

Multi-level Markov Chain Monte Carlo Methods for Bayesian Inverse Problems

Juan Pablo Madrigal Cianci

May 4th, 2022 ESI WS1: Multilevel and multifidelity sampling methods in UQ for PDEs

Chair of Scientific Computing and Uncertainty Quantification (CSQI), EPF Lausanne Collaborators: Prof. Fabio Nobile, Prof. Raúl Tempone.

Given measured data $y \in Y$ modeled as

y = F(u) + e, $e \sim \mu_{\text{noise}}$, $u \in X$,

• *u*: Parameter $u \sim \mu_{pr}$. • *F* : X \rightarrow Y. • *e*: Random noise.

Given measured data $y \in Y$ modeled as

y = F(u) + e, $e \sim \mu_{\text{noise}}$, $u \in X$,

• *u*: Parameter $u \sim \mu_{pr}$. • *F* : X \rightarrow Y. • *e*: Random noise.

Goal: sample *u* conditioned on *y* from μ^y , with

$$\underbrace{\mu^{y}(u)}_{\text{Posterior}} := \mu(u|y) = \frac{1}{Z} \underbrace{\mu_{\text{noise}}(y - F(u))}_{\text{likelihood}} \underbrace{\mu_{\text{pr}}(u)}_{\text{prior}}$$

Given measured data $y \in Y$ modeled as

 $y = F(u) + e, \quad e \sim \mu_{\text{noise}}, \quad u \in X,$

• *u*: Parameter $u \sim \mu_{pr}$. • *F* : X \rightarrow Y. • *e*: Random noise.

Goal: sample *u* conditioned on *y* from μ^y , with

$$\begin{aligned} \frac{\mathrm{d}\mu^{y}}{\mathrm{d}\mu_{\mathrm{pr}}}(u) &:= \frac{1}{Z} e^{-\Phi(u;y)}, \quad \Phi(u;y) = \left\|y - F(u)\right\|_{Y}^{2}, \\ Z &= \int_{X} e^{-\Phi(u;y)} \mu_{\mathrm{pr}}(\mathrm{d}u), \end{aligned}$$

Given measured data $y \in Y$ modeled as

y = F(u) + e, $e \sim \mu_{\text{noise}}$, $u \in X$,

• *u*: Parameter $u \sim \mu_{pr}$. • *F* : X \rightarrow Y. • *e*: Random noise.

Goal: sample *u* conditioned on *y* from μ^y , with

$$\begin{aligned} \frac{\mathrm{d}\mu^{y}}{\mathrm{d}\mu_{\mathrm{pr}}}(u) &:= \frac{1}{Z} e^{-\Phi(u;y)}, \quad \Phi(u;y) = \left\|y - F(u)\right\|_{Y}^{2}, \\ Z &= \int_{X} e^{-\Phi(u;y)} \mu_{\mathrm{pr}}(\mathrm{d}u), \end{aligned}$$

Caveat: F usually gets evaluated numerically with discr. parameter L of high accuracy/cost. \implies Induces F_L

Given measured data $y \in Y$ modeled as

 $y = F_L(u) + e$, $e \sim \mu_{noise}$, $u \in X$,

• *u*: Parameter $u \sim \mu_{pr}$. • $F_L : X \rightarrow Y$. • *e*: Random noise.

Goal: sample *u* conditioned on *y* from μ_L^y , where

$$\begin{split} \frac{\mathrm{d}\mu_{\mathrm{L}}^{y}}{\mathrm{d}\mu_{\mathrm{pr}}}(u) &= \frac{1}{Z_{\mathrm{L}}} e^{-\Phi_{\mathrm{L}}(u;y)}, \qquad \Phi_{\mathrm{L}}(u;y) = \|y - F_{\mathrm{L}}(u)\|_{\mathrm{Y}}^{2}, \\ Z_{\mathrm{L}} &= \int_{\mathrm{X}} e^{-\Phi_{\mathrm{L}}(u;y)} \mu_{\mathrm{pr}}(\mathrm{d}u), \\ \text{with} \qquad \mu_{\mathrm{L}}^{y} \to \mu^{y} \quad \text{as } \mathrm{L} \to \infty. \end{split}$$

Introduction: MCMC- Metropolis Hastings

Constructs Markov chain $\{u_{L}^{n}\}_{n=0}^{N}$ with invariant distribution μ_{L}^{y}

procedure MH($\mu_1^{\mathcal{Y}}, Q, N, \overline{\lambda_0}$). Sample $u^0 \sim \lambda_0$ for n = 0, ..., N - 1 do Sample $z \sim Q(u^n, \cdot)$. Set $u^{n+1} = z w/\text{prob.} \alpha_1$: $\alpha_{L}(u^{n},z) = \min\left[1, \frac{\mu_{L}^{y}(z)Q(z,u^{n})}{\mu_{L}^{y}(u^{n})O(u^{n},z)}\right],$ set $u^{n+1} = u^n$ otherwise. end for Output $\{u^n\}_{n=0}^N$ end procedure

Introduction: MCMC- Metropolis Hastings

Constructs Markov chain $\{u_{L}^{n}\}_{n=0}^{N}$ with invariant distribution μ_{L}^{y}

procedure $MH(\mu_1^y, Q, N, \lambda_0)$. Sample $u^0 \sim \lambda_0$ for n = 0, ..., N - 1 do Sample $z \sim Q(u^n, \cdot)$. Set $u^{n+1} = z w/\text{prob}$. α_1 : $\alpha_{\mathsf{L}}(u^n, z) = \min\left[1, \frac{\mu_{\mathsf{L}}^{\mathsf{y}}(z)Q(z, u^n)}{\mu_{\mathsf{L}}^{\mathsf{y}}(u^n)Q(u^n, z)}\right],$ set $u^{n+1} = u^n$ otherwise. end for Output $\{u^n\}_{n=0}^N$ end procedure

In short: $u^{n+1} \sim p(u^n, \cdot)$.

Constructs Markov chain $\{u_{L}^{n}\}_{n=0}^{N}$ with invariant distribution μ_{L}^{y}

procedure $MH(\mu_L^y, Q, N, \lambda_0)$. Sample $u^0 \sim \lambda_0$ for $n = 0, \dots, N - 1$ do Sample $z \sim Q(u^n, \cdot)$. Set $u^{n+1} = z$ w/prob. α_L :

$$\alpha_{\mathsf{L}}(u^n,z) = \min\left[1,\frac{\mu_{\mathsf{L}}^{\boldsymbol{\gamma}}(z)Q(z,u^n)}{\mu_{\mathsf{L}}^{\boldsymbol{\gamma}}(u^n)Q(u^n,z)}\right],$$

set $u^{n+1} = u^n$ otherwise. end for Output $\{u^n\}_{n=0}^N$ end procedure In short: $u^{n+1} \sim p(u^n, \cdot)$. Once $\{u^n\}_{n=0}^N$ is obtained, we can estimate

$$\begin{split} \mathbb{E}_{\mu^{\gamma}}[\mathrm{Qol}] &\approx \mathbb{E}_{\mu_{L}^{\gamma}}[\mathrm{Qol}_{L}] \\ &\approx \widehat{\mathrm{Qol}}_{L} = \frac{1}{N} \sum_{n=0}^{N} \mathrm{Qol}_{L}(u^{n}). \end{split}$$

Constructs Markov chain $\{u_{L}^{n}\}_{n=0}^{N}$ with invariant distribution μ_{L}^{y}

procedure MH(μ_L^y, Q, N, λ_0). Sample $u^0 \sim \lambda_0$ for $n = 0, \dots, N - 1$ do Sample $z \sim Q(u^n, \cdot)$. Set $u^{n+1} = z$ w/prob. α_L :

$$\alpha_{\mathsf{L}}(u^n,z) = \min\left[1,\frac{\mu_{\mathsf{L}}^{\mathsf{y}}(z)Q(z,u^n)}{\mu_{\mathsf{L}}^{\mathsf{y}}(u^n)Q(u^n,z)}\right],$$

set $u^{n+1} = u^n$ otherwise. end for Output $\{u^n\}_{n=0}^N$ end procedure In short: $u^{n+1} \sim p(u^n, \cdot)$. Once $\{u^n\}_{n=0}^N$ is obtained, we can estimate

$$\mu^{\nu}[\text{QoI}] \approx \mathbb{E}_{\mu_{L}^{\nu}}[\text{QoI}_{L}]$$

 $\approx \widehat{\text{QoI}}_{L} = \frac{1}{N} \sum_{n=0}^{N} \text{QoI}_{L}(u^{n}).$

Accuracy is controlled by N and L. **Issue:** Large N + Expensive F_{L} . Constructs Markov chain $\{u_{L}^{n}\}_{n=0}^{N}$ with invariant distribution μ_{L}^{y}

procedure MH(μ_L^y, Q, N, λ_0). Sample $u^0 \sim \lambda_0$ for $n = 0, \dots, N - 1$ do Sample $z \sim Q(u^n, \cdot)$. Set $u^{n+1} = z$ w/prob. α_L :

$$\alpha_{\mathsf{L}}(u^n,z) = \min\left[1,\frac{\mu_{\mathsf{L}}^{\boldsymbol{\gamma}}(z)Q(z,u^n)}{\mu_{\mathsf{L}}^{\boldsymbol{\gamma}}(u^n)Q(u^n,z)}\right],$$

set $u^{n+1} = u^n$ otherwise. end for Output $\{u^n\}_{n=0}^N$ end procedure In short: $u^{n+1} \sim p(u^n, \cdot)$. Once $\{u^n\}_{n=0}^N$ is obtained, we can estimate

$$_{\mu^{\gamma}}[\operatorname{Qol}] \approx \mathbb{E}_{\mu_{L}^{\gamma}}[\operatorname{Qol}_{L}]$$

 $\approx \widehat{\operatorname{Qol}_{L}} = \frac{1}{N} \sum_{n=0}^{N} \operatorname{Qol}_{L}(u^{n}).$

Accuracy is controlled by N and L. **Issue:** Large N + Expensive F_L . **Solution:** ML-MCMC

Introduce $\{F_\ell\}_{\ell=0}^{\mathsf{L}}$ of increasing accuracy/cost; $F_\ell \to F$ as $\ell \to \infty$.

(a) $\ell = 0$, F_0

(b) $\ell = 1, F_1$ (c) $\ell = 2, F_2$ Induces $\mu_{\ell}^{Y}, \ell = 0, 1, ..., L$, with $\frac{d\mu_{\ell}^{Y}}{d\mu_{pr}}(u) = \frac{1}{Z_{\ell}} \exp\left(-\|y - F_{\ell}(u)\|_{Y}^{2}\right)$

Introduce $\{F_\ell\}_{\ell=0}^{\mathsf{L}}$ of increasing accuracy/cost; $F_\ell \to F$ as $\ell \to \infty$.

(c) $\ell = 2, F_2$

(d) $\ell = 3, F_3$

$$\begin{split} \mathbb{E}_{\mu^{y}}[\text{Qol}] &\simeq \mathbb{E}_{\mu^{y}_{L}}[\text{Qol}_{L}] = \mathbb{E}_{\mu^{y}_{0}}[\text{Qol}_{0}] + \sum_{\ell=1}^{L} \left(\mathbb{E}_{\mu^{y}_{\ell}}[\text{Qol}_{\ell}] - \mathbb{E}_{\mu^{y}_{\ell-1}}[\text{Qol}_{\ell-1}] \right) \\ &\approx \widehat{\text{Qol}}_{L,\{N_{\ell}\}_{\ell=0}^{L}} := \frac{1}{N_{0}} \sum_{n=0}^{N_{0}} [\text{Qol}_{0}(u^{n}_{0,0})] + \sum_{\ell=1}^{L} \frac{1}{N_{\ell}} \sum_{m=0}^{N_{\ell}} \underbrace{(\text{Qol}_{\ell}(u^{m}_{\ell,\ell}) - \text{Qol}_{\ell-1}(u^{m}_{\ell,\ell-1}))}_{:= Y^{m}_{\ell}}, \end{split}$$

Introduce $\{F_\ell\}_{\ell=0}^{\mathsf{L}}$ of increasing accuracy/cost; $F_\ell \to F$ as $\ell \to \infty$.

(c) $\ell = 2, F_2$

(d) $\ell = 3, F_3$

$$\begin{split} \mathbb{E}_{\mu^{\nu}}[\text{Qol}] &\simeq \mathbb{E}_{\mu_{L}^{\nu}}[\text{Qol}_{L}] = \mathbb{E}_{\mu_{0}^{\nu}}[\text{Qol}_{0}] + \sum_{\ell=1}^{L} \left(\mathbb{E}_{\mu_{\ell}^{\nu}}[\text{Qol}_{\ell}] - \mathbb{E}_{\mu_{\ell-1}^{\nu}}[\text{Qol}_{\ell-1}] \right) \\ &\approx \widehat{\text{Qol}}_{L,\{N_{\ell}\}_{\ell=0}^{L}} := \frac{1}{N_{0}} \sum_{n=0}^{N_{0}} [\text{Qol}_{0}(u_{0,0}^{n})] + \sum_{\ell=1}^{L} \frac{1}{N_{\ell}} \sum_{m=0}^{N_{\ell}} \underbrace{(\text{Qol}_{\ell}(u_{\ell,\ell}^{m}) - \text{Qol}_{\ell-1}(u_{\ell,\ell-1}^{m}))}_{:= Y_{\ell}^{m}}, \end{split}$$

 $\underline{U_{\star,\ell}} \sim \mu_{\ell}^{y}, \qquad U_{\star,\ell-1} \sim \mu_{\ell-1}^{y}.$

$$\mathbb{E}_{\mu^{\gamma}}[\text{Qol}] \approx \frac{1}{N_0} \sum_{n=0}^{N_0} [\text{Qol}_0(u_{0,0}^n)] + \sum_{\ell=1}^{L} \frac{1}{N_{\ell}} \sum_{m=0}^{N_{\ell}} \underbrace{(\text{Qol}_{\ell}(u_{\ell,\ell}^m) - \text{Qol}_{\ell-1}(u_{\ell,\ell-1}^m))}_{:= Y_{\ell}^m}.$$

Fact: Choosing $N_{\ell} < N_{\ell-1}$ very carefully gives a much cheaper estimator with same accuracy as SL.

$$\mathbb{E}_{\mu^{\nu}}[\text{Qol}] \approx \frac{1}{N_0} \sum_{n=0}^{N_0} [\text{Qol}_0(u_{0,0}^n)] + \sum_{\ell=1}^{L} \frac{1}{N_\ell} \sum_{m=0}^{N_\ell} \underbrace{(\text{Qol}_{\ell}(u_{\ell,\ell}^m) - \text{Qol}_{\ell-1}(u_{\ell,\ell-1}^m))}_{:= Y_{\ell}^m}$$

Theorem ^[DKST15] (Informal) : If $\exists \alpha_w, \beta, \gamma > 0$:

T1. $|\mathbb{E}_{\mu_{\ell}^{\vee}}[\text{Qol}_{\ell}] - \mathbb{E}_{\mu^{\vee}}[\text{Qol}]| \le C_{w}M^{-\alpha_{w}\ell},$ T2. $\mathbb{V}_{\nu_{\ell}}[\mathbb{Y}_{\ell}] \le C_{v}M^{-\beta\ell}.$ T3. $\operatorname{MSE}(\hat{Y}_{\ell,N_{\ell}}) \leq N_{\ell}^{-1} C_{\operatorname{mse}} \mathbb{V}_{\nu_{\ell}}[Y_{\ell}].$ T4. $\mathcal{C}_{\ell}(\operatorname{Qol}_{\ell}) \leq C_{\gamma} M^{\gamma \ell}.$

$$\mathbb{E}_{\mu^{\gamma}}[\text{Qol}] \approx \frac{1}{N_0} \sum_{n=0}^{N_0} [\text{Qol}_0(u_{0,0}^n)] + \sum_{\ell=1}^{L} \frac{1}{N_\ell} \sum_{m=0}^{N_\ell} \underbrace{(\text{Qol}_{\ell}(u_{\ell,\ell}^m) - \text{Qol}_{\ell-1}(u_{\ell,\ell-1}^m))}_{:= Y_{\ell}^m}$$

Theorem ^[DKST15] (Informal) : If $\exists \alpha_w, \beta, \gamma > 0$:

T1. $|\mathbb{E}_{\mu_{\ell}^{\vee}}[\text{Qol}_{\ell}] - \mathbb{E}_{\mu^{\vee}}[\text{Qol}]| \le C_{w}M^{-\alpha_{w}\ell},$ T2. $\mathbb{V}_{\nu_{\ell}}[\mathbb{Y}_{\ell}] \le C_{v}M^{-\beta\ell}.$ T3. $\operatorname{MSE}(\hat{Y}_{\ell,N_{\ell}}) \leq N_{\ell}^{-1} C_{\operatorname{mse}} \mathbb{V}_{\nu_{\ell}}[Y_{\ell}].$ T4. $\mathcal{C}_{\ell}(\operatorname{Qol}_{\ell}) \leq C_{\gamma} M^{\gamma \ell}.$

$$\operatorname{Cost}\left(\operatorname{e}_{\mathsf{ML}},\operatorname{tol}^{2}\right) \leq C_{\mathsf{ML}} \begin{cases} \operatorname{tol}^{-2}|\log\operatorname{tol}| & \text{if } \beta > \gamma, \\ \operatorname{tol}^{-2}|\log\operatorname{tol}|^{3}, & \text{if } \beta = \gamma, \\ \operatorname{tol}^{-2+(\gamma-\beta)/\alpha_{\mathsf{W}}}|\log\operatorname{tol}|, & \text{if } \beta < \gamma. \end{cases}$$

 $\operatorname{Cost}\left(\operatorname{e}_{\operatorname{SL}},\operatorname{tol}^{2}\right)\leq C_{\operatorname{SL}}\operatorname{tol}^{-2-\gamma/\alpha_{W}}$

$$\mathbb{E}_{\mu^{\gamma}}[\text{Qol}] \approx \frac{1}{N_0} \sum_{n=0}^{N_0} [\text{Qol}_0(u_{0,0}^n)] + \sum_{\ell=1}^{L} \frac{1}{N_\ell} \sum_{m=0}^{N_\ell} \underbrace{(\text{Qol}_{\ell}(u_{\ell,\ell}^m) - \text{Qol}_{\ell-1}(u_{\ell,\ell-1}^m))}_{:= Y_{\ell}^m}$$

Theorem ^[DKST15] (Informal) : If $\exists \alpha_{w}, \beta, \gamma > 0$:

T1. $|\mathbb{E}_{\mu_{\ell}^{V}}[\overline{\text{Qol}}_{\ell}] - \mathbb{E}_{\mu^{V}}[\text{Qol}]| \le \overline{C_{W}}M^{-\alpha_{W}\ell},$ T2. $\mathbb{V}_{\nu_{\ell}}[Y_{\ell}] \le C_{V}M^{-\beta\ell}.$ T3. MSE $(\hat{Y}_{\ell,N_{\ell}}) \leq N_{\ell}^{-1} C_{\text{mse}} \mathbb{V}_{\nu_{\ell}}[Y_{\ell}].$ T4. $C_{\ell}(\text{Qol}_{\ell}) \leq C_{\gamma} M^{\gamma \ell}.$

$$\mathbb{E}_{\mu^{\gamma}}[\text{Qol}] \approx \frac{1}{N_0} \sum_{n=0}^{N_0} [\text{Qol}_0(u_{0,0}^n)] + \sum_{\ell=1}^{L} \frac{1}{N_\ell} \sum_{m=0}^{N_\ell} \underbrace{(\text{Qol}_{\ell}(u_{\ell,\ell}^m) - \text{Qol}_{\ell-1}(u_{\ell,\ell-1}^m))}_{:= Y_{\ell}^m}$$

Theorem ^[DKST15] (Informal) : If $\exists \alpha_w, \beta, \gamma > 0$:

T1. $|\mathbb{E}_{\mu_{\ell}^{V}}[\operatorname{Qol}_{\ell}] - \mathbb{E}_{\mu^{V}}[\operatorname{Qol}]| \leq C_{w}M^{-\alpha_{w}\ell},$ T2. $\mathbb{V}_{\nu_{\ell}}[Y_{\ell}] \leq C_{v}M^{-\beta\ell}.$ T3. $\operatorname{MSE}(\hat{Y}_{\ell,N_{\ell}}) \leq N_{\ell}^{-1} C_{\operatorname{mse}} \mathbb{V}_{\nu_{\ell}}[Y_{\ell}].$ T4. $\mathcal{C}_{\ell}(\operatorname{Qol}_{\ell}) \leq C_{\gamma} M^{\gamma \ell}.$

T2: $Y_{\ell}^{m} \stackrel{\ell \to \infty}{\longrightarrow} 0 \implies \mathbb{V}_{\nu_{\ell}}[Y_{\ell}] \stackrel{\ell \to \infty}{\longrightarrow} 0$ (Not trivial)

[DKST15]: Dodwell, et Al. (2015).

$$\mathbb{E}_{\mu^{\gamma}}[\text{Qol}] \approx \frac{1}{N_0} \sum_{n=0}^{N_0} [\text{Qol}_0(u_{0,0}^n)] + \sum_{\ell=1}^{L} \frac{1}{N_\ell} \sum_{m=0}^{N_\ell} \underbrace{(\text{Qol}_{\ell}(u_{\ell,\ell}^m) - \text{Qol}_{\ell-1}(u_{\ell,\ell-1}^m))}_{:= Y_{\ell}^m}$$

Theorem ^[DKST15] (Informal) : If $\exists \alpha_{w}, \beta, \gamma > 0$:

T1. $|\mathbb{E}_{\mu_{\ell}^{V}}[\text{Qol}_{\ell}] - \mathbb{E}_{\mu^{V}}[\text{Qol}]| \le C_{w}M^{-\alpha_{w}\ell},$ T2. $\mathbb{V}_{\nu_{\ell}}[Y_{\ell}] \le C_{v}M^{-\beta\ell}.$ T3. MSE $(\hat{Y}_{\ell,N_{\ell}}) \leq N_{\ell}^{-1} C_{\text{mse}} \mathbb{V}_{\nu_{\ell}}[Y_{\ell}].$ T4. $C_{\ell}(\text{Qol}_{\ell}) \leq C_{\gamma} M^{\gamma \ell}.$

T2:
$$Y_{\ell}^{m} \xrightarrow{\ell \to \infty} 0 \implies \mathbb{V}_{\nu_{\ell}}[Y_{\ell}] \xrightarrow{\ell \to \infty} 0$$

(Not trivial)
ey: Construct coupled chains by coupling
proposals.

[DKST15]: Dodwell, et Al. (2015).

 Γ is a **coupling** of $Q(u_{\ell,\ell}^n, \cdot)$ and $R(u_{\ell,\ell-1}^n, \cdot)$, if:

A. $(u'_{\ell,\ell-1}, u'_{\ell,\ell}) \sim \Gamma$, $\implies u'_{\ell,\ell-1} \sim R(u^n_{\ell,\ell-1}, \cdot) \text{ and } u_{\ell,\ell} \sim Q(u^n_{\ell,\ell}, \cdot).$

Γ is a **coupling** of $Q(u_{\ell,\ell}^n, \cdot)$ and $R(u_{\ell,\ell-1}^n, \cdot)$, if: A. $(u_{\ell,\ell-1}', u_{\ell,\ell}') \sim \Gamma$, $\implies u_{\ell,\ell-1}' \sim R(u_{\ell,\ell-1}^n, \cdot)$ and $u_{\ell,\ell} \sim Q(u_{\ell,\ell}^n, \cdot)$. For any coupling:

B.
$$\mathbb{P}_{\Gamma}(u_{\ell,\ell-1}' \neq u_{\ell,\ell}') \geq \left\| Q(u_{\ell,\ell}^n, \cdot) - R(u_{\ell,\ell-1}^n, \cdot) \right\|_{\mathsf{TV}}.$$

We say it is a maximal coupling if B. holds with equality.

 $\begin{aligned} \Gamma \text{ is a coupling of } Q(u_{\ell,\ell}^n,\cdot) \text{ and } R(u_{\ell,\ell-1}^n,\cdot), \text{ if:} \\ \text{A. } (u_{\ell,\ell-1}',u_{\ell,\ell}') \sim \Gamma, \implies u_{\ell,\ell-1}' \sim R(u_{\ell,\ell-1}^n,\cdot) \text{ and } u_{\ell,\ell} \sim Q(u_{\ell,\ell}^n,\cdot). \\ \text{For any coupling:} \\ \text{B. } \mathbb{P}_{\Gamma}(u_{\ell,\ell-1}' \neq u_{\ell,\ell}') \geq \left\| Q(u_{\ell,\ell}^n,\cdot) - R(u_{\ell,\ell-1}^n,\cdot) \right\|_{T_{\ell}}. \end{aligned}$

We say it is a maximal coupling if B. holds with equality.

 $\Gamma \text{ is a$ **coupling** $of } Q(u_{\ell,\ell}^n, \cdot) \text{ and } R(u_{\ell,\ell-1}^n, \cdot), \text{ if:}$ $A. <math>(u_{\ell,\ell-1}', u_{\ell,\ell}') \sim \Gamma, \implies u_{\ell,\ell-1}' \sim R(u_{\ell,\ell-1}^n, \cdot) \text{ and } u_{\ell,\ell} \sim Q(u_{\ell,\ell}^n, \cdot).$ For any coupling: B. $\mathbb{P}_{\Gamma}(u_{\ell,\ell-1}' \neq u_{\ell,\ell}') \geq \left\| Q(u_{\ell,\ell}^n, \cdot) - R(u_{\ell,\ell-1}^n, \cdot) \right\|_{T_{\ell}}.$

We say it is a maximal coupling if B. holds with equality.

1. IMH $Q(u_{\ell,\ell}^n, \cdot) = \overline{R(u_{\ell,\ell-1}^n, \cdot)} = Q(\cdot).$ 2. MXC: $Q(u_{\ell,\ell}^n, \cdot), R(u_{\ell,\ell-1}^n, \cdot).$

(g)pCN, RWM, HMC,..

IMH: Couples chains by always proposing the same state (independently).

IMH: Couples chains by always proposing the same state (independently).

IMH: Couples chains by always proposing the same state (independently).

procedure IMH($\{\mu_{\ell=1}^{y}, \mu_{\ell}^{y}\}, \{u_{\ell=1}^{n}, u_{\ell=\ell}^{n}\}, Q_{\ell}$) Sample $z \sim Q_{\ell}$ and $w \sim \mathcal{U}(0, 1)$. for $i = \ell - 1$. ℓ do Set $u_{\ell_i}^{n+1} = z$ if $w < \alpha_i(u_{\ell_i}^n, z)$, where $\alpha_j(u_{\ell,j}^n,z) := \min \left[1, \frac{\mu_j^{Y}(z) \mathcal{Q}_{\ell}(u_{\ell,j}^n)}{\mu_i^{Y}(u_{\ell,j}^n) \mathcal{Q}_{\ell}(z)} \right].$ Set $u_{\ell_i}^{n+1} = u_{\ell_i}^n$ otherwise. end for Output $\{u_{\ell}^{n+1}, u_{\ell}^{n+1}\}$. end procedure

IMH: Couples chains by **always** proposing the same state (independently).

procedure IMH({ $\mu_{\ell-1}^{y}, \mu_{\ell}^{y}$ }, { $u_{\ell,\ell-1}^{n}, u_{\ell,\ell}^{n}$ }, Q_{ℓ}) Sample $z \sim Q_{\ell}$ and $w \sim U(0, 1)$. for $j = \ell - 1, \ell$ do Set $u_{\ell,j}^{n+1} = z$ if $w < \alpha_{j}(u_{\ell,j}^{n}, z)$, where $\alpha_{j}(u_{\ell,j}^{n}, z) := \min \left[1, \frac{\mu_{j}^{y}(z)Q_{\ell}(u_{\ell,j}^{n})}{\mu_{j}^{y}(u_{\ell,j}^{n})Q_{\ell}(z)}\right]$.

- Induces joint kernel $p_{\ell,IMH}$.
- Choosing Q_ℓ is critical
- $\begin{array}{l} \cdot \ ^{[\text{DKST15]}} \text{ proposes } Q_{\ell}(\cdot) = \\ \frac{1}{N_{\ell-1}} \sum_{i=1}^{N_{\ell-1}} \delta_{u_{\ell-1,\ell-1}^{i}}(\cdot) \approx \mu_{\ell-1}^{y}, \\ \text{however, can give biased results.} \end{array}$
- [MCNT21,MC22] extend to a wider class of ind. proposals Q_l w/ certain conditions (prior, KDE, Laplace approximation). Difficult to find in some situations.

MxC: Γ^n of state-dependent proposals^{[MCN22][H]LT21]} $Q^n = Q(u^n_{\ell,\ell},\cdot)$, $R^n = R(u^n_{\ell,\ell-1},\cdot)$

[MCN22]: MC, Nobile. (2022) . [HJLT21]: Heng, et. al. (2021).

MxC: Γ^n of state-dependent proposals^{[MCN22][H]LT21]} $Q^n = Q(u^n_{\ell,\ell}, \cdot), R^n = R(u^n_{\ell,\ell-1}, \cdot)$

procedure MxC($\mu_{\ell}^{y}, \mu_{\ell-1}^{y}, u_{\ell-1}^{n}, u_{\ell-1}^{n}, u_{\ell-\ell}^{n}, Q^{n}, R^{n}$) Sample $(u'_{\ell,\ell-1},u'_{\ell,\ell}) \sim \Gamma^n, w \sim \mathcal{U}([0,1])$ for $i = \ell - 1, \ell$ do: if $w \leq \alpha_i(u_{\ell_i}^n, u_{\ell_i}^\prime)$ then Set $u_{\ell i}^{n+1} = \underline{u'_{\ell i}}$. else Set $u_{\ell_{i}}^{n+1} = u_{\ell_{i}}^{n}$. end if end for Output $(u_{\ell}^{n+1}, u_{\ell}^{n+1})$. end procedure

[MCN22]: MC, Nobile. (2022) . [HJLT21]: Heng, et. al. (2021).

MxC: Γ^n of state-dependent proposals^{[MCN22][H]LT21]} $Q^n = Q(u^n_{\ell,\ell},\cdot), R^n = R(u^n_{\ell,\ell-1},\cdot)$

procedure MxC($\mu_{\ell}^{y}, \mu_{\ell-1}^{y}, u_{\ell-1}^{n}, u_{\ell-1}^{n}, u_{\ell-\ell}^{n}, Q^{n}, R^{n}$) Sample $(u'_{\ell,\ell-1}, u'_{\ell,\ell}) \sim \Gamma^n, w \sim \mathcal{U}([0,1])$ for $i = \ell - 1$, ℓ do: if $w \leq \alpha_i(u_{\ell_i}^n, u_{\ell_i}^\prime)$ then Set $u_{\ell i}^{n+1} = u_{\ell i}^{"}$. else Set $u_{\ell_{i}}^{n+1} = u_{\ell_{i}}^{n}$. end if end for Output $(u_{\ell}^{n+1}, u_{\ell}^{n+1})$. end procedure

- Induces joint kernel $\mathbf{p}_{\ell,MxC}$.
- ML-MCMC w/ state-dependent proposals.
- Proposes same state w.p. $1 - \left\| Q(u_{\ell,\ell}^n, \cdot) - R(u_{\ell,\ell-1}^n, \cdot) \right\|_{\text{TV}}, \text{ small if}$ $u_{\ell,\ell-1}^n, u_{\ell,\ell}^n \text{ are too far apart}$

[[]MCN22]: MC, Nobile. (2022) . [HJLT21]: Heng, et. al. (2021).

Theorem 1: Convergence of joint IMH chain^[MCNT21].

A.1 $\exists c \in (0, 1)$ independent of ℓ s.t. $\forall \ell \geq 1$:

$$\operatorname{ess\,inf}_{z\in X}\left\{\frac{Q_{\ell}(z)}{\mu_{j}^{Y}(z)}\right\} \geq c > 0, j = \ell - 1, \ell, \ \mu_{\text{pr}} - \text{a.s.}$$
(1)

Theorem 1: Convergence of joint IMH chain^[MCNT21].

A.1 $\exists c \in (0, 1)$ independent of ℓ s.t. $\forall \ell \geq 1$:

$$\operatorname{ess\,inf}_{z\in X}\left\{\frac{Q_{\ell}(z)}{\mu_{j}^{Y}(z)}\right\} \geq c > 0, j = \ell - 1, \ell, \ \mu_{\text{pr}} - \text{a.s.}$$
(1)

Then, $\forall \ell \geq 1 \exists !$ a invariant ν_{ℓ} induced by $\mathbf{P}_{\ell,imh}$. Furthermore,

$$\sup_{\|f\|_{L_{\infty}(\mathsf{X}^{2},\mu_{\mathsf{p}\ell}^{2})}}\left|\int_{\mathsf{X}^{2}}f(\boldsymbol{u}_{\ell}')\boldsymbol{\mathsf{p}}_{\ell}^{n}(\boldsymbol{u}_{\ell},\mathsf{d}\boldsymbol{u}_{\ell}')-\int_{\mathsf{X}^{2}}f(\boldsymbol{u}_{\ell})\nu_{\ell}(\mathsf{d}\boldsymbol{u}_{\ell})\right|\leq 2(1-\rho_{\ell})^{n},\quad\forall\boldsymbol{u}_{\ell}\in\mathsf{X}^{2},n\in\mathbb{N},$$

 $\rho_{\ell} := c \int_{X} \min\{\mu^{y}(z), \mu^{y}_{\ell-1}(z)\} \mu_{\text{pr}}(dz) = c[1 - d_{\text{TV}}(\mu^{y}_{\ell}, \mu^{y}_{\ell-1})].$

[[]MCNT21]: MC, Nobile, Tempone. (2021)

Theorem 1: Convergence of joint IMH chain^[MCNT21].

A.1 $\exists c \in (0, 1)$ independent of ℓ s.t. $\forall \ell \geq 1$:

$$\operatorname{ess\,inf}_{z\in X}\left\{\frac{Q_{\ell}(z)}{\mu_{j}^{\nu}(z)}\right\} \ge c > 0, j = \ell - 1, \ell, \ \mu_{\text{pr}} - \text{a.s.}$$
(1)

Then, $\forall \ell \geq 1 \exists !$ a invariant ν_{ℓ} induced by $\mathbf{P}_{\ell,imh}$. Furthermore,

$$\sup_{\|f\|_{L_{\infty}(X^{2},\mu_{pr}^{2})}}\left|\int_{X^{2}}f(\boldsymbol{u}_{\ell}')\boldsymbol{p}_{\ell}^{n}(\boldsymbol{u}_{\ell},\mathrm{d}\boldsymbol{u}_{\ell}')-\int_{X^{2}}f(\boldsymbol{u}_{\ell})\nu_{\ell}(\mathrm{d}\boldsymbol{u}_{\ell})\right|\leq 2(1-\rho_{\ell})^{n},\quad\forall\boldsymbol{u}_{\ell}\in\mathsf{X}^{2},n\in\mathbb{N},$$

 $\rho_{\ell} := c \int_{X} \min\{\mu^{y}(z), \mu^{y}_{\ell-1}(z)\} \mu_{\text{pr}}(dz) = c[1 - d_{\text{TV}}(\mu^{y}_{\ell}, \mu^{y}_{\ell-1})].$ Conversely, if (1) doesn't hold \implies no geometric ergodicity.

[[]MCNT21]: MC, Nobile, Tempone. (2021)

Theorem 1: Convergence of joint IMH chain^[MCNT21].

A.1 $\exists c \in (0, 1)$ independent of ℓ s.t. $\forall \ell \geq 1$:

$$\operatorname{ess\,inf}_{z\in X}\left\{\frac{Q_{\ell}(z)}{\mu_{j}^{\nu}(z)}\right\} \ge c > 0, j = \ell - 1, \ell, \ \mu_{\text{pr}} - \text{a.s.}$$
(1)

Then, $\forall \ell \geq 1 \exists !$ a invariant ν_{ℓ} induced by $\mathbf{P}_{\ell,imh}$. Furthermore,

$$\sup_{\|f\|_{L_{\infty}(\mathsf{X}^{2},\mu_{\mathrm{p}r}^{2})}}\left|\int_{\mathsf{X}^{2}}f(\boldsymbol{u}_{\ell}')\boldsymbol{\mathsf{p}}_{\ell}^{n}(\boldsymbol{u}_{\ell},\mathrm{d}\boldsymbol{u}_{\ell}')-\int_{\mathsf{X}^{2}}f(\boldsymbol{u}_{\ell})\nu_{\ell}(\mathrm{d}\boldsymbol{u}_{\ell})\right|\leq 2(1-\rho_{\ell})^{n},\quad\forall\boldsymbol{u}_{\ell}\in\mathsf{X}^{2},n\in\mathbb{N},$$

 $\rho_{\ell} := c \int_{X} \min\{\mu^{y}(z), \mu^{y}_{\ell-1}(z)\} \mu_{\text{pr}}(dz) = c[1 - d_{\text{TV}}(\mu^{y}_{\ell}, \mu^{y}_{\ell-1})].$ Conversely, if (1) doesn't hold \implies no geometric ergodicity.

Importance: first result of its kind + guideline on implementation + $\nu_{\ell} = \nu_{\ell}(Q_{\ell})$.

[[]MCNT21]: MC, Nobile, Tempone. (2021)

Theorem 2: Convergence of joint MxC chain^[MCN22]

A.2.1 $\Phi_{\ell}(u; y) > 0, \forall u \in X, y \in Y.$

A.2.2 $\mu_{pr} = \mathcal{N}(0, \mathcal{C})$

A.2.3 $Q(u_{\ell,\ell}^n,\cdot) = \mathcal{N}(\sqrt{1-\rho^2}(u_{\ell,\ell}^n,\rho^2\mathcal{C}), \quad R(u_{\ell,\ell-1}^n,\cdot) = \mathcal{N}(\sqrt{1-\rho^2}u_{\ell,\ell-1}^n,\rho^2\mathcal{C})$

+ some technical conditions on the conv. of marginal pCN.
Theorem 2: Convergence of joint MxC chain^[MCN22] A.2.1 $\Phi_{\ell}(u; y) > 0$, $\forall u \in X, y \in Y$. A.2.2 $\mu_{pr} = \mathcal{N}(0, C)$ A.2.3 $Q(u_{\ell,\ell}^n, \cdot) = \mathcal{N}(\sqrt{1 - \rho^2}(u_{\ell,\ell}^n, \rho^2 C), \quad R(u_{\ell,\ell-1}^n, \cdot) = \mathcal{N}(\sqrt{1 - \rho^2}u_{\ell,\ell-1}^n, \rho^2 C)$

+ some technical conditions on the conv. of marginal pCN.

Then, $\forall \ell \geq 1 \exists !$ invariant ν_{ℓ} induced by $\mathbf{P}_{\ell,mc}$. Furthermore, $\exists \varrho \in (0, 1), M < +\infty$, $V_{\ell} : X^2 \rightarrow [1, \infty)$ s.t.

$$\sup_{\|f\|_{L_{\infty}(\mathbb{X}^{2},\mu_{\beta_{\ell}}^{2})}}\left|\int_{\mathbb{X}^{2}}f(u_{\ell}')\mathsf{p}_{\ell}^{n}(u_{\ell},\mathrm{d} u_{\ell}')-\int_{\mathbb{X}^{2}}f(u_{\ell})\nu_{\ell}(\mathrm{d} u_{\ell})\right|\leq\mathsf{MV}_{\ell}(u_{\ell})\varrho^{n},\quad\forall u_{\ell}\in\mathsf{X}^{2},n\in\mathbb{N}.$$

[[]MCN22]: MC, Nobile. (2022)

Theorem 3: MSE Bound^[MCNT21] (informal). $\mu p = \mu$, *p* **non-nec. reversible**, $\mu^0 \neq \mu$, and *p* mixes sufficiently fast. Then $\forall f \in L_2(X, \mu)$:

Theorem 3: MSE Bound^[MCNT21] (informal). $\mu p = \mu$, *p* **non-nec. reversible**, $\mu^0 \neq \mu$, and *p* mixes sufficiently fast. Then $\forall f \in L_2(X, \mu)$:

$$\mathbb{E}_{\mu^{0},\rho}\left[\left|\frac{1}{N}\sum_{n=0}^{N}f(u^{n})-\mathbb{E}_{\mu}[f]
ight|^{2}
ight]\leq C_{\gamma_{\mathrm{ps}}}rac{\mathbb{V}_{\mu}[f]}{N}$$

Theorem 3: MSE Bound^[MCNT21] (informal). $\mu p = \mu$, *p* **non-nec. reversible**, $\mu^0 \neq \mu$, and *p* mixes sufficiently fast. Then $\forall f \in L_2(X, \mu)$:

$$\mathsf{E}_{\mu^{0},p}\left[\left|\frac{1}{N}\sum_{n=0}^{N}f(u^{n})-\mathbb{E}_{\mu}[f]\right|^{2}\right]\leq C_{\gamma_{\mathrm{ps}}}\frac{\mathbb{V}_{\mu}[f]}{N}.$$

Importance:

- 1. useful beyond ML-MCMC.
- 2. Needed for complexity result $(MSE(\hat{Y}_{\ell,N_{\ell}}) \leq N_{\ell}^{-1}C_{mse}\mathbb{V}_{\nu_{\ell}}[Y_{\ell}]).$
- 3. Similar results in literature^[Rud12] **but** difficult to verify assumption if non-reversible (as ML-MCMC).

[[]MCNT21]: MC, Nobile, Tempone. (2021), [Rud12]: Rudolf. (2012).

Theorem 4: Complexity of ML-IMH algorithm ^[MCNT21] (informal) Suppose A.1 holds and:

A.3.1 $|\Phi_{\ell}(u; y) - \Phi(u; y)| \leq C_{\Phi}(u) s^{-\alpha \ell}, \forall u \in X.$

[MCNT21]: MC, Nobile, Tempone. (2021).

Theorem 4: Complexity of ML-IMH algorithm [MCNT21] (informal) Suppose A.1 holds and:

A.3.1 $|\Phi_{\ell}(u; y) - \Phi(u; y)| \le C_{\Phi}(u) s^{-\alpha \ell}, \forall u \in X.$ A.3.2 $|\text{Qol}_{\ell}(u) - \text{Qol}(u)| \le C_q(u) s^{-\alpha_q \ell}, \forall u \in X.$

[[]MCNT21]: MC, Nobile, Tempone. (2021).

Theorem 4: Complexity of ML-IMH algorithm ^[MCNT21] (informal) Suppose A.1 holds and:

- A.3.1 $|\Phi_{\ell}(u; y) \Phi(u; y)| \le C_{\Phi}(u) s^{-\alpha \ell}, \forall u \in X.$
- A.3.2 $|\operatorname{Qol}_{\ell}(u) \operatorname{Qol}(u)| \leq C_q(u) s^{-\alpha_q \ell}, \ \forall u \in X.$
- A.3.3 $\int_{X} |\operatorname{Qol}_{\ell}^{m}(u)| \mu_{\operatorname{pr}}(du) \leq C_{\operatorname{m}}$, for some m > 2
 - + some $\mu_{\rm pr}$ -integrability conditions on constants and Q,

Theorem 4: Complexity of ML-IMH algorithm ^[MCNT21] (informal) Suppose A.1 holds and:

- A.3.1 $|\Phi_{\ell}(u; y) \Phi(u; y)| \le C_{\Phi}(u) s^{-\alpha \ell}, \forall u \in X.$
- A.3.2 $|\operatorname{Qol}_{\ell}(u) \operatorname{Qol}(u)| \le C_q(u)s^{-\alpha_q\ell}, \ \forall u \in X.$
- A.3.3 $\int_{X} |\text{Qol}_{\ell}^{m}(u)| \mu_{\text{pr}}(du) \leq C_{\text{m}}$, for some m > 2
 - + some $\mu_{\rm pr}$ -integrability conditions on constants and Q, then,

$$\begin{aligned} \text{T.1} \quad & |\mathbb{E}_{\mu_{\ell}^{\vee}}[\text{Qol}_{\ell}] - \mathbb{E}_{\mu^{\nu}}[\text{Qol}]| \leq C_{w}M^{-\alpha_{w}\ell} \\ \text{T.2} \quad & \mathbb{V}_{\nu_{\ell}}[Y_{\ell}] \leq C_{v}M^{-\beta\ell}. \\ \text{T.3} \quad & \text{MSE}(\hat{Y}_{\ell,N_{\ell}}) \leq N_{\ell}^{-1}C_{\text{mse}}\mathbb{V}_{\nu_{\ell}}[Y_{\ell}]. \end{aligned}$$

Here, $\alpha_w = \min\{a_q, a\}, \ \beta = \min\{2 \ a_q, \alpha(1-2/m)\}$

[[]MCNT21]: MC, Nobile, Tempone. (2021).

Theorem 4: Complexity of ML-IMH algorithm [MCNT21] (informal) Suppose A.1 holds and:

- A.3.1 $|\Phi_{\ell}(u; y) \Phi(u; y)| \le C_{\Phi}(u) s^{-\alpha \ell}, \forall u \in X.$
- A.3.2 $|\operatorname{Qol}_{\ell}(u) \operatorname{Qol}(u)| \le C_q(u)s^{-\alpha_q\ell}, \ \forall u \in X.$
- A.3.3 $\int_{X} |\text{Qol}_{\ell}^{m}(u)| \mu_{\text{pr}}(du) \leq C_{\text{m}}$, for some m > 2
 - + some $\mu_{
 m pr}$ -integrability conditions on constants and Q, then,

$$\begin{aligned} \text{T.1} & |\mathbb{E}_{\mu_{\ell}^{V}}[\text{Qol}_{\ell}] - \mathbb{E}_{\mu^{V}}[\text{Qol}]| \leq C_{w}M^{-\alpha_{w}\ell} \\ \text{T.2} & \mathbb{V}_{\nu_{\ell}}[Y_{\ell}] \leq C_{v}M^{-\beta\ell}. \\ \text{T.3} & \text{MSE}(\hat{Y}_{\ell,N_{\ell}}) \leq N_{\ell}^{-1}C_{\text{mse}}\mathbb{V}_{\nu_{\ell}}[Y_{\ell}]. \end{aligned}$$

Here, $\alpha_w = \min\{a_q, a\}, \beta = \min\{2 a_q, \alpha(1 - 2/m)\} \implies$ Dodwell's complexity result holds

[[]MCNT21]: MC, Nobile, Tempone. (2021).

Theorem 4: Complexity of ML-IMH algorithm [MCNT21] (informal) Suppose A.1 holds and:

A.3.1
$$|\Phi_{\ell}(u; y) - \Phi(u; y)| \leq C_{\Phi}(u) s^{-\alpha \ell}, \forall u \in X.$$

A.3.2 $|\operatorname{Qol}_{\ell}(u) - \operatorname{Qol}(u)| \leq C_q(u)s^{-\alpha_q\ell}, \ \forall u \in X.$

A.3.3 $\int_{X} |\text{Qol}_{\ell}^{m}(u)| \mu_{\text{pr}}(du) \leq C_{\text{m}}$, for some m > 2

+ some $\mu_{
m pr}$ -integrability conditions on constants and Q, then,

 $\begin{array}{l} \text{T.1} & |\mathbb{E}_{\mu_{\ell}^{Y}}[\text{Qol}_{\ell}] - \mathbb{E}_{\mu^{Y}}[\text{Qol}]| \leq C_{w}M^{-\alpha_{w}\ell}, \\ \text{T.2} & \mathbb{V}_{\nu_{\ell}}[Y_{\ell}] \leq C_{v}M^{-\beta\ell}. \\ \text{T.3} & \text{MSE}(\hat{Y}_{\ell,N_{\ell}}) \leq N_{\ell}^{-1}C_{\text{mse}}\mathbb{V}_{\nu_{\ell}}[Y_{\ell}]. \end{array}$

Here, $\alpha_w = \min\{a_q, a\}, \ \beta = \min\{2 \ a_q, \alpha(1-2/m)\} \implies$ Dodwell's complexity result holds Similar result for MxC if $\exists c_\ell \neq 0$ s.t. $\int_{\Lambda_c} \mathbf{p}_\ell(u_\ell, \Delta)\nu_\ell(\mathrm{d}u_\ell) > c_\ell$ (strong)

[[]MCNT21]: MC, Nobile, Tempone. (2021).

Theorem 4: Complexity of ML-IMH algorithm [MCNT21] (informal) Suppose A.1 holds and:

- A.3.1 $|\Phi_{\ell}(u; y) \Phi(u; y)| \le C_{\Phi}(u) s^{-\alpha \ell}, \forall u \in X.$
- A.3.2 $|\operatorname{Qol}_{\ell}(u) \operatorname{Qol}(u)| \le C_q(u)s^{-\alpha_q\ell}, \ \forall u \in X.$
- A.3.3 $\int_{X} |\text{Qol}_{\ell}^{m}(u)| \mu_{\text{pr}}(du) \leq C_{\text{m}}$, for some m > 2
 - + some $\mu_{
 m pr}$ -integrability conditions on constants and Q, then,

$$\begin{aligned} \text{T.1} & |\mathbb{E}_{\mu_{\ell}^{V}}[\text{Qol}_{\ell}] - \mathbb{E}_{\mu^{V}}[\text{Qol}]| \leq C_{w}M^{-\alpha_{w}\ell} \\ \text{T.2} & \mathbb{V}_{\nu_{\ell}}[Y_{\ell}] \leq C_{v}M^{-\beta\ell}. \\ \text{T.3} & \text{MSE}(\hat{Y}_{\ell,N_{\ell}}) \leq N_{\ell}^{-1}C_{\text{mse}}\mathbb{V}_{\nu_{\ell}}[Y_{\ell}]. \end{aligned}$$

Here, $\alpha_w = \min\{a_q, a\}, \beta = \min\{2 a_q, \alpha(1 - 2/m)\} \implies$ Dodwell's complexity result holds

[[]MCNT21]: MC, Nobile, Tempone. (2021).

Theorem 4: Complexity of ML-IMH algorithm [MCNT21] (informal) Suppose A.1 holds and:

A.3.1
$$|\Phi_{\ell}(u; y) - \Phi(u; y)| \le C_{\Phi}(u)s^{-\alpha\ell}, \forall u \in X.$$

A.3.2
$$|\operatorname{Qol}_{\ell}(u) - \operatorname{Qol}(u)| \leq C_q(u)s^{-\alpha_q\ell}, \ \forall u \in X.$$

A.3.3 $\int_{X} |\text{Qol}_{\ell}^{m}(u)| \mu_{\text{pr}}(du) \leq C_{\text{m}}$, for some m > 2

+ some $\mu_{
m pr}$ -integrability conditions on constants and Q, then,

$$\begin{array}{l} \text{T.1} \quad |\mathbb{E}_{\mu_{\ell}^{V}}[\text{Qol}_{\ell}] - \mathbb{E}_{\mu^{V}}[\text{Qol}]| \leq C_{w}M^{-\alpha_{w}\ell}, \\ \text{T.2} \quad \mathbb{V}_{\nu_{\ell}}[\text{Y}_{\ell}] \leq C_{v}M^{-\beta\ell}. \\ \text{T.3} \quad \text{MSE}(\hat{\text{Y}}_{\ell,N_{\ell}}) \leq N_{\ell}^{-1}C_{\text{mse}}\mathbb{V}_{\nu_{\ell}}[\text{Y}_{\ell}]. \end{array}$$

Here, $\alpha_w = \min\{a_q, a\}, \ \beta = \min\{2 \ a_q, \alpha(1 - 2/m)\} \implies$ Dodwell's complexity result holds

importance: Extends Dodwell's result beyond $Q_{\ell} = \mu_{\ell-1}^{y}$.

[[]MCNT21]: MC, Nobile, Tempone. (2021).

A1: ess
$$\inf_{z \in X} \left\{ \frac{Q_{\ell}(z)}{\mu_j^{\nu}(z)} \right\} \ge c > 0.$$

1. If $\mu_{\ell-1}^{y}$ available AND A1 \implies use sub-sampling (IMH with $Q_{\ell} = \mu_{\ell-1}^{y}$). Indeed rate $1 - c[1 - d_{TV}(\mu_{\ell}^{y}, \mu_{\ell-1}^{y})] \stackrel{\ell \to \infty}{\longrightarrow} 0$. (Tricky in practice since $\frac{1}{N_{\ell-1}} \sum_{i=1}^{N_{\ell-1}} \delta_{u_{\ell-1}^{i}}(\cdot) \approx \mu_{\ell-1}^{y}$).

A1: ess
$$\inf_{z\in X}\left\{\frac{Q_{\ell}(z)}{\mu_{j}^{\nu}(z)}\right\} \ge c > 0.$$

1. If $\mu_{\ell-1}^{y}$ available AND A1 \implies use sub-sampling (IMH with $Q_{\ell} = \mu_{\ell-1}^{y}$). Indeed rate $1 - c[1 - d_{\text{TV}}(\mu_{\ell}^{y}, \mu_{\ell-1}^{y})] \stackrel{\ell \to \infty}{\longrightarrow} 0$. (Tricky in practice since $\frac{1}{N_{\ell-1}} \sum_{i=1}^{N_{\ell-1}} \delta_{u_{\ell-1,\ell-1}^{i}}(\cdot) \approx \mu_{\ell-1}^{y}$).

2. If one has $Q_{\ell} \approx \mu_{\ell-1}^{\gamma}$ AND A1 \implies use IMH.

A1: ess
$$\inf_{z\in X}\left\{\frac{Q_{\ell}(z)}{\mu_{j}^{\nu}(z)}\right\} \ge c > 0.$$

1. If $\mu_{\ell-1}^{y}$ available AND A1 \implies use sub-sampling (IMH with $Q_{\ell} = \mu_{\ell-1}^{y}$). Indeed rate $1 - c[1 - d_{\text{TV}}(\mu_{\ell}^{y}, \mu_{\ell-1}^{y})] \xrightarrow{\ell \to \infty} 0$. (Tricky in practice since $\frac{1}{N_{\ell-1}} \sum_{i=1}^{N_{\ell-1}} \delta_{u_{\ell-1,\ell-1}^{i}}(\cdot) \approx \mu_{\ell-1}^{y}$).

2. If one has $Q_{\ell} \approx \mu_{\ell-1}^{\vee}$ AND A1 \implies use IMH. 2.1 Moderate dim. using KDE, prior, measure transport.

A1: ess
$$\inf_{z \in X} \left\{ \frac{Q_{\ell}(z)}{\mu_j^{\nu}(z)} \right\} \ge c > 0.$$

- 1. If $\mu_{\ell-1}^{y}$ available AND A1 \implies use sub-sampling (IMH with $Q_{\ell} = \mu_{\ell-1}^{y}$). Indeed rate $1 - c[1 - d_{\text{TV}}(\mu_{\ell}^{y}, \mu_{\ell-1}^{y})] \stackrel{\ell \to \infty}{\rightarrow} 0$. (Tricky in practice since $\frac{1}{N_{\ell-1}} \sum_{i=1}^{N_{\ell-1}} \delta_{u_{\ell-1,\ell-1}^{i}}(\cdot) \approx \mu_{\ell-1}^{y}$).
- 2. If one has $Q_{\ell} \approx \mu_{\ell-1}^{y}$ AND A1 \implies use IMH.
 - 2.1 Moderate dim. using KDE, prior, measure transport.
 - 2.2 Higher dim. if sufficiently good Laplace approx. can be constructed (small noise, many obs, $\mu_{\rm pr}$ Gaussian...)

A1: ess
$$\inf_{z \in X} \left\{ \frac{Q_{\ell}(z)}{\mu_j^{\nu}(z)} \right\} \ge c > 0.$$

- 1. If $\mu_{\ell-1}^{y}$ available AND A1 \implies use sub-sampling (IMH with $Q_{\ell} = \mu_{\ell-1}^{y}$). Indeed rate $1 - c[1 - d_{\text{TV}}(\mu_{\ell}^{y}, \mu_{\ell-1}^{y})] \stackrel{\ell \to \infty}{\rightarrow} 0$. (Tricky in practice since $\frac{1}{N_{\ell-1}} \sum_{i=1}^{N_{\ell-1}} \delta_{u_{\ell-1,\ell-1}^{i}}(\cdot) \approx \mu_{\ell-1}^{y}$).
- 2. If one has $Q_{\ell} \approx \mu_{\ell-1}^{y}$ AND A1 \implies use IMH.
 - 2.1 Moderate dim. using KDE, prior, measure transport.
 - 2.2 Higher dim. if sufficiently good Laplace approx. can be constructed (small noise, many obs, $\mu_{\rm pr}$ Gaussian...)
- 3. Otherwise, use MxC:

A1: ess
$$\inf_{z \in X} \left\{ \frac{Q_{\ell}(z)}{\mu_j^{\nu}(z)} \right\} \ge c > 0.$$

- 1. If $\mu_{\ell-1}^{y}$ available AND A1 \implies use sub-sampling (IMH with $Q_{\ell} = \mu_{\ell-1}^{y}$). Indeed rate $1 - c[1 - d_{\text{TV}}(\mu_{\ell}^{y}, \mu_{\ell-1}^{y})] \stackrel{\ell \to \infty}{\rightarrow} 0$. (Tricky in practice since $\frac{1}{N_{\ell-1}} \sum_{i=1}^{N_{\ell-1}} \delta_{u_{\ell-1,\ell-1}^{i}}(\cdot) \approx \mu_{\ell-1}^{y}$).
- 2. If one has $Q_{\ell} \approx \mu_{\ell-1}^{y}$ AND A1 \implies use IMH.
 - 2.1 Moderate dim. using KDE, prior, measure transport.
 - 2.2 Higher dim. if sufficiently good Laplace approx. can be constructed (small noise, many obs, $\mu_{\rm pr}$ Gaussian...)
- 3. Otherwise, use MxC:
 - Easy to implement proposals (e.g., pCN) coupling algo.

A1: ess
$$\inf_{z \in X} \left\{ \frac{Q_{\ell}(z)}{\mu_j^{\nu}(z)} \right\} \ge c > 0.$$

- 1. If $\mu_{\ell-1}^{y}$ available AND A1 \implies use sub-sampling (IMH with $Q_{\ell} = \mu_{\ell-1}^{y}$). Indeed rate $1 - c[1 - d_{\text{TV}}(\mu_{\ell}^{y}, \mu_{\ell-1}^{y})] \stackrel{\ell \to \infty}{\rightarrow} 0$. (Tricky in practice since $\frac{1}{N_{\ell-1}} \sum_{i=1}^{N_{\ell-1}} \delta_{u_{\ell-1,\ell-1}^{i}}(\cdot) \approx \mu_{\ell-1}^{y}$).
- 2. If one has $Q_{\ell} \approx \mu_{\ell-1}^{y}$ AND A1 \implies use IMH.
 - 2.1 Moderate dim. using KDE, prior, measure transport.
 - 2.2 Higher dim. if sufficiently good Laplace approx. can be constructed (small noise, many obs, $\mu_{\rm pr}$ Gaussian...)
- 3. Otherwise, use MxC:
 - Easy to implement proposals (e.g., pCN) coupling algo.
 - $\cdot\,$ Less efficient than a good IMH.

A1: ess
$$\inf_{z \in X} \left\{ \frac{Q_{\ell}(z)}{\mu_j^{\nu}(z)} \right\} \ge c > 0.$$

- 1. If $\mu_{\ell-1}^{y}$ available AND A1 \implies use sub-sampling (IMH with $Q_{\ell} = \mu_{\ell-1}^{y}$). Indeed rate $1 - c[1 - d_{\text{TV}}(\mu_{\ell}^{y}, \mu_{\ell-1}^{y})] \stackrel{\ell \to \infty}{\rightarrow} 0$. (Tricky in practice since $\frac{1}{N_{\ell-1}} \sum_{i=1}^{N_{\ell-1}} \delta_{u_{\ell-1,\ell-1}^{i}}(\cdot) \approx \mu_{\ell-1}^{y}$).
- 2. If one has $Q_{\ell} \approx \mu_{\ell-1}^{\gamma}$ AND A1 \implies use IMH.
 - 2.1 Moderate dim. using KDE, prior, measure transport.
 - 2.2 Higher dim. if sufficiently good Laplace approx. can be constructed (small noise, many obs, $\mu_{\rm pr}$ Gaussian...)
- 3. Otherwise, use MxC:
 - Easy to implement proposals (e.g., pCN) coupling algo.
 - $\cdot\,$ Less efficient than a good IMH.
 - $\cdot\,$ Depends on the coupling algorithm; dimensionality, multi-modality.

A1: ess
$$\inf_{z \in X} \left\{ \frac{Q_{\ell}(z)}{\mu_j^{\nu}(z)} \right\} \ge c > 0.$$

- 1. If $\mu_{\ell-1}^{y}$ available AND A1 \implies use sub-sampling (IMH with $Q_{\ell} = \mu_{\ell-1}^{y}$). Indeed rate $1 - c[1 - d_{\text{TV}}(\mu_{\ell}^{y}, \mu_{\ell-1}^{y})] \stackrel{\ell \to \infty}{\rightarrow} 0$. (Tricky in practice since $\frac{1}{N_{\ell-1}} \sum_{i=1}^{N_{\ell-1}} \delta_{u_{\ell-1,\ell-1}^{i}}(\cdot) \approx \mu_{\ell-1}^{y}$).
- 2. If one has $Q_{\ell} \approx \mu_{\ell-1}^{y}$ AND A1 \implies use IMH.
 - 2.1 Moderate dim. using KDE, prior, measure transport.
 - 2.2 Higher dim. if sufficiently good Laplace approx. can be constructed (small noise, many obs, $\mu_{\rm pr}$ Gaussian...)
- 3. Otherwise, use MxC:
 - Easy to implement proposals (e.g., pCN) coupling algo.
 - $\cdot\,$ Less efficient than a good IMH.
 - $\cdot\,$ Depends on the coupling algorithm; dimensionality, multi-modality.
 - $\cdot \|f\|Q(u_{\ell,\ell}^n,\cdot)-R(u_{\ell,\ell-1}^n,\cdot)\|_{\mathsf{TV}}\approx 1 \implies \mathbb{P}(u_{\ell,\ell-1}\neq u_{\ell,\ell})\approx 1.$

A1: ess
$$\inf_{z \in X} \left\{ \frac{Q_{\ell}(z)}{\mu_j^{\nu}(z)} \right\} \ge c > 0.$$

- 1. If $\mu_{\ell-1}^{y}$ available AND A1 \implies use sub-sampling (IMH with $Q_{\ell} = \mu_{\ell-1}^{y}$). Indeed rate $1 - c[1 - d_{\text{TV}}(\mu_{\ell}^{y}, \mu_{\ell-1}^{y})] \stackrel{\ell \to \infty}{\to} 0$. (Tricky in practice since $\frac{1}{N_{\ell-1}} \sum_{i=1}^{N_{\ell-1}} \delta_{u_{\ell-1,\ell-1}^{i}}(\cdot) \approx \mu_{\ell-1}^{y}$).
- 2. If one has $Q_{\ell} \approx \mu_{\ell-1}^{y}$ AND A1 \implies use IMH.
 - 2.1 Moderate dim. using KDE, prior, measure transport.
 - 2.2 Higher dim. if sufficiently good Laplace approx. can be constructed (small noise, many obs, $\mu_{\rm pr}$ Gaussian...)
- 3. Otherwise, use MxC:
 - Easy to implement proposals (e.g., pCN) coupling algo.
 - $\cdot\,$ Less efficient than a good IMH.
 - $\cdot\,$ Depends on the coupling algorithm; dimensionality, multi-modality.
 - $\cdot \ \text{If } \left\| Q(u_{\ell,\ell}^n,\cdot) R(u_{\ell,\ell-1}^n,\cdot) \right\|_{\mathsf{TV}} \approx 1 \implies \mathbb{P}(u_{\ell,\ell-1} \neq u_{\ell,\ell}) \approx 1.$
 - A workaround: $\mathbf{p}_{c,\ell} = (1 \omega)\mathbf{p}_{\ell,MxC} + \omega \mathbf{p}_{\ell,IMH}$, $\omega \in (0, 1)$.

Given

$$\begin{cases} -\nabla_x \cdot (e^{u(x)} \nabla_x h(x, u)) = 1, & x \in D, \ u \in X, \\ + \text{Suitable BCs} \end{cases},$$

(2)

Given

$$\begin{cases} -\nabla_x \cdot (e^{u(x)} \nabla_x h(x, u)) = 1, & x \in D, \ u \in X, \\ + \text{Suitable BCs} \end{cases},$$
(2)

Goal: Find μ^{y} of permeability $\kappa(x, u) = e^{u(x)}$ in domain *D* given noisy measurements of pressure head *h* on *D* and Estimate $\mathbb{E}_{\mu^{y}}[\text{Qol}]$, $\text{Qol}(u) := \ln \left(\int_{\Gamma_{o_{1}}} e^{u(x)} \nabla h(x, u) \cdot \mathbf{n} \, \mathrm{ds} \right)$.

Given

$$\begin{cases} -\nabla_x \cdot (e^{u(x)} \nabla_x h(x, u)) = 1, & x \in D, \ u \in X, \\ + \text{Suitable BCs} \end{cases},$$
(2)

Goal: Find μ^{y} of permeability $\kappa(x, u) = e^{u(x)}$ in domain *D* given noisy measurements of pressure head *h* on *D* and Estimate $\mathbb{E}_{\mu^{y}}[\text{Qol}]$, $\text{Qol}(u) := \ln \left(\int_{\Gamma_{0}} e^{u(x)} \nabla h(x, u) \cdot \mathbf{n} \, \mathrm{ds} \right)$.

- Introduce a FE mesh of $K^* = (16 \times 2^4 + 1)^2$ elements.
- Data y generated by sampling $u_{true} \sim \mu_{pr}$, solving (2), obs. at 100 points in [0, 0.9]² and polluting with 1% Gaussian noise.

•
$$\mathbf{U} \sim \mathcal{N}(\mathbf{0}, \mathcal{A}^{-2}) =: \mu_{\text{pr}}, \mathcal{A} : \mathbf{\Delta} + \frac{1}{2}\mathbf{I}$$

Introduce $\{F_\ell\}_{\ell=0}^3$ by discr. of (2) on F.E mesh $K_\ell := (16 \times 2^\ell + 1)^2$ elements $u = \sum_j^{K_\ell} u_j \phi_j$ $\implies u_{\ell,\ell} = (u_1, \dots, u_{K_\ell})$

Introduce $\{F_\ell\}_{\ell=0}^3$ by discr. of (2) on F.E mesh $K_\ell := (16 \times 2^\ell + 1)^2$ elements $u = \sum_j^{K_\ell} u_j \phi_j$ $\implies u_{\ell,\ell} = (u_1, \dots, u_{K_\ell})$ Induces

$$\frac{\mathrm{d}\mu_{\ell}^{y}}{\mathrm{d}\mu_{\mathrm{pr}}}(u_{\ell,\ell}) = \frac{1}{Z_{\ell}} \exp\left(-\frac{1}{2} \|y - F_{\ell}(u_{\ell,\ell})\|_{Y}^{2}\right), \quad \mathrm{dim}(X_{\ell}) = (16 \times 2^{\ell} + 1)^{2}, \quad \ell = 0, 1, 2, 3.$$

Introduce $\{F_\ell\}_{\ell=0}^3$ by discr. of (2) on F.E mesh $K_\ell := (16 \times 2^\ell + 1)^2$ elements $u = \sum_j^{K_\ell} u_j \phi_j$ $\implies u_{\ell,\ell} = (u_1, \dots, u_{K_\ell})$ Induces

$$\frac{\mathrm{d}\mu_{\ell}^{y}}{\mathrm{d}\mu_{\mathrm{pr}}}(u_{\ell,\ell}) = \frac{1}{Z_{\ell}} \exp\left(-\frac{1}{2} \|y - F_{\ell}(u_{\ell,\ell})\|_{Y}^{2}\right), \quad \mathrm{dim}(X_{\ell}) = (16 \times 2^{\ell} + 1)^{2}, \quad \ell = 0, 1, 2, 3.$$

Introduce $\{F_{\ell}\}_{\ell=0}^{3}$ by discr. of (2) on F.E mesh $K_{\ell} := (16 \times 2^{\ell} + 1)^{2}$ elements $u = \sum_{j}^{K_{\ell}} u_{j} \phi_{j}$ $\implies u_{\ell,\ell} = (u_{1}, \dots, u_{K_{\ell}})$ Induces $\frac{d\mu_{\ell}^{y}}{d\mu_{pr}}(u_{\ell,\ell}) = \frac{1}{Z_{\ell}} \exp\left(-\frac{1}{2} \|y - F_{\ell}(u_{\ell,\ell})\|_{Y}^{2}\right), \quad \dim(X_{\ell}) = (16 \times 2^{\ell} + 1)^{2}, \quad \ell = 0, 1, 2, 3.$

IMH:

$$Q_{\ell}(\cdot) = \mathcal{N}(\mathsf{map}_{\ell}, \tilde{\mathcal{C}}_{\ell})$$

MxC:

$$Q_{\ell}(u_{\ell,\ell},\cdot) = \mathcal{N}(\operatorname{map}_{\ell} + \sqrt{1 - \rho^{2}}(u_{\ell,\ell} - \operatorname{map}_{\ell}), \rho^{2}\tilde{\mathcal{C}}_{\ell}),$$

$$R_{\ell}(u_{\ell,\ell-1},\cdot) = \mathcal{N}(\operatorname{map}_{\ell} + \sqrt{1 - \rho^{2}}(u_{\ell,\ell-1} - \operatorname{map}_{\ell}), \rho^{2}\tilde{\mathcal{C}}_{\ell})$$

Introduce $\{F_{\ell}\}_{\ell=0}^{3}$ by discr. of (2) on F.E mesh $K_{\ell} := (16 \times 2^{\ell} + 1)^{2}$ elements $u = \sum_{j}^{K_{\ell}} u_{j} \phi_{j}$ $\implies u_{\ell,\ell} = (u_{1}, \dots, u_{K_{\ell}})$ Induces $\frac{d\mu_{\ell}^{y}}{d\mu_{pr}}(u_{\ell,\ell}) = \frac{1}{Z_{\ell}} \exp\left(-\frac{1}{2} \|y - F_{\ell}(u_{\ell,\ell})\|_{Y}^{2}\right), \quad \dim(X_{\ell}) = (16 \times 2^{\ell} + 1)^{2}, \quad \ell = 0, 1, 2, 3.$

IMH:

$$Q_{\ell}(\cdot) = \mathcal{N}(\mathsf{map}_{\ell}, \tilde{\mathcal{C}}_{\ell})$$

MxC:

$$Q_{\ell}(u_{\ell,\ell},\cdot) = \mathcal{N}(\operatorname{map}_{\ell} + \sqrt{1 - \rho^{2}}(u_{\ell,\ell} - \operatorname{map}_{\ell}), \rho^{2}\tilde{\mathcal{C}}_{\ell}),$$

$$R_{\ell}(u_{\ell,\ell-1},\cdot) = \mathcal{N}(\operatorname{map}_{\ell} + \sqrt{1 - \rho^{2}}(u_{\ell,\ell-1} - \operatorname{map}_{\ell}), \rho^{2}\tilde{\mathcal{C}}_{\ell})$$

Introduce $\{F_{\ell}\}_{\ell=0}^{3}$ by discr. of (2) on F.E mesh $K_{\ell} := (16 \times 2^{\ell} + 1)^{2}$ elements $u = \sum_{j}^{K_{\ell}} u_{j} \phi_{j}$ $\implies u_{\ell,\ell} = (u_{1}, \dots, u_{K_{\ell}})$ Induces $\frac{d\mu_{\ell}^{y}}{d\mu_{pr}}(u_{\ell,\ell}) = \frac{1}{Z_{\ell}} \exp\left(-\frac{1}{2} \|y - F_{\ell}(u_{\ell,\ell})\|_{Y}^{2}\right), \quad \dim(X_{\ell}) = (16 \times 2^{\ell} + 1)^{2}, \quad \ell = 0, 1, 2, 3.$

ML-MCMC Example: Subsurface flow -concentration

Verification: run ML-MCMC algs. 50 ind. times w/ $N_{\ell} = [5000, 5000, 5000, 2000]$ each.

ML-MCMC Example: Subsurface flow –concentration

Verification: run ML-MCMC algs. 50 ind. times w/ $N_{\ell} = [5000, 5000, 5000, 2000]$ each.

IMH $\ell = 1$ 2.5 Qolℓ -0.25-0.25 2.5 $Qol_{\ell-1}$ MxC $\ell = 1$

2.5

201

Qol

2.5

-0.25

-3

IMH $\ell = 3$

-0.25

2.5

Verification: run ML-MCMC algs. 50 ind. times w/ $N_{\ell} = [5000, 5000, 5000, 2000]$ each.

Verification: run ML-MCMC algs. 50 ind. times w/ $N_{\ell} = [5000, 5000, 5000, 2000]$ each. IMH MxC

Verification: run ML-MCMC algs. 50 ind. times w/ $N_{\ell} = [5000, 5000, 5000, 2000]$ each. IMH MxC

pay a price for applicability of MxC
ML-MCMC Example: Subsurface flow –costs

By estimating rates we can estimate complexity:

ML-MCMC Example: Subsurface flow -costs

ML-MCMC

- 1. Proposed methods can be understood as generalizations of current ML-MCMC techniques.
 - 1.1 IMH: First extension of SS approach to allow wider class of proposals.
 - 1.2 MxC: ML-MCMC allowing state-dependent proposals.
- 2. Theoretical analysis for convergence and cost of both proposed methods, MxC can be refined.
- 3. Identification of cases on when should each method be used.
- 4. MxC easy to implement but lower perfomance than SS or good IMH (when applicable).

• Do results extend (trivially) to other, more recent methods? (c.f. Dodwell's talk)

- Do results extend (trivially) to other, more recent methods? (c.f. Dodwell's talk)
- Normalizing flows/Transport maps + ML-MCMC: If $\mu_{\ell}^{y} = T_{\sharp}\mu_{\ell-1}^{y}$ set $u_{\ell,\ell-1} \sim \mu_{\ell-1}^{y}, u_{\ell,\ell} = T_{\sharp}(u_{\ell,\ell-1}).$

- Do results extend (trivially) to other, more recent methods? (c.f. Dodwell's talk)
- Normalizing flows/Transport maps + ML-MCMC: If $\mu_{\ell}^{y} = T_{\sharp}\mu_{\ell-1}^{y}$ set $u_{\ell,\ell-1} \sim \mu_{\ell-1}^{y}, u_{\ell,\ell} = T_{\sharp}(u_{\ell,\ell-1}).$
- MF/MI-MCMC?

- Do results extend (trivially) to other, more recent methods? (c.f. Dodwell's talk)
- Normalizing flows/Transport maps + ML-MCMC: If $\mu_{\ell}^{y} = T_{\sharp}\mu_{\ell-1}^{y}$ set $u_{\ell,\ell-1} \sim \mu_{\ell-1}^{y}, u_{\ell,\ell} = T_{\sharp}(u_{\ell,\ell-1}).$
- MF/MI-MCMC?
- More efficient maximal couplings: HMC, max-coup of kernels. Could one generate a max-coup of $\mu_{\ell-1}^y, \mu_{\ell}^y$? Max-couplings in other norms? rejoining chains?

- Do results extend (trivially) to other, more recent methods? (c.f. Dodwell's talk)
- Normalizing flows/Transport maps + ML-MCMC: If $\mu_{\ell}^{y} = T_{\sharp}\mu_{\ell-1}^{y}$ set $u_{\ell,\ell-1} \sim \mu_{\ell-1}^{y}, u_{\ell,\ell} = T_{\sharp}(u_{\ell,\ell-1}).$
- MF/MI-MCMC?
- More efficient maximal couplings: HMC, max-coup of kernels. Could one generate a max-coup of $\mu_{\ell-1}^y, \mu_\ell^y$? Max-couplings in other norms? rejoining chains?
- \cdot combine ML-MCMC with tempering for multi-modal problems.

References

- MCNT21. Madrigal-Cianci, Nobile and Tempone Analysis of a class of Multi-Level Markov Chain Monte Carlo algorithms based on Independent Metropolis-Hastings arXiv preprint arXiv:2105.02035, 2021. (in review).
- 📄 MC22. Madrigal-Cianci

Hierarchical Markov Chain Monte Carlo Methods for Bayesian Inverse Problems Doctoral Thesis, EPFL, 2022.

HJLT21. Heng, Jasra, Law, and Tarakanov On unbiased estimation for discretized models. arXiv preprint arXiv:2102.12230 (2021).

DKST15. Dodwell, Ketelsen, Scheichl and Teckentrup A hierarchical multilevel Markov chain Monte Carlo algorithm with applications to uncertainty quantification in subsurface flow SIAM/ASA Journal on Uncertainty Quantification, 2015.

References

MCN22. Madrigal-Cianci and Nobile

Multi-Level Markov Chain Monte Carlo based on maximally coupled proposals In preparation, 2022.

JOA19. Jacob, O'Leary and Atchadé

Unbiased Markov chain Monte Carlo methods with couplings Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2019.

Rud12. Rudolf, Daniel

Explicit error bounds for Markov chain Monte Carlo

Dissertationes Mathematicae 485 (2012), 1-93.

Thanks!

Sanity check: Gaussians

$$\mu_\ell^{\scriptscriptstyle V} = \mathcal{N}\left(2^{-\ell+2}, 1\right), \, \ell = 0, 1, \dots, \mathsf{L}, \, \mathsf{Qol}_\ell(u_{\ell,\ell}) = u_{\ell,\ell}.$$

 $\mu_{\ell}^{y} = \mathcal{N}\left(2^{-\ell+2}, 1\right), \ell = 0, 1, \dots, L, \operatorname{Qol}_{\ell}(u_{\ell,\ell}) = u_{\ell,\ell}.100 \text{ ind. runs, } N_{\ell} = 50,000, \ell = 0, \dots, 7.$

 $\mu_{\ell}^{\vee} = \mathcal{N}\left(2^{-\ell+2}, 1\right), \ell = 0, 1, \dots, L, \operatorname{Qol}_{\ell}(u_{\ell,\ell}) = u_{\ell,\ell}.100 \text{ ind. runs, } N_{\ell} = 50,000, \ell = 0, \dots, 7.$

Synchronization rate

Sanity check: Gaussians

 $\begin{aligned} \mathsf{Qol}_{\ell} &= u_{\ell} \implies \mathbb{E}_{\mu_{\ell}^{\mathsf{Y}}}[\mathsf{Qol}_{\ell}] = 2^{-\ell+2} \\ \mathsf{p}_{\mathsf{c},\ell} &= (1-\omega) \mathsf{p}_{\ell,\mathsf{MXC}} + \omega \mathsf{p}_{\ell,\mathsf{IMH}}, \, \omega \in (0,1) \end{aligned}$

Using the mixed kernel with the SS of ¹, we obtain for different values of $\omega \in (0, 1)$

Synchronization rate

1: Dodwell. et Al. 2015.

Examples: Subsurface flow

Let $\overline{D} = [0, 1]^2$, $\partial D = \Gamma_N \cup \Gamma_D$, $\mathring{\Gamma}_N \cap \mathring{\Gamma}_D = \emptyset$, $\Gamma_D := \{(x_1, x_2) \in \partial D, \text{ s.t. } x_1 = \{0, 1\}\}.$ $\begin{cases}
-\nabla_x \cdot (\kappa(x, u) \nabla_x u(x, u)) = 1, & x \in D, & u \in X, \\
u(x, u) = 0 & x \in \Gamma_D, & u \in X, , \\
\partial_n u(x, u) = 0 & x \in \Gamma_N, & u \in X, \end{cases}$ (3)

$$\log(\kappa(x,u)) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \sqrt{\lambda_{m,n}} \phi_{m,n}(x) u_{m,n}, \quad u_{n,m} \sim \mathcal{N}(0,1)$$

 $\lambda_{m,n} = \frac{1}{\pi m^2} \frac{1}{\pi n^2},$ $\phi_{m,n}(x) = \sin(m\pi x_1) \sin(n\pi x_2), \ m, n \in \mathbb{N}.$

$$\operatorname{Qol}(u) := \ln\left(-\int_{\Gamma_{D_1}} \kappa(x,u) \nabla u(x,u) \cdot \mathbf{n} \, \mathrm{ds}\right),$$

Goal: Estimate $\mathbb{E}_{\mu^{y}}$ [QoI].

true $log(\kappa(x, u^*))$

$$\log(\kappa(x,u)) \approx \sum_{j=1}^{K} \sqrt{\lambda_j} \phi_j(x) u_j, \quad u_j \sim N(0,1), \ j = 1, \dots, K.$$
 (4)

1. Reorder $\log(\kappa(x, u))$ in terms of a single index j s.t $\lambda_{m,n} =: \lambda_j > \lambda_{j+1}$, and truncate at K:

$$\log(\kappa(x,u)) \approx \sum_{j=1}^{K} \sqrt{\lambda_j} \phi_j(x) u_j, \quad u_j \sim N(0,1), \ j = 1, \dots, K.$$
(4)

2. We introduce $\ell = \{0, 1, 2, 3, 4\}$, For each ℓ , the solution to Equation (3) is numerically approximated using FE on a mesh of $2^{\ell} \cdot 22 \times 2^{\ell} \cdot 22$ piece-wise linear elements.

$$og(\kappa(x,u)) \approx \sum_{j=1}^{K} \sqrt{\lambda_j} \phi_j(x) u_j, \quad u_j \sim N(0,1), \ j = 1, \dots, K.$$
(4)

- 2. We introduce $\ell = \{0, 1, 2, 3, 4\}$, For each ℓ , the solution to Equation (3) is numerically approximated using FE on a mesh of $2^{\ell} \cdot 22 \times 2^{\ell} \cdot 22$ piece-wise linear elements.
- 3. Data y is obtained by solving PDE using a discretization level L^{*} = 6, with $u_k \sim \mathcal{N}(0, 1), k = 1, 2, ..., K^* = 150. \eta \sim \mathcal{N}(0, \sigma_{noise}^2 l_{16 \times 16})$

$$og(\kappa(x,u)) \approx \sum_{j=1}^{K} \sqrt{\lambda_j} \phi_j(x) u_j, \quad u_j \sim N(0,1), \ j = 1, \dots, K.$$
(4)

- 2. We introduce $\ell = \{0, 1, 2, 3, 4\}$, For each ℓ , the solution to Equation (3) is numerically approximated using FE on a mesh of $2^{\ell} \cdot 22 \times 2^{\ell} \cdot 22$ piece-wise linear elements.
- 3. Data y is obtained by solving PDE using a discretization level L^{*} = 6, with $u_k \sim \mathcal{N}(0, 1), k = 1, 2, ..., K^* = 150. \eta \sim \mathcal{N}(0, \sigma_{\text{noise}}^2 l_{16 \times 16})$
- 4. Set K = 50, $\ell \in \{0, 1, 2, 3, 4\}$, L = 4, $u \mapsto F_{\ell}(u)$: sol PDE at level ℓ , using a log-permeability field modeled by (4), and observed at a grid of 4×4 points inside D $\Phi_{\ell}(u, y) = \frac{1}{2\sigma_{\text{noise}}^2} ||y - F_{\ell}(u)||^2$, 1% noise.

$$og(\kappa(x,u)) \approx \sum_{j=1}^{K} \sqrt{\lambda_j} \phi_j(x) u_j, \quad u_j \sim N(0,1), \ j = 1, \dots, K.$$
(4)

- 2. We introduce $\ell = \{0, 1, 2, 3, 4\}$, For each ℓ , the solution to Equation (3) is numerically approximated using FE on a mesh of $2^{\ell} \cdot 22 \times 2^{\ell} \cdot 22$ piece-wise linear elements.
- 3. Data y is obtained by solving PDE using a discretization level L^{*} = 6, with $u_k \sim \mathcal{N}(0, 1), k = 1, 2, ..., K^* = 150. \eta \sim \mathcal{N}(0, \sigma_{\text{noise}}^2 l_{16 \times 16})$
- 4. Set K = 50, l ∈ {0,1,2,3,4}, L = 4, u → F_ℓ(u) : sol PDE at level l, using a log-permeability field modeled by (4), and observed at a grid of 4 × 4 points inside D Φ_ℓ(u, y) = 1/(2σ²_{noise} ||y F_ℓ(u)||², 1% noise.
 5. μ_{pr} = Ø^K_{i=1} N(0, 1),

We implement our Maximal Coupling method with ω_{ℓ} given by $\omega_1 = 0.1$, and $\omega_2 = \omega_3 = \omega_4 = 0.5$.

As a verification of our method, we run our ML-MCMC algorithm 50 independent times, with $N_{\ell} = [5000, 5000, 5000, 2000, 1000]$ samples per level, per run, for $\ell = 0, 1, ..., 4$. We want to (i) check that chains stay correlated, (ii) verify assumptions form complexity Theorem.

Examples: subsurface: results

Verification that chains stay increasingly more sync'd \rightarrow concentrate around a diagonal

Verification of rates in cost Theorem: $|\mathbb{E}_{\mu_{\ell}^{Y}}[\text{Qol}_{\ell}] - \mathbb{E}_{\mu^{Y}}[\text{Qol}]| \leq C_{w}M^{-\alpha_{w}\ell}, \quad \mathbb{V}_{\nu_{\ell}}[Y_{\ell}] \leq C_{v}M^{-\beta\ell}.$

Examples: subsurface: results

 $N_{\ell} = \left[2 \text{tol}^{-2} \sqrt{V_{\ell}/C_{\ell}} \left(\sum_{k=0}^{L} \sqrt{V_{k}C_{k}} \right) \right], \text{ Here: } V_{\ell} = \mathbb{V}_{\nu_{\ell}}(Y_{\ell}), C_{\ell} \text{ cost of 1 sample at } \ell.$ We can assume that $C_{\ell} \leq 2^{\gamma \ell}, \gamma = 2$

In words: In a single-level we would need $O(10^6)$ PDE solves at the finest level. With the ML-MCMC approach we need just $O(10^2)$

Coupling via independent sampler: illustrative example.

Dodwell et. Al. 2015, proposes to sub-sample from the previous chain targeting $\mu_{\ell-1}^{\gamma} \rightarrow \{u_{\ell,\ell}^n\}_{n=0}^{N_{\ell}} \subset \{u_{0,0}\}_{n=0}^{N_0}$. however this can only work if $\operatorname{supp}(\mu_{\ell}^{\gamma}) \subset \operatorname{supp}(\mu_{\ell-1}^{\gamma})$.

Coupling via independent sampler: illustrative example.

Dodwell et. Al. 2015, proposes to sub-sample from the previous chain targeting $\mu_{\ell-1}^{y} \rightarrow \{u_{\ell,\ell}^{n}\}_{n=0}^{N_{\ell}} \subset \{u_{0,0}\}_{n=0}^{N_{0}}$. however this can only work if $\operatorname{supp}(\mu_{\ell}^{y}) \subset \operatorname{supp}(\mu_{\ell-1}^{y})$. **Top**: ours. **Bottom:** Dodwell et Al. 2015

-50 5 5 50 5 -50 5 5 0 0 $\ell = 6$ $\ell = 0$ $\ell = 3$ $\ell = 6$ $\ell = 0$ =30.5 0.5 5 -50 5 50 5 0 5 50 5 0 $\ell = 0$ $\ell = 3$ $\ell = 0$ $\ell = 3$ $\ell = 6$ $\ell = 6$

(a) ✓ Both methods work

(b) **X**Only our method works

Coupling via independent sampler: illustrative example.

Dodwell et. Al. 2015, proposes to sub-sample from the previous chain targeting $\mu_{\ell-1}^{\gamma} \rightarrow \{u_{\ell,\ell}^n\}_{n=0}^{N_{\ell}} \subset \{u_{0,0}\}_{n=0}^{N_0}$. however this can only work if $\operatorname{supp}(\mu_{\ell}^{\gamma}) \subset \operatorname{supp}(\mu_{\ell-1}^{\gamma})$.

Difficulty finding Q (IMH) suitable for realistic problemsightarrow Try localized proposals

Sample $u'_{\ell,\ell-1} \sim R(u^n_{\ell,\ell-1},\cdot)$, and $u'_{\ell,\ell} \sim Q(u^n_{\ell,\ell},\cdot)$ s.t. $\mathbb{P}(u'_{\ell,\ell-1} \neq u'_{\ell,\ell}) = \|Q - R\|_{\mathsf{TV}}$

Sample $u'_{\ell,\ell-1} \sim R(u^n_{\ell,\ell-1},\cdot)$, and $u'_{\ell,\ell} \sim Q(u^n_{\ell,\ell},\cdot)$ s.t. $\mathbb{P}(u'_{\ell,\ell-1} \neq u'_{\ell,\ell}) = ||Q - R||_{TV}$ Mixture approach [4]:

1. Case 1: With probability $a = \int \min\{Q, R\} dz$ sample

$$u'_{\ell,\ell} \sim \frac{\min\{Q,R\}}{a}, \quad u'_{\ell,\ell} = u'_{\ell,\ell-1}.$$

2. Case 2: Otherwise

$$u'_{\ell,\ell} \sim \frac{Q - \min\{Q,R\}}{1-a}, \quad u'_{\ell,\ell-1} \sim \frac{R - \min\{Q,R\}}{1-a}$$
 independently.

Maximal coupling: An example

Sample $u'_{\ell,\ell-1} \sim R(u^n_{\ell,\ell-1},\cdot)$, and $u'_{\ell,\ell} \sim Q(u^n_{\ell,\ell},\cdot)$ s.t. $\mathbb{P}(u'_{\ell,\ell-1} \neq u'_{\ell,\ell}) = ||Q - R||_{\mathsf{TV}}$ Mixture approach [4]:

1. Case 1: With probability $a = \int \min\{Q, R\} dz$ sample

$$u'_{\ell,\ell} \sim rac{\min\{Q,R\}}{a}, \quad u'_{\ell,\ell} = u'_{\ell,\ell-1}.$$

2. Case 2: Otherwise

$$u'_{\ell,\ell} \sim rac{Q-\min\{Q,R\}}{1-a}, \quad u'_{\ell,\ell-1} \sim rac{R-\min\{Q,R\}}{1-a} ext{ independently}.$$

 $u_{\ell,\ell} \sim C$

$$\mathbb{P}(u_{\ell,\ell} \in A) = a \int_{A} \frac{\min\{Q,R\}}{a} + (1-a) \int_{A} \frac{Q - \min\{Q,R\}}{1-a}$$
$$= \int_{A} Q dz$$

Maximal coupling: An example

Sample $u'_{\ell,\ell-1} \sim R(u^n_{\ell,\ell-1},\cdot)$, and $u'_{\ell,\ell} \sim Q(u^n_{\ell,\ell},\cdot)$ s.t. $\mathbb{P}(u'_{\ell,\ell-1} \neq u'_{\ell,\ell}) = ||Q - R||_{\mathsf{TV}}$ Mixture approach [4]:

1. Case 1: With probability $a = \int \min\{Q, R\} dz$ sample

$$u'_{\ell,\ell} \sim rac{\min\{Q,R\}}{a}, \quad u'_{\ell,\ell} = u'_{\ell,\ell-1}.$$

2. Case 2: Otherwise

$$u'_{\ell,\ell} \sim \frac{Q - \min\{Q,R\}}{1-a}, \quad u'_{\ell,\ell-1} \sim \frac{R - \min\{Q,R\}}{1-a}$$
 independently.

 $u_{\ell,\ell-1} \sim R$

$$\mathbb{P}(u_{\ell,\ell-1} \in A) = a \int_{A} \frac{\min\{Q,R\}}{a} + (1-a) \int_{A} \frac{R - \min\{Q,R\}}{1-a}$$
$$= \int_{A} R dz$$

Maximal coupling: An example

Sample $u'_{\ell,\ell-1} \sim R(u^n_{\ell,\ell-1},\cdot)$, and $u'_{\ell,\ell} \sim Q(u^n_{\ell,\ell},\cdot)$ s.t. $\mathbb{P}(u'_{\ell,\ell-1} \neq u'_{\ell,\ell}) = ||Q - R||_{TV}$ Mixture approach [4]:

1. Case 1: With probability $a = \int \min\{Q, R\} dz$ sample

$$u'_{\ell,\ell} \sim rac{\min\{Q,R\}}{a}, \quad u'_{\ell,\ell} = u'_{\ell,\ell-1}.$$

2. Case 2: Otherwise

$$u_{\ell,\ell}' \sim \frac{Q - \min\{Q,R\}}{1-a}, \quad u_{\ell,\ell-1}' \sim \frac{R - \min\{Q,R\}}{1-a} \text{ independently.}$$

$$u_{\ell,\ell} = 1 - \|Q - R\|_{\text{TV}}$$

$$\mathbb{P}(u_{\ell,\ell-1} = u_{\ell,\ell}) = \int \min\{Q, R\} dz = \frac{1}{2} \int Q dz + \frac{1}{2} \int R dz - \int \frac{1}{2} |Q - R| dz$$
$$= 1 - \frac{1}{2} \int |Q - R| dz = 1 - ||Q - R||_{\text{TV}}.$$

Sample $u'_{\ell,\ell-1} \sim R(u^n_{\ell,\ell-1},\cdot)$, and $u'_{\ell,\ell} \sim Q(u^n_{\ell,\ell},\cdot)$ s.t. $\mathbb{P}(u'_{\ell,\ell-1} \neq u'_{\ell,\ell}) = ||Q - R||_{\mathsf{TV}}$ Mixture approach [4]:

1. Case 1: With probability $a = \int \min\{Q, R\} dz$ sample

$$u'_{\ell,\ell} \sim \frac{\min\{Q,R\}}{a}, \quad u'_{\ell,\ell} = u'_{\ell,\ell-1}.$$

2. Case 2: Otherwise

$$u'_{\ell,\ell} \sim \frac{Q - \min\{Q,R\}}{1-a}, \quad u'_{\ell,\ell-1} \sim \frac{R - \min\{Q,R\}}{1-a}$$
 independently.

Basis for more complicated algorithms. Again: Max coupling is not unique.

Create coupling from $\mathcal{N}(m(u_{\ell}^n), \tilde{\mathcal{C}})$ and $\mathcal{N}(m(u_{\ell}^n), \tilde{\mathcal{C}})$. $\varphi_0 = \mathcal{N}(0, I)$ **procedure** REFLECTION-COUPLING $(m(u_{\ell}^n), m(u_{\ell}^n))$ Set $z^n = m(u_{\ell,\ell}^n) - m(u_{\ell,\ell-1}^n)$ and set $e^n = z^n / ||z^n||_x$. Sample $\xi \sim \varphi_0$, and $w \sim \mathcal{U}([0, 1])$. if $w \leq \min \left\{1, \frac{\varphi_0(\xi+z^n)}{\varphi_0(\xi)}\right\}$ then Set $\zeta = \xi + z^n$. ⊳ case I else Set $\zeta = \xi - 2\langle e^n, \xi \rangle_{\mathsf{x}} e^n$. ⊳ case II end if Set $u'_{\ell,\ell} = m(u^n_{\ell,\ell}) + \tilde{\mathcal{C}}^{1/2}\xi$ and $u'_{\ell,\ell-1} = m(u^n_{\ell,\ell-1}) + \tilde{\mathcal{C}}^{1/2}\zeta$ Output $(u'_{\ell})_{\ell-1}, u'_{\ell}$. end procedure