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AdS vs. AFS

Many important qualitative differences. The boundary is null rather than
timelike, we get balance laws rather than conservation laws along I:

∂umB = −Tuu −NabN
ab + · · ·

Something like AdS/CFT had to hold if we believe black hole thermo.
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The idea that led to the AdS/CFT correspondence was to study the
response of a near-extremal black hole/brane to low energy probes.

Replace the probes with sources at the boundary of AdS, do the calculation
in the throat geometry, and then match back onto the far region.

But if the BH is really a quantum system, and the dynamics is occurring
right outside the black hole, then you can do the calculation another way
by studying the response of the quantum system to these sources.

In the best understood examples we can do the calculation on both sides
and they match. In the other cases we use this idea to learn about the QM.
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In global AdS, black holes give us a window into the generic properties of
high energy eigenstates in the dual quantum mechanics.

The fact that the thermodynamics of a large AdS black hole resembles that
of a non-gravitational CFT is a huge clue to the correspondence.

Black holes behave very differently in flat space.

The Bekenstein-Hawking entropy is super-Hagedorn, the specific heat is
negative, the black holes are really long-lived metastable resonances.

So it is possible that a holographic dual to flat space is going to look very
different than the quantum mechanics of AdS, if it exists at all.

However, the black hole entropy still scales like the area, and the
gravitational Hamiltonian is still a boundary term.

We don’t expect any precisely defined local observables, so some form of
holography might still apply to QG with flat asymptotics.
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But we are far from a precise statement of the correspondence.

Simple kinematic observation: massless particles moving in asymptotically
flat spacetime pass through I± at isolated points on the celestial sphere.

This is reflected in momentum space since we can parameterize

pµ(ω, x) = ωp̂µ(x)

p̂µ(x) =

(
1 + x2

2
, xa,

1− x2

2

)
, ω ≥ 0 , xa ∈ Rd .
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The Lorentzian inner product is then given by

−2p̂(x1) · p̂(x2) = (x1 − x2)
2 .

So the short distance expansion on Md is the collinear expansion:

Collinear factorization of amplitudes looks a lot like the OPE on Md.
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In asymptotically flat (d+ 2)-dimensional spacetimes, the Lorentz group
SO(d+ 1, 1) is realized at I± as conformal transformations of Sd.

So the S-matrix in (d+ 2)-dimensions can be re-expressed as a correlation
function of (local?) operators on Sd, and Lorentz invariance guarantees
that these operators transform like those in a Euclidean CFTd.

⟨p1(ω1, x1), · · · | · · · pn(ωn, xn)⟩ → ⟨O1(∆1, x1) · · · On(∆n, xn)⟩ .

So we expect the massless S-matrix to display some (but not all) of the
features of a d-dimensional Euclidean conformal field theory.
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Universal Properties of CCFT: Global Symmetries

Conformal field theories have a small set of universal local operators.

For instance, every local CFT comes with a stress tensor Tab(x).

The existence of this operator in CCFT is guaranteed by the subleading
soft graviton theorem. We can explicitly define an operator satisfying all
the appropriate Ward identities in any dimension [DK, Mitra ’18]. Spin-2 ✓

When the CFT has a global symmetry, the local operator spectrum includes
a conserved current Ja(x). These operators come from the leading soft
photon, soft gluon, and soft graviton theorems. Spin-1 ✓

The soft expansion encodes universal information, and the Mellin transform
turns Laurent expansions into poles with residues given by soft operators

⟨Oab(ω, x) · · · ⟩ ∼
S
(n)
ab (x)

ωn
⟨· · · ⟩ ⇐⇒ ⟨O∆

ab(x) · · · ⟩ ∼
S
(n)
ab (x)

∆− n
⟨· · · ⟩
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The “leading soft-photon operator”

Sa(x) =

˛
dω

2πi
Oa(ω, x) ∼ lim

ω→0
ωOa(ω, x) ∼ lim

∆→1
(∆−1)

ˆ
dω

ω
ω∆Oa(ω, x)

is a conformal primary operator with (∆, s) = (1, 1). Its matrix elements
are completely controlled by the soft-photon theorem:

⟨Sa(x)O1(ω1, x1) . . .On(ωn, xn)⟩ = 2

n∑
k=1

Qk
(x− xk)a
(x− xk)2

⟨O1(ω1, x1) . . .On(ωn, xn)⟩

= ∂a

n∑
k=1

Qk log
[
(x− xk)

2
]
⟨O1(ω1, x1) . . .On(ωn, xn)⟩.

A conserved current Ja(x) is a primary operator with (∆, s) = (d− 1, 1)
satisfying the Ward identity

⟨∂bJb(y)O1(ω1, x1)...On(ωn, xn)⟩ =
n∑

k=1

Qkδ
(d)(y − xk)⟨O1(ω1, x1)...On(ωn, xn)⟩.

This is not quite the soft photon theorem, but it is closely related.
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Multiply both sides of the Ward identity by
´
ddy∂a log[(x− y)2]

ˆ
ddy∂a log[(x− y)2]⟨∂bJb(y)O1(ω1, x1) . . .On(ωn, xn)⟩

= ∂a

n∑
k=1

Qk log[(x− xk)
2]⟨O1(ω1, x1) . . .On(ωn, xn)⟩

= ⟨Sa(x)O1(ω1, x1) . . .On(ωn, xn)⟩ .

Integrating by parts expresses Sa(x) as an integral transform of Ja(x):

Sa(x) =

ˆ
ddy∂a log[(x− y)2]∂bJb(y) = 2

ˆ
ddy

Iab(x− y)

(x− y)2
Jb(y) ,

where Iab(x− y) is the conformally covariant tensor

Iab(x− y) = δab − 2
(x− y)a(x− y)b

(x− y)2
.
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Shadow Transform

This nonlocal relationship between the ∆ = 1 primary Sa and the
∆ = d− 1 primary Ja is known as a shadow transform.

For a spin-s operator of dimension ∆, the shadow operator is given by

ÕR(x) =

ˆ
ddy

R(Iab)
[(x− y)2]d−∆

OR(y) .

The shadow transform maps conformal primary operators with (∆, s) onto
conformal primary operators with (d−∆, s).

The shadow transform is, up to normalization, its own inverse˜̃
Oa1...as(x) = c(∆, s)Oa1...as(x) ,

Using this, we can immediately write

Sa(x) = 2J̃a(x) , Ja(x) =
1

2c(1, 1)
S̃a(x) .
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Similarly the bulk subleading soft-graviton operator

Bab(x) =

˛
dω

2πi

Oab(ω, x)

ω
∼ lim

∆→0
∆

ˆ
dω

ω
ω∆Oab(ω, x)

is related to the boundary stress tensor:

Bab(x) = −T̃ab(x) .

This could have been guessed based on the dimensions of Bab and Tab.

We can then invert the shadow transform to find an operator

Tab(x) = − 1

c(0, 2)
B̃ab(x)

that satisfies

⟨∂dTdc(y)O1(ω1,x1) . . .On(ωn, xn)⟩

= −
n∑

k=1

δ(d)(y − xk)∂xc
k
⟨O1(ω1, x1) . . .On(ωn, xn)⟩

along with the all the other Ward identities for a stress tensor.
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Summary

The shadow transforms of the leading soft photon operator and the
subleading soft graviton operator

Ja(x) =
1

2c1,1
S̃a(x) , Tab(x) = − 1

c0,2
S̃ab(x) ,

define operators in celestial CFT that obey all the Ward identities of a
conserved current and stress tensor:

⟨∂aJa(x)O1 · · · On⟩ =
∑
k

Qkδ
(d)(x− xk)⟨O1 · · · On⟩ ,

⟨∂aTab(x)O1 · · · On⟩ =
∑
k

δ(d)(x− xk)∂xb
k
⟨O1 · · · On⟩ .

Just as in AdS, bulk gauge fields =⇒ boundary currents and the graviton
yields a stress tensor.
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Universal Properties of CCFT: Conformal Manifolds

What about spin-0 ? What would a “universal” spin-0 operator be?

Spin zero operators are operators that you can use to deform the model.

In the context of CCFT, global conformal symmetry corresponds to Lorentz
invariance and cannot be violated: the most interesting deformations
are those that preserve conformal invariance.

So we would like to understand the space of exactly marginal deformations,
or equivalently the conformal manifold, of CCFT [DK, Law, Narayanan ’22].

This is the class of universal spin-0 operators we get from the soft theorem

In AdS/CFT, marginal deformations in CFT map to continuous spaces of
vacua in the bulk gravitational theory. This is true for AFS/CCFT as well.

The dual description is simple because the vacuum manifold is defined at
spatial infinity and is explicitly a boundary quantity.
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Sigma Models and Moduli Spaces of Vacua

In AFS, the vacuum is determined by boundary conditions (vevs) at i0, and
long-wavelength fluctuations about these vevs are described by a sigma
model with target space given by the vacuum manifold M.

S =
1

2

ˆ
dd+2x GIJ(Φ)∂µΦ

I∂µΦJ , Φ : Rd+1,1 → M .

M comes with an intrinsic geometry: the curvature of the metric on the
moduli space of vacua. This will be the geometry of the space of CCFTs.

In order to perform perturbative calculations in the sigma model, we
expand the fields about their vevs vI at spatial infinity, ΦI = vI + ϕI , and
path integrate over the normalizable fluctuations. The action becomes

S =
1

2

ˆ
∂ϕI∂ϕI +

1

3
RIKLJ∂ϕ

I∂ϕJϕKϕL +
1

6
∇KRILMJ∂ϕ

I∂ϕJϕKϕLϕM + . . .
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Infinitesimal variations along the bulk moduli space are captured by long
wavelength (soft) scalars, whose S-matrix elements are universal and
controlled by the moduli space geometry.

These soft scattering states define distinguished operators in CCFT, whose
role is to generate marginal deformations along the conformal manifold.
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Moduli Scalar Soft Theorems

The soft limit of a moduli scalar OI(ω, x) takes the form [Cheung, ... ’21]

lim
ω→0

⟨OI(ω, x)O1(ω1, x1)...On(ωn, xn)⟩v = ∇I ⟨O1(ω1, x1)...On(ωn, xn)⟩v

The subscript ⟨·⟩v means that the S-matrix is computed with the boundary
conditions ⟨ΦI⟩i0 = vI , and ∇ acts on the S-matrix as a function of M.

This formula says that the zero-mode of ϕ(x) is the vev, so exciting the
zero mode shifts the vev infinitesimally. The “leading soft moduli” operator

SI(x) ≡
˛

dω

2πi
ω−1OI(ω, x)

has ∆ = 0. We interpret it as the shadow transform of a marginal operator
MI(x) with ∆ = d

SI =

ˆ
ddxMI(x) , ⟨SI(x)O1 · · · On⟩v = ∇I ⟨O1 · · · On⟩v .
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Turning on a coherent state of soft radiation amounts to parallel
transporting the S-matrix around the space of vacua.

For an infinitesimal deformation this is

⟨O1 · · · On⟩v−λ = ⟨O1 · · · On exp
[
−λISI

]
⟩v

≡ ⟨O1 · · · On exp

[
−λI

ˆ
ddxMI(x)

]
⟩v.

If the vacuum manifold is curved, then there is path dependence in the
transport. The antisymmetric double soft limit corresponds to parallel
transporting around an infinitesimal loop and computes the curvature[

lim
qI→0

, lim
qJ→0

]
AK1···KnIJ

n+2 =
[
∇I ,∇J

]
AK1···Kn

n
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Correspondence with Conformal Perturbation Theory

⟨O1(x1) . . .On(xn)⟩ v−λ =

∞∑
N=0

(−1)N

N !
⟨O1(x1) . . .On(xn)(λ

ISI)
N ⟩ v

looks a lot like conformal perturbation theory.

In fact, independently of CCFT, you can think of the shadow transform of a
marginal operator as the integrated deformation that you add to the action

S(λ) = S0 + λISI , SI =

ˆ
ddxMI(x) .

Correlators in the deformed model are defined by conformal pert. theory

⟨O1(x1) . . .On(xn)⟩v−λ = ⟨O1(x1) . . .On(xn)e
−λISI ⟩ v

Do the expansion and the first term tells you about the derivative.

⟨O1 . . .OnSI⟩ v = ∇I ⟨O1 . . .On⟩ v .
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The full exponential is like a coherent state of soft radiation.

If we do finite deformations in multiple directions and the conformal
manifold is curved, then there is path dependence at higher orders.

Parallel transport around an infinitesimal closed loop computes the leading
nontrivial holonomy in terms of the curvature of the conformal manifold
[∇,∇], which matches the antisymmetric double soft theorem.

Conclusion: Bulk vacuum moduli space = boundary conformal manifold
Lesson for CCFT: Non-commuting soft limits are possible because soft
operators are really integrated operators. Important for Yang-Mills CCFT.
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A suggestive formula in pure Yang-Mills theory

In pure Yang-Mills, the soft gluon theorem takes the form

⟨SI
a(x)O1 · · · On⟩ = i

n∑
k=1

∂a log(x− xk)
2 adT I ⟨O1 · · · On⟩

and the antisymmetric double soft theorem is[
lim

qI(x)→0
ω, lim

qJ (y)→0
ω′
]
AIJ,ab

n+2 = −2g2
n∑

k=1

Iac(x− xk)Ic
b(y − xk)

(x− y)2
ad[T I ,TJ ]An

Meanwhile, on a compact Lie group with a bi-invariant metric, the
covariant derivative of left-invariant vector fields is ∇XY = 1

2 [X,Y ] and
the curvature is R(X,Y )Z = 1

4ad[X,Y ]Z

∇T I =
1

2
adT I R(T I , T J) =

1

4
ad[T I ,TJ ]
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In other words, we seem to have formulas of the form [DK ’22]

⟨Sa
I (x)O1 · · · On⟩ = 2i

n∑
k=1

∂a log(x− xk)
2 ∇I ⟨O1 · · · On⟩

[
lim
qI→0

ω, lim
q′J→0

ω′
]
AIJ,ab

n+2 = −8g2
n∑

k=1

Iac(x− xk)Ic
b(y − xk)

(x− y)2
R(T I , T J)An

These formulas seem very similar to the formulas from the sigma model

⟨SI(x)O1 · · · On⟩v = ∇I ⟨O1 · · · On⟩v[
lim
qI→0

, lim
qJ→0

]
AK1···KnIJ

n+2 = [∇I ,∇J ]AK1···Kn
n

Why? Related to an older question about the Yang-Mills S-matrix.

Dan Kapec 22 / 30



Question: is there a “right definition” of multi-soft limits in Yang-Mills?

The answer has consequences for CCFT, since the soft gluon limits are
related to conserved non-Abelian currents.

Clue: There is a claim that gauge theory and gravity in asymptotically flat
space have an infinite-dimensional space of vacua arising from
supertranslations or gauge transformations with non-compact support.

Idea: the amplitude AK1···Kn;IJ,ab
n+2 is actually a tensor on a bundle over an

infinite-dimensional space of vacua M labeled by flat (trivial)
G−connections Ca(x) on the celestial sphere.

Soft photon/gluon/graviton limits can then be interpreted as functional
derivatives of the S-matrix on this infinite-dimensional space of vacua.

Answer: there is no “right definition” for multi-soft limits in non-Abelian
gauge theory, just as there is no unique parallel transport between two
points in a curved space.
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Insertions of soft gluons in the S-matrix enact parallel transport about this
space, and the antisymmetric double soft limit computes the holonomy
around an infinitesimal closed curve[

lim
qI(x)→0

ω, lim
qJ (y)→0

ω′
]
AK1···Kn;IJ,ab

n+2 = R

(
δ

δC̃I
a(x)

,
δ

δC̃J
b (y)

)
AK1···Kn

n .

So the fact that the antisymmetric double-soft limit does not vanish simply
means that the vacuum manifold is curved.

In this language, the vanishing of the antisymmetric double-soft limit in
gravity is a statement about flatness of the space of supertranslation
vacua, and a similar statement holds for Abelian gauge theory.

The geometric interpretation makes it clear that the space of vacua is
detectable using standard perturbative calculations.

Feynman diagram calculations not only know about the Yang-Mills
vacuum manifold, they can also be used to compute its curvature.
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Simplest Example: Abelian Gauge Theory

Finite energy boundary conditions for abelian gauge theory in AFS allow for
a leading trivial flat connection at infinity [Strominger ’13; DK, Lysov, Strominger ’14]

⟨Aa⟩I = Ca(x) , ∂[aCb](x) = 0 .

This means that near null infinity

Aa(u, r, x
a) ∼ Ca(x) +

Na(u, x)

r#
+ . . .

The subleading term is the radiation term. Finite energy requires Ca(x) has
no time dependence, so it is usually set to zero. But just setting it to zero
is itself a boundary condition.

This boundary condition is invariant under global gauge transformations,
but spontaneously breaks the others with non-compact support.

The space of boundary conditions is the orbit of Ca = 0 under the action of
G =Map(Sd, U(1)). The moduli space is M = G/U(1).
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S-matrix elements ⟨·⟩C carry an extra label corresponding to the boundary
condition but calculations are usually performed with C = 0.

The infrared sector of abelian gauge theory is exactly solvable. The
dependence of ⟨O1 · · · On⟩C on C is known explicitly and is very simple
[Campiglia, Laddha ’15; He, Mitra ’20; DK, Mitra ’21]. Using known formulas one can check

⟨Sa(x)O1 · · · On⟩C=0 = −2ic1,1
δ

δC̃a(x)
⟨O1 · · · On⟩C

∣∣
C=0

.

In the sigma model, changing the boundary condition for the bulk scalar
turned on a source for the marginal operator dual to the soft scalar (λISI)

The same is true in gauge theory

⟨O1 · · · On⟩Ca−δCa = ⟨O1 · · · One
−i

2c1,1

´
ddx δC̃a(x)Sa(x)⟩Ca .

This resembles the sigma model deformation if we think of the index I as
running over polarization and position in the infinite-dimensional case.
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To determine if this parallel transport is path dependent, we could calculate
the curvature of G/G using the antisymmetric double-soft theorem. It
vanishes, and so does the curvature:[

lim
q(x)→0

ω, lim
q′(y)→0

ω′
]
AK1···Kn;ab

n+2 = R

(
δ

δC̃a(x)
,

δ

δC̃b(y)

)
AK1···Kn

n = 0 .

Similar formulas hold for the space of supertranslation vacua (also flat)

⟨O1 · · · On⟩Cab−δCab = ⟨O1 · · · One
i

16c1,2

´
ddx δC̃ab(x)Sab(x)⟩Cab

where Cab is a flat supertranslation connection

gab(u, r, x
a) ∼ r2δab + rCab(x) +O(1) ∂[aCb]c −

1

d− 1
δc[a∂

dCb]d = 0

The position-dependent boundary conditions in gauge theory and gravity
=⇒ the background sources obtained by varying the boundary conditions
are position dependent.
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This is a peculiar feature of celestial CFT which does not arise in
garden-variety Euclidean CFT.

It is a reflection of the subtle interplay between Lorentz invariance and
large gauge symmetry in asymptotically flat space.

For gravity in four dimensions, the relevant statement is familiar: “there are
an infinite number of copies of SO(3, 1) inside the BMS group.”

These different copies of SO(3, 1), which amount to different definitions of
angular momentum, are related by the action of the supertranslations.

For a long time this was known as the “problem of angular momentum in
general relativity.” Gravity in asymptotically flat space simply has an infinite
set of vacua corresponding to different combinations of soft gravitons.

The SO(3, 1) subgroup that annihilates the Cab = 2(∂a∂b − 1
2δab∂

c∂c)f(x)
vacuum is related to the SO(3, 1) subgroup that annihilates the standard
vacuum Cab = 0 through conjugation by the supertranslation f(x).
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Classical finite energy boundary conditions in Yang-Mills theory allow the
gauge field to approach a flat connection at infinity

⟨Aa⟩I = Ca(x) , Ca(x) = U∂aU
−1 .

The allowed boundary conditions are the orbit of Ca = 0 under the action
of G = Map(Sd, G). The moduli space is M = G/G.

The leading soft gluon operator has matrix elements

⟨SI
a(x)O1 · · · On⟩C=0 = i

n∑
k=1

p̂k · εa(x)
p̂k · q̂(x)

T I
k ⟨O1 · · · On⟩C=0 .

In contrast to abelian gauge theory and gravity, soft limits in Yang-Mills
theory do not commute [Klose ’15], so the parallel transport is path dependent[

lim
qI(x)→0

ω, lim
q′J (y)→0

ω′
]
AK1···Kn;IJ

n+2;ab

= −2g2
n∑

k=1

Iac(x− xk)Ic
b(y − xk)

(x− y)2
f IJKTK

k AK1···Kn
n .
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Summary

The Celestial CFT formulation of flat space quantum gravity shares many
structural similarities with AdS/CFT.

In both cases, bulk gauge fields yield boundary currents, and the bulk
graviton yields a boundary stress tensor.

In both cases, the bulk moduli space of vacua maps onto the conformal
manifold of the CFT dual.

The symmetry structure in flat space is more complicated, and soft
photon/gluon/graviton limits can be thought of as functional derivatives in
an infinite-dimensional vacuum geometry.

The dual CCFT is more than just a d-dimensional system with G symmetry.
It also comes with a space of deformations G/G, and that space is curved.

This is the property that is needed to reproduce non-commuting soft limits.
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