Lie equations, Cartan bundles, Tanaka theory and differential invariants (I)

Boris Kruglikov (UiT the Arctic University of Norway)

ESI 2021 Geometry for Higher Spin Gravity

Boris Kruglikov (UiT Tromsø Norway)

Jet formalism

Let $J^{\ell}M \to M$ be the bundle, whose points are ℓ -jets of functions $u: M \to \mathbb{R}$. (More generally for a bundle $\pi: \mathcal{V} \to M$ get $J^k \pi$.) Coordinates x^i on M lead to coordinates (x^i, u_{α}) on $J^{\ell}M$, with α being a multi-index of length $|\alpha| \leq \ell$. It is important to note that $\pi_{\ell,\ell-1}: J^{\ell}M \to J^{\ell-1}M$ is an affine bundle modelled on $S^{\ell}T^*M$.

The infinite jet bundle $J^{\infty}M$ is a projective limit of $J^{\ell}M$, and the space of functions on it is the injective limit of $C^{\infty}(J^{\ell}M)$. The bundle $J^{\infty}M$ has a canonical flat connection, the so-called Cartan distribution, for which the horizontal lift

$$\mathcal{D}(M) \ni X \dashrightarrow D_X \in \mathcal{D}(J^{\infty}M)$$

is characterized by

$$(D_X f) \circ j^{\infty} u = X(f \circ j^{\infty} u), \quad \forall f \in C^{\infty}(J^{\infty} M), u \in C^{\infty}(M).$$

In local coordinates, if $X = a^i \partial_i$, then $D_X = a^i D_i$, where $D_i = \partial_i + u_{i\alpha} \partial_{u_\alpha}$ is the operator of total derivative.

Equations and Prolongations

A (scalar) differential operator of order $\leq \ell$ on M is a function $F \in C^{\infty}(J^{\ell}M) \subset C^{\infty}(J^{\infty}M)$. It defines a PDE (system) $\mathcal{E} = \{F = 0\} \subset J^{\ell}M$.

Its prolongations are given by the formulae

$$\mathcal{E}^{(k)} = \{ D_{\alpha}F = 0 : |\alpha| \le k \} \subset J^{k+\ell}M$$

and the projective limit is $\mathcal{E}^{(\infty)} = \{D_{\alpha}F = 0\} \subset J^{\infty}M.$

Denote $\mathcal{E}_k = \mathcal{E}^{(k-\ell)}$ for $k \ge \ell$ and $\mathcal{E}_k = J^k$ for $k < \ell$. Equation \mathcal{E} is called compatible (or formally integrable) if $\pi_{k,k-1} : \mathcal{E}_k \to \mathcal{E}_{k-1}$ is a submersion for all k, and consistent (or formally solvable) if $\pi_\infty : \mathcal{E}^{(\infty)} \to M$ is a submersion.

If $\mathcal{E}^{(\infty)}$ is finite-dimensional or analytic then by CK theorem (Cauchy-Kovalevsky or Cartan-Kahler) there are solutions to \mathcal{E} (also true for some kind of elliptic systems).

Finite type: reduction to ODEs

Assume compatibility of \mathcal{E} .

If $\mathcal{E}_f \simeq \mathcal{E}_{f+1}$ for some $f \ge \ell$ then the prolongation stablized $\mathcal{E}_\infty \simeq \mathcal{E}_f$ and the equation is of finite type.

The Cartan distribution \mathscr{C} on J^{∞} induces the distribution $\mathscr{C}_{\mathcal{E}}$ (horizontal, of the same rank $m = \dim M$) on \mathcal{E}_{∞} and hence also on \mathcal{E}_f . This is flat, and the solutions are parallel sections:

$$\operatorname{Sol}(\mathcal{E}) \simeq \mathcal{E}/\mathscr{C}_{\mathcal{E}}.$$

Here we identify the quotient of ${\cal E}$ by the leaves foliation of ${\mathscr C}_{{\cal E}}$ with the space of Cauchy data.

Hence finding solutions to a PDE system \mathcal{E} is reduced to ODEs. The symmetry group of \mathcal{E} is the symmetry of this ODE and hence if it has solvable subroup acting transitively in transversal to $\mathscr{C}_{\mathcal{E}}$, the system is integrable in quadratures.

Tractor type connection for finite type systems

Let us now by-pass the compatibility assumption, but let us still assume that $\pi_{k,k-1} : \mathcal{E}_k \to \mathcal{E}_{k-1}$ is a submersion for $\ell < k \leq f$. In other words, there are no compatibility conditions up to order f.

Then the Cartan distribution $\mathscr{C}_{\mathcal{E}}$ on \mathcal{E}_f is still horizontal of rank m, hence it is a connection (linear if \mathcal{E} is linear, otherwise general). This connection is invariant wrt symmetry/structure/gauge group available, and any other connection is obtained by tensor perturbation ("curvature corrections"). We have:

 $\dim \operatorname{Sol}(\mathcal{E}) \leq \dim \mathcal{E}/\mathscr{C}_{\mathcal{E}}$

with the equality iff \mathcal{E} is compatible (Frobenius condition). In fact, solutions of \mathcal{E} are bijective to parallel sections of this connection $\nabla_{\mathcal{E}}$ on $\mathcal{E}_f \to M$.

Example: Killing tensors

Let $g = (g_{ij})$ be a Riemannian metric on M. It defines the Hamiltonian $H \in C^{\infty}(T^*M)$, $H(x,p) = \frac{1}{2}g^{ij}(x)p_ip_j$. A Killing tensor of order d is a homogeneous polynomial $K = k^{i_1...i_d}(x)p_{i_1}...p_{i_d}$ on T^*M that Poisson commutes with H:

$$\{H,K\}=0.$$

This is a overdetermined PDE system on $\binom{m+d-1}{d}$ functions of m arguments, consisting $\binom{m+d}{d+1}$ first order differential equations.

This system \mathcal{E} can be prolonged to order d+1 (no compatibility for the first d prolongations), where it closes to a Frobenius system. If \mathcal{E} is compatible then $Sol(\mathcal{E})$ can be identified as A_m -irrep

$$S^{d}\Lambda^{2}(T^{*}\oplus\mathbb{R})_{\circ} = \boxed{\underbrace{\qquad \cdots \qquad}}$$

Note that \mathcal{E} is projectively invariant, hence we use the larger group $SL(m+1) \supset SO(m+1) \lor SO(m) \ltimes \mathbb{R}^m \lor SO(1,m)$ from the isometry groups of space forms (projectively equivalent).

6/16

Killing example: coordinate details

Denote the space of Killing *d*-tensors ("higher spins") by

$$Q_d(g) = \{ K \in C^{\infty}(T^*M) : \{H, K\} = 0, \deg(K) = d \}.$$

Then $Q(g) = \oplus Q_d(g)$ is a graded Poisson algebra, and we have:

$$\dim Q_d \le \frac{(m+d-1)!(m+d-2)!}{d!(d+1)!(m-1)!(m-2)!}$$

with the equality iff (M,g) is a space form.

For instance, in the flat case $g = \sum dx_i^2$ we have:

 $Q_1 = \langle p_i, r_{ij} = x_i p_j - x_j p_i \rangle$, $Q_2 = \langle p_i p_j, L_{ijk} = r_{ij} p_k, R_{ijkl} = r_{ij} r_{kl} \rangle$ with the relations $L_{ij} = -L_{ji}$, $L_{ijk} + L_{jki} + L_{kij} = 0$ and the Riemann curvature tensor identities for R_{ijkl} :

> plethysm([2],[0,1,0,0,0,0],A6)
1X[0,0,0,1,0,0] +1X[0,2,0,0,0,0]

> plethysm([3],[0,1,0,0,0,0],A6)
1X[0,0,0,0,0,1,0]+1X[0,1,0,1,0,0,0]+1X[0,3,0,0,0,0,0]

Much less is known even about Q_2 in the non-flat case...

Boris Kruglikov (UiT Tromsø Norway)

Lie equations: symmetries and invariants I * ESI 2021

Symbols

For $F \in C^{\infty}(J^{\ell}M)$ the vertical part of the 1-form $dF \in \Omega^{1}(J^{\ell}M)$, i.e. restriction to $\pi_{\ell,\ell-1}^{-1}(\cdot)$, is a homogeneous polynomial on $\pi_{\ell}^{*}T^{*}M$:

$$\sigma_F = \sum_{|\alpha|=\ell} (\partial_{u_{\alpha}} F) \partial_{\alpha} \in \Gamma(\pi_{\ell}^* S^{\ell} TM).$$

This is called the symbol of F, at the points of \mathcal{E} it is coordinate-independent.

Note $\sigma(D_{\alpha}F) = \sigma_F \circ \partial_{\alpha}$. Let $F^{(k)} = \cup_{|\alpha|=k} D_{\alpha}F$. Define the symbols of \mathcal{E}

$$g_k = \operatorname{Ker}(\sigma_{F^{(k-\ell)}}) \subset S^k T^* M$$
 for $k \ge \ell$

and $g_k = S^k T^* M$ for $k < \ell$ (for system use $\otimes \mathcal{V}$ in the rhs).

<u>Remark:</u> Dualization over \mathbb{R} (resp \mathbb{C}) makes $g^* = \oplus g_k^*$ into a module over commutative algebra $R = \oplus S^k T$. This gives rise to duality of Castelnuovo-Mumford and Cartan-Spencer theories.

Involution: prolongation-projection

How to check compatibility? Spencer $\delta\text{-complex}$ is the restriction of the de Rham complex

$$\ldots \longrightarrow g_{i+1} \otimes \Lambda^{j-1} T^* \longrightarrow g_i \otimes \Lambda^j T^* \longrightarrow g_{i-1} \otimes \Lambda^{j+1} T^* \longrightarrow \ldots$$

The cohomology $H^{i,j}(g)$ of the term $g_i \otimes \Lambda^j T^*$ is called the Spencer δ -cohomology. Particular meanings: $H^{0,0}(g)$ - dependent vars (fields), $H^{\bullet,1}(g)$ - equations (constraints), $H^{\bullet,2}(g)$ - compatibility conds ("cross-diff").

It may happen that some $\pi_{k,l} : \mathcal{E}_k \to \mathcal{E}_l$ are not surjective. Then redefine \mathcal{E} to be this new smaller equation (as a submanifold in jets; larger in terms of defining relations) and restart computation.

In the analytic context (and often in regular smooth) the procedure stops in a finite number of steps, by the CK (Cartan-Kuranishi) theorem. This is equivalent to differential closure of the D-module given by F and results in an involutive system $\overline{\mathcal{E}}$.

Characteristic variety

A general PDE system \mathcal{E} of order ℓ together with its prolongation is a locus of a function $F: J^{k+\ell}(M, \mathcal{V}) \to J^k(M, \mathcal{W})$ for $k \ge 0$, where \mathcal{V}, \mathcal{W} are some (vector) bundles over M.

The symbol σ_F of F is a homogeneous degree l polynomial on $\pi^*_{\infty}T^*M$ with values in $\operatorname{Hom}(\mathcal{V},\mathcal{W})$. The characteristic variety of \mathcal{E} is

$$Char(\mathcal{E}) = \{ [\theta] \in \mathbb{P}(\pi_{\infty}^*T^*M) : \sigma_F(\theta) \text{ is not injective} \}.$$

If \mathcal{V}, \mathcal{W} have the same rank ("determined system"), then $[\theta]$ is characteristic iff $\sigma_F(\theta)$ is not surjective.

For a solution $u \in \text{Sol}(\mathcal{E})$ we identify $M_u \simeq (j_\infty u)(M) \subset J^\infty M$. Thus the characteristic variety is a bundle over M_u whose fiber at x is the projective variety

Char
$$(\mathcal{E}, u)_x = \{ [\theta] \in \mathbb{P}(T_x^* M_u) : \sigma_F(\theta) = 0 \}.$$

Variations: $\operatorname{Char}_{\operatorname{aff}}(\mathcal{E})$, $\operatorname{Char}^{\mathbb{C}}(\mathcal{E})$, etc.

Solution space: Dimensional count

For compatible PDE system (pass from \mathcal{E} to $\overline{\mathcal{E}}$) we observe that by the Hilbert-Serre theorem

$$P(k) = \sum_{i \le k} \dim g_i = c \, k^d + \dots$$

is a polynomial for large k. The numbers $d=\deg(P)$ and $c=\frac{1}{d!}P^{(d)}$ are Cartan genre and Cartan integer.

A formal solution $u \in Sol(\mathcal{E})$ depends on c functions of d variables (and some number of functions with fewer variables). So d can be called functional dimension and c - functional rank.

Invariantly this data can be computed as follows: let $\kappa = \dim \operatorname{Ker} \sigma_F(p), p \in \operatorname{Char}(\mathcal{E})$ (assume for simplicity the characteristic variety to be irreducible). Then

$$d = \dim \operatorname{Char}_{\operatorname{aff}}^{\mathbb{C}}(\mathcal{E}), \quad c = \kappa \operatorname{deg} \operatorname{Char}^{\mathbb{C}}(\mathcal{E}).$$

Example: Heat equation

For the heat equation

$$u_t = u_{xx}$$

we have: $\operatorname{Char}(\mathcal{E}) = \{p_x^2 = 0\}$. Therefore d = 1, c = 2. So the general analytic solution depends on 2 functions of 1 argument: they come via the Cauchy data $u|_{x=0} = \phi(t)$, $u_x|_{x=0} = \psi(t)$.

In analysis the characteristic initial data is $u|_{t=0} = \varphi(x)$ yields d = 1, c = 1. This approach works well in the smooth setup, but it defines only the semi-flow on the space of functions $\varphi(x)$ and breaks down analytic solutions.

For instance, with initial condition $\varphi(x) = (1-x)^{-1}$ the solution

$$u(t,x) \doteq \frac{1}{1-x} + \frac{2}{1} \frac{t}{(1-x)^3} + \frac{4!}{2!} \frac{t^2}{(1-x)^5} + \dots + \frac{(2n)!}{n!} \frac{t^n}{(1-x)^{2n+1}} + \dots$$

is divergent everywhere outside t = 0.

Example: Self-dual conformal structures

The DFK master-equation ${\mathcal E}$ for SD is

$$\begin{aligned} \partial_x Q(u) - \partial_y Q(v) &= 0, \\ (\partial_w - u_y \partial_x + v_y \partial_y) Q(v) + (\partial_z + u_x \partial_x - v_x \partial_y) Q(u) &= 0; \\ Q &= \partial_x \partial_w + \partial_y \partial_z - u_y \partial_x^2 + (u_x + v_y) \partial_x \partial_y - v_x \partial_y^2. \end{aligned}$$
has the following symbol in variables $p = (p_x, p_y, p_z, p_w)$:
$$\begin{aligned} P(p) &= \begin{pmatrix} p_x \sigma_Q(p) & -p_y \sigma_Q(p) \\ (p_z + u_x p_x - v_x p_y) \sigma_Q(p) & (p_w - u_y p_x + v_y p_y) \sigma_Q(p) \end{pmatrix} \\ \sigma_Q(p) &= p_x p_w + p_y p_z - u_y p_x^2 + (u_x + v_y) p_x p_y - v_x p_y^2. \end{aligned}$$

Its characteristic variety $Char(\mathcal{E}) = \{\sigma_Q(p) = 0\}$ is a nondegenerate quadric of multiplicity 3. Hence locally self-dual metrics are parametrized by c = 6 functions of d = 3 arguments.

lt

 σ_F

Lie equations

Let q be a geometric structure (tensor or another natural object). Infinitesimal Lie equation on symmetries in E = TM is

$$\mathcal{E} = \operatorname{Lie}(q) = \{ X \in \mathcal{D}(M) : L_X(q) = 0 \}.$$

The above methods apply to this PDE system. For first order system with symbol $\mathfrak{g} = g_1 \subset \operatorname{End}(TM)$ we get

$$\operatorname{Char}_{\operatorname{aff}}(\mathcal{E}) = \{ p \in T^* : \exists v \in T, p \otimes v \in \mathfrak{g} \}.$$

The Sternberg prolongation $g_{\bullet} = \operatorname{pr}(\mathfrak{g}) \subset S^{\bullet}T^* \otimes T$ is finite-dimensional iff $\operatorname{Char}^{\mathbb{C}} = \emptyset$.

Similarly arises the nonlinear Lie equation for automorphisms, for which $\operatorname{Lie}(q)$ is the linearization $\ell_{\mathcal{E}}$. Goldschmidt-Spencer characterized its integrability via Spencer D-cohomology.

Compatibility of $\operatorname{Lie}(q)$ expreses through curvatures of q, and the maximal symmetry dimension corresponds to "flat" q. For many finite type structures, the dimension gap $\mathfrak{S}_{\max} \rightsquigarrow \mathfrak{S}_{\text{sub.max}}$ has been computed (BK, D.The, H.Winther, V.Matveev, ...).

Examples of the symmetry dimension bounds

For finite type systems $\dim \operatorname{Sol}(\mathcal{E}) = \sum_{i=0}^{\infty} \dim g_i$. In non-flat case, passing to $\overline{\mathcal{E}}$ this is modified: $\dim \operatorname{Sol}(\overline{\mathcal{E}}) \leq \dim \operatorname{Sol}(\mathcal{E})$.

$$\begin{split} \mathbb{E}\mathbf{x} \ 1: \ \text{Conformal structures} \ c \in \Gamma(E) \ \text{on} \ M^{p,q}, \ p+q=n. \\ \text{Here} \ E = S^2 T^* M / \mathbb{R}_+ \ \text{and} \ \text{we get for } \text{Lie}(c): \ g_{0,1,2} \neq 0, \ g_3 = 0; \\ \mathfrak{S}_{\text{max}} = \binom{n+2}{2} \ \text{and} \ \mathfrak{S}_{\text{sub.max}} = \binom{n-1}{2} + 6. \end{split}$$

Ex 2: Einstein metrics $\eta \in \operatorname{Sol}(\mathcal{E})$ on $M^{p,q}$, p+q=n. Here $E = S^2 T^*M$, $\mathcal{E} \subset J^2(E)$ and for $\operatorname{Lie}(\eta)$: $g_{0,1} \neq 0$, $g_2 = 0$; $\mathfrak{S}_{\max} = \binom{n+1}{2}$ and $\mathfrak{S}_{\operatorname{sub.max}} = \binom{n-1}{2} + 5$.

$$\begin{split} \mathbb{E}\mathbf{x} \ 3: \ \text{Killing 2-tensors} \ k \in \operatorname{Sol}(\mathcal{E}) \ \text{on} \ M^{p,q}, \ p+q=n. \\ \text{Here} \ E = S^2 T^*M, \ \mathcal{E} \subset J^1(E) \ \text{and for } \operatorname{Sol}(\mathcal{E}): \ g_{0,1} \neq 0, \ g_2 = 0 \\ \mathfrak{S}_{\max} = \frac{n(n+1)^2(n+2)}{12} \ \text{and} \ \mathfrak{S}_{\text{sub},\max} \geq \binom{n+1}{2} + \frac{n^2(n^2-1)}{12}. \end{split}$$

Thanks for your attention!

Boris Kruglikov (UiT Tromsø Norway)

Lie equations: symmetries and invariants I * ESI 2021