
A local approach to Anosov groups

Joan Porti (joint with M. Kapovich and B. Leeb)
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Anosov representations: motivation

2006 Labourie ρ : π1(Sg ) → PSLnR (g ≥ 2).
Gives a geometric interpretation for representations in the Hitchin component
Hn(Sg ) = hom0(π1(Sg ) → PSLnR)/PSLnR.
H2(Sg ) = Teich(Sg ), H3(Sg ) = Proj(Sg ), Hn(Sg ) =?

2012 Guichard-Wienhard ρ : Γ → G , Γ Gromov hyperbolic, G semisimple Lie group

• Anosov is the higher rank analog of convex cocompact

• Anosov group: image of Anosov representation
• Symmetric space approach: X = G/K symmetric space of non-compact type

• Kapovich-Leeb-P
• Guéritaud-Guichard-Kassel-Wienhard
• ...

Goal: Give a characterization of Anosov from finitely many elements of Γ.



Parabolic subgroups and flag manifolds

Def: G semisimple Lie group. P < G is parabolic if G/P is a projective variety

Example: G = SLnR and P= {upper triangular matrices}. G/P is the flag manifold

Flag(Pn−1) = {f0 < f1 < · · · < fn−2 ⊂ Pn−1 | fi linear and dim fi = i}
Example: G = SL3R has 3 conjugacy classes of parabolic subgroups

P1 =
( ∗ ∗ ∗

0 ∗ ∗
0 ∗ ∗

)
, P2 =

( ∗ ∗ ∗
∗ ∗ ∗
0 0 ∗

)
, B =

( ∗ ∗ ∗
0 ∗ ∗
0 0 ∗

)
G/P1 = P2, G/P2 = P̌2, G/B = {(p, l) ∈ P2 × P̌2 | p ∈ l}

• P1 is opposite to P2, B
opp = B

• Opposition: is an involution on the space of conjugacy classes of parabolic
subgroups (duality in flag manifolds/Cartan involution in the symmetric space)

• In SLnR, opposition is reflection with respect to the antidiagonal( )



More examples of parabolic subgroups and flag manifolds

Ex: G = SL4R has 7 conjugacy classes of non-trivial parabolic subgroups.
3 of them are self-opposite:

P1 =

( ∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 0 ∗

)
P2 =

( ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

)
B =

( ∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗

)
The flag manifolds are:

• G/P1 = {(p, h) ∈ P3 × P̌3 | p ∈ h}
• G/P2 = L(P3) = {l | l proj line in P3}
• G/B = {(p, l , h) ∈ P3 × L(P3)× P̌3 | p ∈ l ⊂ h}

G/B is the full flag manifold, G/Pi are partial flag manifolds

Ex: G = SL2R× SL2R, X = G/K = H2 ×H2.

• G has 3 conjugacy classes of non-trivial parabolic subgroups:
( ∗ ∗
0 ∗ )× SL2R, SL2R× ( ∗ ∗

0 ∗ ) , ( ∗ ∗
0 ∗ )× ( ∗ ∗

0 ∗ ) .
• They are all self-opposite.
• Flag manifolds: ∂∞H2 × {∗}, {∗} × ∂∞H2 and ∂∞H2 × ∂∞H2.



Definition of Anosov representation

• G semisimple, P ⊂ G self-opposite conjugacy class of parabolic subgroups, and
Γ word-hyperbolic group.

Def A representation ρ : Γ → G is P-Anosov if:

a) ∃β : ∂∞Γ → G/P antipodal Γ-equivariant embedding
b) ∀r : N → Γ normalized geodesic ray, r(+∞) = ξ ∈ ∂∞Γ,

lim
n→+∞

|dβ(ξ)(ρ(r(n)))| = 0

(i.e. ρ(r(n)) ∈ G contracts at β(ξ) ∈ G/P by factor → 0)

– Antipodal: for ξ ̸= ξ′, β(ξ) and β(ξ′) are antipodal flags (generic)
– normalized geod ray: r(0) = e ∈ Γ and dΓ(r(m), r(n)) = |m − n|

Remark: Why called Anosov? Labourie considers the geodesic flow on T 1Sg
and Guichard-Wienhard, the geodesic flow on Γ

• Anosov representations are discrete and have finite kernel.



Examples

Ex: Let Γ < G = Isom(Hn) ∼= PO(n, 1) discrete with limit set Λ ⊂ ∂∞Hn.

• convex hull(Λ) ⊂ Hn is the smallest convex with ideal boundary Λ.
• Γ is convex cocompact if convex hull(Λ)/Γ is compact.
• Γ cvx cocompact iff Γ is P-Anosov (forP = StabG (ξ), ξ ∈ ∂∞Hn, so G/P = ∂∞Hn).
• Γ cvx cocompact iff the orbit map Γ 7→ Γx ⊂ Hn quasi-isometric embedding.

Labourie Representations in the Hitchin component of hom(π1(Sg ) → PSLn+1R) are
B-Anosov, with B < PSLn+1(R) upper triangular matrices.

Benoist: For D/Γ strictly convex closed projective manifold, Γ < PGLn+1(R) is P-Anosov,
where P=stabilizer of a partial flag in {(p,H) ∈ Pn × P̌n | p ∈ H}

D ∂∞Γ ∼= {(p,H) | p ∈ ∂D, H = Tp∂D}
M = D/Γ, D ⋐ Rn = RPn − RPn−1



Symmetric spaces of non-compact type

• X = G/K is a symmetric space of non-compact type

• X ∼= X1 × · · · × Xn, with Xi irreducible, non-compact, and Xi ̸∼= Rk

• G = Isom0(X ) is a semisimple Lie group and K < G a maximal compact subgroup

Examples Hn = PSO(1, n)/SO(n)
X = SLn(R)/SO(n)
H2 ×H2 = SL2(R)× SL2(R)/SO(2)× SO(2)

Goal Characterize discrete Γ < G that are Anosov according to the action on X = G/K

Def A flat is a totally geodesic F ⊂ X isometric to Rk .

Def The rank of X is the dimension of any maximal flat.

Remark: • G acts transitively on the set of maximal flats
• sec(X ) ≤ 0 and sec(X ) < 0 iff rank(X ) = 1
• Higher rank: r = rank(X ) ≥ 2, X contains flats of dim≥ 2
• Anosov: negative curvature behavior in higher rank.



Maximal flats, Weyl group, and Weyl chambers
Examples • X = SLn(R)/SO(n), rank(X ) = n − 1

Maximal flat: exp(a) where a =

{(
λ1

. . .
λn

)
| λ1 + · · ·+ λn = 0

}
• rank(Hn) = 1, rank(Hm ×Hn) = 2

Def Weyl group: stabilizer of a pair (Maximal flat, point).
The Weyl group W acts as a Coxeter group (with reflection walls and a
fundamental domain ∆ called Weyl chamber).

• For X = SLn(R)/SO(n)

– Weyl group; W =permutation group of the λ1, . . . , λn

– Weyl chamber: ∆ = {λ1 ≥ λ2 ≥ · · · ≥ λn}

λ2=λ3

λ1=λ2

λ1=λ3

∆

(n = 3) λ1 + λ2 + λ3 = 0



Weyl group (contd)

Ex: H2 ×H2. Maximal flats are products of lines l1 × l2.
Let (p1, p2) ∈ l1 × l2. The Weyl group W is generated by π-rotations on a factor
H2 around pi (inversions on li )
W ∼= Z/2Z× Z/2Z and ∆ is the product of two rays.

l1

l2

∆

(p1,p2)

Remark: A line in l1 × l2 through (p1, p2) is contained in more than one maximal flat
iff it is a wall (constant in one factor):

• l1 × {p2} ⊂ l1 × l ′2 for any line l ′2 ⊂ H2 containing p2.
• {p1} × l2 ⊂ l ′1 × l2 for any line l ′1 ⊂ H2 containing p1.



Singular and regular directions

Def: A geodesic is regular if contained in a unique maximal flat,
and singular if contained in more that one maximal flat.

Lemma: Singular geodesics through x0 are those contained in walls.

Ex: X = SL3(R)/SO(3), a =

{(
λ1

λ2
λ3

)
| λ1 + λ2 + λ3 = 0

}

λ2=λ3

λ1=λ2

λ1=λ3

λ1+λ2+λ3=0

{λ1 = λ2} contained in a ∩ gag−1 for g =

(
cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

)



Regularity

Def Given any two points x ̸= y ∈ X there exist always a maximal flat containing
them, and Weyl chamber V (x , y) ⊂ X with tip x and containing y

x y V (x , y)

V (x , y) ⊂ X is unique if the segment xy is regular (not in a wall)

• if rankX = 1, V (x , y) is just a ray.

Def For ε > 0, the segment xy is ε-regular if
d(y , ∂V (x , y))

d(x , y)
> ε

Ex X = SL3(R)/SO(3), x = Identity, y = diag(eλ1 , eλ2 , eλ3), λ1 ≥ λ2 ≥ λ3

xy is ε-regular iff
min(λ1 − λ2, λ2 − λ3)

(λ2
1 + λ2

2 + λ2
3)

1/2
> ε

For x = Identity and any y ∈ X , look at singular values
√
eigenvalues of y ty

Remark: A regular direction and a direction perpendicular to the Weyl chamber span a
tangent plane with negative curvature



Uniform regularity, undistortedness and Anosov

Def Γ < G is uniformly regular if, for any γ1, γ2 ∈ Γ, with d(γ1x , γ2x) > N

γ1x , γ2x is ε-uniformly regular,

for a given x ∈ X and some uniform N, ε > 0.

Def Γ < G is undistorted if Γ is finitely generated and the orbit map

{
Γ → X
γ 7→ γx

is a quasi-isometric embedding.

Thm (Kapovich-Leeb-P 2017)

Γ < G is B-Anosov iff it is uniformly regular and undistorted

Remark: • In particular uniformly regular and undistorted implies word hyperbolic
• B is the smallest possible parabolic subgroup (Borel subgroup)

For other parabolic subgroups, adapt the definition of regularity: allow to approach
certain walls (in terms of matrices allow some singular eigenvalues be equal)

• In rank one: Γ is convex cocompact iff it is undistorted.

Goal: find sufficient conditions for finitely many elements in Γ so that it is Anosov



Morse property
Def If the segment xy ⊂ X is regular, the Diamond ♢(x , y) = V (x , y) ∩ V (y , x)

x y
V (x , y)V (y , x)

♢(x , y)

Def Γ < G is Morse if for every q : [0, n] ∩ Z → Γ geodesic segment of length n ≥ N
– q(0)x , q(n)x is ε-regular
– The orbit i 7→ q(i)x is (L,A)-quasi-geodesic
– d(q(i)x ,♢(q(0)x , q(n)x)) < D

(for some uniform L,A,N, ε,D)

q(0)x q(n)x

q(i)x

Thm (KLP 2017) Γ < G is B-Anosov iff it is unif. regular and undistorted iff it is Morse.

Remark: • The definition of Morse is stronger that uniform regularity
• The proof requires a higher rank Morse lemma
• Morse property can be localized (segments up to some length)



Local Morse

• Let Γ be a word hyperbolic group and ρ : Γ → G a representation.

Def A representation ρ : Γ → G is local Morse with constants (L,A, ε,D) at scale S
if, for every geodesic segment q : [0,S ] ∩ Z → Γ with q(0) = e:

– the orbit i 7→ q(i)x is (L,A) quasi-geodesic
– the segment q(0)x , q(S)x is ε-regular, and
– d(q(i)x ,♢(q(0)x , q(n)x) < D

q(0)x q(n)x

q(i)x

Remark: Anosov implies local Morse for some constants (L,A,D, ε) and some scale S .

Thm (KLP) Local to global:
Given X = G/K and ε, L,A,D > 0 , there exist a scale S such that:
if Γ is word-hyperbolic and ρ : Γ → G is a representation local Morse at scale S
with constants (L,A,D, ε), then ρ is global Morse (hence Anosov).



Consequence: Algorithmic semi-decidability

• Γ word hyperbolic and ρ : Γ → G a representation

Corollary There exists an algorithm that stops iff ρ is Anosov

Algorithm For each n, set ε = 1
n , L = A = D = n and find scale Sn provided by the theorem.

• If ρ is local Anosov at scale S with constants (L,A,D, ε), then stop.

• Otherwise proceed to n + 1.

• If it stops, then ρ is Anosov by the theorem
• If it is Anosov, then it is local Anosov for some constants and every scale large

enough.
If it is Anosov at step n, it is so at n + 1.

• S = S(X , L,A,D, ε) is computable (M. Riestenberg)

Remark: • Only SEMI-decidability because it may not stop.
• Not known before even in rank one.
• Discreteness for two-generator groups in Isom(H3) is undecidable in the

Blum–Shub–Smale (BSS) computability model (M. Kapovich 2016).



Idea of the proof

Thm Given X = G/K and ε, L,A,D > 0 , there exist a scale S such that:
if Γ is word-hyperbolic and ρ : Γ → G is a representation local Morse at scale S
with constants (L,A,D, ε), then ρ is Anosov.

Idea: If g : R → Hn restricted to a any interval of length S is (L,A)-quasi-geodesic,
then g is globally (L′,A′)-quasi-geodesic (for S = S(L,A) sufficiently large)

• Sequence g( S
10Z). Take midpoints and join them.

g(0)

g( S
10 )

g( 2S10 )

g( 3S10 )

m1
m2

m3

• By comparison, the angle at m2 between m2m3 and m2m1 is close to π if S is
sufficiently large.

• In Hn this yields that the path of mid-points is quasi-geodesic

• Apply the same argument but use regularity to guarantee “good negative
curvature properties”



Thanks for your attention!


