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This first talk focused on SRM for w based countable 
mathematics. This second talk focuses on SRM for Z based finite 
mathematics. I'm giving a third talk on SRM for Â based 
analysis. This second talk relies on  
 
[Fr09] H. Friedman, The Inevitability of Logical Strength: 
strict reverse mathematics, Logic Colloquium ‘06, ASL, October, 
2009. 
  
1. Inevitability of Logical Strength 
2. Formalization, sugared predicate calculus 
3. SRM for TRUE[0,S,+,<,=] and fragments 
4. SRM for PFA  
5. SRM for EFA 
6. SRM for SEFA 
7. Finite SRM for strength 
 
1. INEVITABILITY OF LOGICAL STRENGTH
  
As you can see from the title there is a big foundational point 
that is being made in connection with SRM. Is there a way of 
formalizing mathematics that avoids logical strength and Gödel 
phenomena entirely, where the consistency problem essentially 
disappears? Perhaps the logician's way of formalizing 
mathematics is overkill with its overly general principles, 
especially infamous logical schemes, and all of this can be 
avoided. If we just formalize more economically, we can outright 
prove consistency.  
 
To a large extent this is already refuted by SRM with ETF as 
discussed in the first lecture. However, one can still "blame" 
logical strength on that being infinitary mathematics. So it is 
important to refute this for finite mathematics. 
 
Actually there is a grain of truth in this gross anti 
foundationalism. RCF and ACF formalize very significant portions 
of mathematics avoiding Gödel phenomena, and I gave a 



 2 

consistency proof of RCF and ACF in EFA, and showed they were 
interpretable in Q (Q result also published by Ferreira). Not at 
all clear how far one can take this. Perhaps the whole of 
mathematics that isn't somehow combinatorial in nature, but 
rather algebraic or geometric, can be proved consistent in weak 
systems. Or perhaps not, shown by spectacular reversals.  
 
2. FORMALIZATION, SUGARED PREDICATE CALCULUS 
 
When we go into formalizing mathematics, we encounter things 
that are banned from ordinary predicate calculus. Specifically, 
we need many sorts, undefined terms, function and relation 
variables, and relativized quantifiers. These are the biggies, 
and there are more minor things like writing ("x,y) and so 
forth. This is a whole area of sugared predicate calculus. This 
won't be really important for this lecture although it will be 
clear that the need for this arises in full formalizations. The 
reader may perhaps be interested in looking at 
https://www.andrew.cmu.edu/user/avigad/Papers/mkm/index.html 
 
Here we can ignore that we should be in free many sorted logic 
with function and relation variables, although it is illustrated 
by our presentation of FSQZ in section 4. 
 
The system Q, which already consists of strictly mathematical 
theorems, will play a role in the discussion here. The signature 
of Q is 0,S,+,•,<,=. Q has the nonlogical axioms  
 
Q1. Sx ≠ 0.  
Q2. Sx = Sy ® x = y. 
Q3. x ≠ 0 ® ($y)(x = Sy)   
Q4. x + 0 = x. 
Q5. x + Sy = S(x + y). 
Q6. x • 0 = 0.  
Q7. x • Sy = (x • y) + x.  
Q8. x < y « ($z)(z + Sx = y). 
  
3. SRM FOR TRUE[...] AND FRAGMENTS  
 
Let ... be a subsequence of the list of five symbols 0,S,+,<,=. 
TRUE[...] is the system consisting of all true sentences in the 
first order language with signature ... . These are 32 systems. 
Each TRUE[...] is of course very decidable by elimination of 
quantifiers due to Presburger. We are now in linear arithmetic. 
 



 3 

If TRUE[...] is finitely axiomatizable, we look for a logically 
equivalent theory consisting entirely of strictly mathematical 
theorems. The rest are not finitely axiomatizable, and we look 
for T in a strictly mathematical expanded language. What can be 
required? T consists entirely of finitely many strictly 
mathematical theorems, L[...] Í L[T], and every sentence in 
L[...] provable in T is provable in IND[...]. We discuss whether 
we get even more.  
 
Now let's look at finite axiomatizability of the 32 signatures. 
If we include + then because of the quotient remainder axioms 
with the arbitrary standard positive integer divisors, it is not 
finitely axiomatizable. So we just need to look at subsequences 
of 0,S,<,=. The presence of 0 makes no difference. So for finite 
axiomatizability, we need only look at subsequences of S,<,=.  
 
1. Æ. yes 
2. S. no. 
3. <. yes 
4. =. yes 
5. S,<. yes 
6. S,=. no 
7. <,=. yes 
8. S,<,=. yes 
 
In each of the 6•2 = 12 cases (we can add 0 back), the finite 
axiomatization that comes to mind is already entirely composed 
of strictly mathematical theorems. The cases below remain with 
non finitely axiomatizable. 
 
1. S and 0,S. 
2. S,= and 0,S,=. 
3. + together with any of sixteen.  
 
For the four ... in 1,2 we can most simply use 0,S,<,= and get T 
composed of finitely many strictly mathematical theorems where T 
proves TRUE[...] and every sentence in L[...] provable in T is 
provable in TRUE[...]. However, there is no interpretation of T 
in TRUE[...]. Can we have such a T with an interpretation of T 
in TRUE[...] which is the identity on L[...] where T is in 
perhaps a totally different language? Haven't had a chance to 
think this through.  
 
For 3 we also need to expand the language. Let us work with 
TRUE[0,S,+,<,=]. We choose T with L[T] = 0,S,+,•,<,= and the 
axioms  
1. Equality axioms for L[T]. 
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2. < is a linear ordering with left endpoint 0, where S returns 
the immediate successor.  
3. Division by each Sn(0) with remainder in [0,n), external n > 
0.  
 
We will get that T consists entirely of finitely many 
mathematical theorems in 0,S,+,•,<,=, T proves TRUE[0,S,+,<,=], 
and every consequence of T in 0,S,+,<,= is a consequence of 
TRUE[0,S,+,<,=]. But we can ask for more of T. We won't have an 
interpretation of T in TRUE[0,S,+,<,=] and it is unclear whether 
T is decidable. We haven't looked carefully at the other 
TRUE[...,+].   
   
4. SRM FOR PFA 
 
PFA = Iå0 = polynomial function arithmetic. The signature is 
0,S,+,•,<,=.  
  
The å0 formulas are defined as follows.  
 
1. Every atomic formula in 0,S,+,•,<,= is a å0 formula. 
2. If j, y are å0 formulas then j Ú y, j Ù y, j ® y, j « y are 
å0 formulas.  
3. If j is å0 and x is a variable not in the term t in 0,S,+,•, 
then ($x £ t)(j) and ("x £ t)(y) are å0, with £ expanded out.  
 
The nonlogical axioms of PFA are as follows.  
 
1. Q 
2. (j[x/0] Ù ("x)(j ® j[x/S(x)])) ® j 
where j is a å0 formula 
 
We follow the SRM treatment of PFA in [Fr09] with some 
simplifications and amplifications, that rely on the familiarity 
of coding in the RM literature/folklore - not in SRM. We first 
convert PFA with w (the semiring) to PFA with Z (the ring). We 
assume from the literature/folklore that we know how to use Z in 
addition to or instead of w, in PFA, because of familiar coding. 
We write these three systems as PFA, PFA[Z], PFA[w,Z] with 
signatures w;0,1,+,•,< with sort w, Z;0Z,1Z,+Z,•Z,<Z with sort Z, 
and w,Z;0,1,+,•,<,0Z,1Z,+Z,•Z,<Z with sorts w and Z. We write 
L[w], L[Z], L[w,Z] for these three signatures, respectively.  
 
We have no idea how to give any strictly mathematical theory 
logically equivalent to PFA, PFA[Z], or PFA[w,Z]. These sorts 
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L[w], L[Z], L[w,Z] are just too impoverished. We do know how to 
give some SRM treatments of these three. by adding sorts.   
 
To simplify the discussion, let us focus on SRM for PFA[Z]. 
There are two main approaches in [Fr09]. For the first main 
approach, way, we add a sort for finite subsets of Z and ep. We 
write this signature as L[Z,FIN(Z)] = Z,FIN[Z];0Z,1Z,+Z,•Z,<Z,Î. 
 
The nonlogical axioms of FSTZ are  
 
1. Linearly ordered integral domain axioms. 
2. Finite interval. [x,y] exists. 
3. Boolean difference. A\B = {x ∈ A: x ∉ B} exists.  
4. Set addition. A+B = {x+y: x ∈ A ∧ y ∈ B} exists.  
5. Set multiplication. A•B = {x•y: x ∈ A ∧ y ∈ B} exists. 
6. Least element. Every nonempty set has a least element.  
 
NOTE: At some places in [Fr09] I wrote the weaker "linearly 
ordered commutative ring axioms" instead of "linearly ordered 
integral domain axioms". I am pretty sure I meant the latter, 
but also it may not make any difference.  
 
THEOREM 4.1. [Fr09]. FSTZ proves PFA[Z]. Every theorem of FSTZ 
in L[Z] is provable in PFA[Z].  
 
There is a stronger form of Theorem 4.1 that wasn't featured in 
[Fr09]. 

 
THEOREM 4.2. FSTZ proves PFA[Z]. There is an interpretation of 
FSTZ into PFA[Z] that is the identity on L[Z]. 
 
The idea here is to code finite sets of integers as a single 
integer code. One needs to take care since we don't have 
exponentiation and so we don't have full finite sequence coding 
in the usual sense. However, this kind of argument doesn't 
appear to establish the existence of a faithful interpretation 
of FSTZ into PFA[Z]. 
 
We can adhere to PFA rather than PFA[Z] by using the obvious 
form of FSTZ that incorporates w. This extends FSTZ by adding 
the proper linkage between w and Z which induces the proper 
linkage between FIN(w) and FIN(Z). We write this as FSTZ[w,Z].  
 
THEOREM 4.3. FSTZ[w,Z] proves PFA. There is an interpretation of 
FSTZ[w,Z] into PFA that is the identity on L[w]. Moreover,  
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FSTZ[w,Z] proves PFA[w,Z]. There is an interpretation of 
FSTZ[w,Z] into PFA[w,Z] that is the identity on L[w,Z].  
  
For the second main approach, we instead add a sort for finite 
sequences of integers. We have the ring operations, <, length of 
a sequence lth(a), and i-th term of sequence a (written a[i]). 
The signature of FSQZ is (Z,FSQ[Z];0Z,1Z,+Z,•Z,<Z,lth,val). The 
nonlogical axioms of FSQZ are  
  
1. Linearly ordered integral domain axioms. 
2. lth(α) ≥ 0. 
3. val(α,n)¯ « 1 ≤ n ≤ lth(α). 
4. The finite sequence (0,...,n) exists. 
5. lth(α) = lth(β) ® -α,α+β,α⋅β exist. 
6. The concatenation of α,β exists. 
7. For all n ≥ 1, the concatenation of α, n times, exists. 
8. There is a finite sequence enumerating the terms of α 
that are not terms of β. 
9. Every nonempty finite sequence has a least term. 
 
In [Fr09] we see  
 
THEOREM 4.4. [Fr09]. FSQZ proves PFA[Z]. Every theorem of FSQZ 
in L[Z] is provable in PFA[Z].  
 
Theorems 4.2 and 4.4 are the hard core of [Fr09]. What we talk 
about below are reworkings of other material from [Fr09], most 
of which need to be revisited.  
 
There is a stronger form: 
 
THEOREM 4.5. FSQZ proves PFA[Z]. There is an interpretation of 
FQTZ into PFA[Z] that is the identity on L[Z]. 
 
THEOREM 4.6. FSQZ[w,Z] proves PFA. There is an interpretation of 
FSQZ[w,Z] into PFA that is the identity on L[w]. Moreover,  
FSQZ[w,Z] proves PFA[w,Z]. There is an interpretation of 
FSQZ[w,Z] into PFA[w,Z] that is the identity on L[w,Z]. 
 
5. SRM FOR EFA  
 
EFA = Iå0(exp) = exponential function arithmetic. The signature 
of EFA is w;0,S,+,•,exp,<,=. The intended interpretation has 
exp(n,0) = 1. Here exp is a symbol for binary exponentiation and 
is to be distinguished from the well known complicated å0 
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formalization of partial exponentiation (the ternary 
exponentiation relation) already present in PFA. 
  
The å0(exp) formulas are defined as follows.  
 
1. Every atomic formula in w;0,S,+,•,exp,<,= is a å0(exp) 
formula.
  
2. If j,y are å0 formulas then j Ú y, j Ù y, j ® y, j « y are 
å0(exp) formulas.  
3. If j is å0 and x is a variable not in the term t in 0,S,+,•, 
then ($x £ t)(j) and ("x £ t)(y) are å0(exp) with £ expanded 
out.  
  
We will need to be specific about the defining equations EXP for 
exp.  
 

EXP = exp(n,0) = 1, 
exp(n,m+1) = n•exp(n,m) 

 
The nonlogical axioms of EFA are  
  
Q 
EXP  
(j[x/0] Ù ("x)(j ® j[x/S(x)])) ® j, 
j is å0(exp) 
 
We first treat EFA by extending FSTZ and FSQZ with the following 
strictly mathematical statement.   
  
CM. For all n > 0 the integers 1,...,n have a common nonzero 
multiple.  
 
THEOREM 5.1. [Fr09]. There is an interpretation of EFA into FSTZ 
+ CM. The same is true of FSQZ.  
 
Theorem 5.1 already establishes the inevitability of logical 
strength for Z based finite mathematics. The interpretation 
power of EFA is generally considered the start of logical 
strength.  
 
At the core of Theorem 5.1 is the following. Let expo[w], 
expo[Z] be the standard formalizations of the totality of 
exponentiation formulated by a å0 ternary relation in L[w], L[Z] 
respectively.   
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THEOREM 5.2. [Fr09]. PFA proves CM « expo[w]. PFA[Z] proves CM 
iff expo[Z].  
 
With expo[Z], because it is in L[Z], we get the strong kind of 
SRM for PFA[Z] + expo[Z]. 
 
THEOREM 5.3. There is a faithful interpretation of FSTZ + CM 
into PFA[Z] + expo[Z] which is the identity on L[Z]. The same 
holds for FSQZ + CM.   
 
So far we have followed [Fr09]. However we now make new 
improvements over [Fr09] with regard to SRM for EFA. We are 
careful to distinguish the two sorted EFA from PFA + expo[w]. We 
focus on FSTZ[w,Z], FSQZ[w,Z].  
 
We first expand the language of FSTZ[w,Z] and FSQZ[w,Z] with the 
binary function symbol exp from EFA on sort w and import the 
defining axioms EXP for exp from EFA. So exp is a binary 
function symbol new to FSTZ[w,Z] and FSQZ[w,Z]. Write these as 
FSTZ[w,Z] + EXP and FSQZ[w,Z] + EXP. We use capital letters to 
distinguish EXP from the complicated standard å0 formalization of 
partial exponentiation in PFA.  

 
We certainly do not have FSTZ[w,Z] + EXP and FSQZ[w,Z] + EXP 
proves EFA. The problem is that the binary exp function has not 
been properly internalized into FSTZ[w,Z] and FSQZ[w,Z]. For 
FSQZ this is straightforward. We write EXPSEQ in L[w,Z,exp] for 
the sentence  
  

EXPSEQ = for all n,m there exists sequence x of length m,  
of sort FSQ[Z], where for all 1 £ i £ m, x(i) = exp(n,i) 

 
FSQZ[w,Z] + EXP + EXPSEQ is just what we need for SRM for EFA. 
We argue in FSQZ[w,Z] + EXP + EXPSEQ. Fix n,x from EXPSEQ. We 
have for the x given by EXPSEQ, 
 

1) x(1) = n, and for all 1 £ i < m, x(i+1) = n•x(i) 
   2) for all 1 £ i £ m, x(i) = ni 

3) for all m, nm exists and is exp(n,m) 
 

where in 2), we are using the standard å0 formalization of 
partial exponentiation in PFA. 2) follows from 1) using 
FSQZ[w,Z]. 3) follows from 2) using the choice of x. It is now 
obvious that FSQZ[w,Z] + EXP + EXPSEQ proves EFA. 
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THEOREM 5.2. FSQZ[w,Z] + EXP + EXPSEQ has a faithful 
interpretation into EFA that is the identity on L[EFA].  
 
This is clear from the above. QED 
 
We now develop such an SRM for EFA extending FSTZ[w,Z]. EXPSEQ 
gave a finite sequential internalization of the EXP axioms 
(defining equations for binary exp). We now give a finite set 
internalization of the EXP axioms. The most natural way to do 
this is to add the following two axioms to FSTZ[w,Z]: 
 

EXP = exp(n,0) = 1, 
exp(n,m+1) = n•exp(n,m), 

 
EXPSET = for all n,m, 
{exp(n,i)+i: 0 £ i £ m} 
 exists in sort FIN[Z] 

 
Unfortunately we do not know how to make FSTZ[w,Z] + EXPSET + 
EXP work. Even just to prove EFA, we use the following 
modifications.  
 

EXP' = exp(n,0) = 1, 
exp(n,m+1) = n•exp(n,m), 

m < r ® exp(n+2,m) < exp(n+2,r) 
 

EXPSET' = for all n,m, 
{exp(n,i):0 £ i £ m}, {exp(n,i)+i: 0 £ i £ m} 

exist in sort FIN[Z] 
 
We work in FSTZ[w,Z] + CM + EXP' + EXPSET'. For n,m ³ 0, let 
A[n,m] = {exp(n,i): 0 £ i £ m}, B[n,m] = {exp(n,i)+i: 0 £ i £ m}, 
which are in sort FSET[Z] by EXPSET'. 
 
LEMMA 5.3. (FSTZ[w,Z] + CM + EXP' + EXPSET) A[n+2,m] in sort 
FIN[Z] has the following properties. 
1. The least element is 1. 
2. The greatest element is exp(n+2,m). 
3. If r Î A[n+2,m], r < max(A[n+2,m], then (n+3)•r Î A[n+2,m].  
 
Proof: 1,2 follows from exp(n+2,0) = 1 and EXP'. For 3, let 
exp(n+2,i) < exp(n+2,m), i £ m. Then i < m and so exp(n+2,i+1) = 
(n+2)•exp(n+2,i) lies in A[n+2,m]. QED 
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Using FSTZ + CM, we have enumerations of finite sets of 
integers. All enumerations are strictly increasing.  
 
LEMMA 5.4. (FSTZ[w,Z] + CM + EXP' + EXPSET) The enumeration of 
A[n+2,m] is (n+2)0,(n+2)1,...,(n+2)r, for some 0 £ i £ r, 
formulated using the å0 exponentiation in PFA + CM.  
 
Proof: A[n+2,m] obeys 1,3 in Lemma 5.3. Using FSTZ[w,Z] + CM we 
can enumerate A[n+2,m] and apply å0 induction. QED 
 
LEMMA 5.5. (FSTZ[w,Z] + CM + EXP' + EXPSET') The enumeration of 
B[n+2,m] is (n+2)0+0,(n+2)1,...,(n+2)m+m. The enumeration of 
A[n+2,m] is (n+2)0,n+2)1,...,(n+2)m.   
 
Proof: By Lemma 5.4, the enumeration of B[n+2,m] takes the form  
 

(n+2)j_0+0,(n+2)j_1+1,...,(n+2)j_m+m 
 
where 0 £ j0,...,jm £ m, with each (n+2)j Î A[n+2,m], using Lemma 
5.4. It is easy to see that 0 = j0 £ ... £ jm = m, using Lemma 
5.3. The £ are strict because otherwise we would have some j = j' 
with   
 

exp(n+2,j)+i+1 = exp(n+2,j')+i 
exp(n+2,j)+1 = exp(n+2,j') 

j = 0, j' = 1 
 

violating that each exp(n+2,j) is divisible by n+2 unless j = 0. 
Also j0,...,jm = 0,...,m because of the < and jm = m. Since each 
(n+2)j lies in A[n+2,m], we see that A[n+2,m] has the enumeration 
(n+2)0,...,(n+2)m. QED 
 
THEOREM 5.6. FSTZ[w,Z] + CM + EXP' + EXPSET' proves EFA. There 
is a faithful interpretation of FSTZ + CM + EXP' + EXPSET' which 
is the identity on L[ETF].  
 
Proof: By Lemmas 5.3 and 5.5, max(A[n+2,m]) = exp(n+2,m) = 
(n+2)m. This takes care of bases ³ 2. Bases 0,1 are trivial. QED 
 
6. SRM FOR SEFA 
  
SEFA = Iå0(superexp) = superexponential function arithmetic. It's 
language is based on 0,S,+,•,exp,superexp,<,=. The intended 
interpretation has superexp(0,n) = n.  
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The å0(superexp) formulas are defined as follows.  
 
1. Every atomic formula in 0,S,+,•,<,= is a å0(superexp) formula. 
2. If j, y are å0 formulas then j Ú y, j Ù y, j ® y, j « y are 
å0(superexp) formulas.  
3. If j is å0(superexp) and x is a variable not in the term t in 
0,S,+,•,exp,superexp, then ($x £ t)(j) and ("x £ t)(y) are 
å0(exp,superexp), with £ expanded out.  
  
The nonlogical axioms of SEFA are   
EFA 
Defining equations for superexp 
(j[x/0] Ù ("x)(j ® j[x/S(x)])) ® j 
where j is å0(exp,superexp) 
 
As we did SRM for EFA in two ways, we also do SRM for SEFA in 
two ways, one extending FSQZ[w,Z] and the other extending 
FSTZ[w,Z]. 
 
On the function side, we use FSQZ[o,Z] + EXP + SUPEREXP + EXPSEQ 
+ SUPEREXPSEQ, where   
 

SUPEREXP = superexp(n,0) = 1, 
superexp(n,m+1) = exp(n,exp(n,m)), 

 
SUPEREXPSEQ = for all n,m there exists sequence x of length m,  
of sort FSQ[Z], where for all 1 £ i £ m, x(i) = superexp(n,i) 

 
THEOREM 6.1. FSQZ[o,Z] + EXP + EXPSEQ + SUPEREXP + SUPEREXPSEQ 
has a faithful interpretation into SEFA which is the identity on 
L[SEFA].   
 
Again the set side is not as easy. We use  
 

SUPEREXP' = superexp(n,0) = 1, 
superexp(n,m+1) = exp(n,exp(n,m)), 

m < r ® superexp(n+2,m) < superexp(n+2,r) 
 

SUPEREXPSET' = for all n,m, 
{superexp(n,i):0 £ i £ m}, {superexp(n,i)+i: 0 £ i £ m} 

exist in sort FIN[Z] 
 
THEOREM 6.2. FSQZ[w,Z] + CM + EXP' + EXPSET' + SUPEREXP' + 
SUPEREXPSET' has a faithful interpretation into SEFA which is 
the identity on L[SEFA].   
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7. FINITE SRM FOR STRENGTH 
 
Here we build on FSTZ and FSQZ by introducing finite binary 
relations on Z and finite sequences of finite binary relations 
on Z. We then introduce finite rooted trees whose vertices are 
in Z as certain binary relations on Z. Also introduce the 
cardinality of finite rooted trees whose vertices are in Z. Then 
introduce inf preserving embeddings from one finite rooted tree 
in Z into another. Then state my finite form of Kruskal's 
theorem. This results in a strictly mathematical theory in Z 
based finite mathematics of high strength or interpretation 
power, roughly that of Kruskal's theorem which is proof 
theoretically measured by q_Ww(0), and closely corresponds to 
P12-TI0. See 
 
[RW93] M. Rathjen, A. Weiermann, Proof-theoretic investigations 
on Kruskal's theorem, Annals of Pure and Applied Logic 60(1):49-
88(1993). 
 
We can go further with the graph minor theorem corresponding to 
P12-CA0 and proof theoretic ordinal q_Ww(0). 
 
Z based finite mathematics is arising from my work on Tangible 
Incompleteness, and the explicitly Pi01 sentences there are 
readily used for SRM.  


