rho: \Gamma \rightarrow G$ is a representation local Morse at scale S with constants (L, A, D, ε), then ρ is Anosov.

Idea: If $g: \mathbb{R} \rightarrow \mathbb{H}^{n}$ restricted to a any interval of length S is (L, A)-quasi-geodesic, then g is globally (L^{\prime}, A^{\prime})-quasi-geodesic (for $S=S(L, A)$ sufficiently large)

- Sequence $g\left(\frac{S}{10} \mathbb{Z}\right)$. Take midpoints and join them.

- By comparison, the angle at m_{2} between $m_{2} m_{3}$ and $m_{2} m_{1}$ is close to π if S is sufficiently large.
- In \mathbb{H}^{n} this yields that the path of mid-points is quasi-geodesic
- Apply the same argument but use regularity to guarantee "good negative curvature properties"

Thanks for your attention!

