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Introduction

There is a well-known isomorphism between special orthogonal Lie

algebra so(3) and R3. For the �rst structure, the Lie bracket is

given by the matrix commutator [X,Y ] = XY − Y X for

X,Y ∈ so(3), and for the second by the cross product × for

vectors from R3. The mapping

X =

 0 −z y
z 0 −x
−y x 0

 7−→ v =

xy
z


gives this isomorphism (so(3), [·, ·]) ∼=

(
R3,×

)
.

The main goal of my presentation is to show that one can

construct a similar isomorphism for any Lie algebra. We will show

that Lie algebras have a lot in common with linear maps, and more

precisely with linear maps with a �xed eigenvector.



Lie algebra

A Lie algebra is vector space over a �eld R equipped with Lie

bracket [·, ·] : g× g −→ g with is a bilinear, antisymmetric map,

which satis�es the Jacobi identity

[[x, y], z] + [[z, x], y] + [[y, z], x] = 0

for all x, y, z ∈ g.



The basic ingredient is a pair (F, v) consisting of a linear mapping

F ∈ End(V ) with an eigenvector v. This pair allows to build a Lie

bracket on a dual space to a linear space V .
In our considerations, we will restrict ourselves to the linear space

V over a �eld R. It means that we will analyze in detail only real

Lie algebras. However, we want to emphasize that the presented

formulas also work for vector spaces over the �eld of complex

numbers.



Eigenvalue problem

We present some constructions of a Lie bracket on a space V ∗

having a pair: linear mapping and its eigenvector. A pair (F, v)
gives a Lie bracket on a dual space V ∗:

Theorem
If V is a vector space, F : V −→ V is a linear map and v ∈ V is an

eigenvector of the map F , then (V ∗, [·, ·](F,v)), is a Lie algebra,

where the Lie bracket is given by

[ψ, ϕ](F,v) = ϕ(v)F ∗(ψ)− ψ(v)F ∗(ϕ)

for ψ, ϕ ∈ V ∗.



V ≃ V ∗ ≃ RN

We can identify V and V ∗ with RN with the canonical basis

{e1, e2, . . . , eN} (i.e. V ≃ V ∗ ≃ RN ). Then the Lie bracket can be

rewritten in the form

[u,w](F,v) = ⟨w|v⟩F Tu− ⟨u|v⟩F Tw for u,w ∈ RN ,

where ⟨·|·⟩ is the scalar product in RN .



Theorem
Let [·, ·](F,v) be given by

[ψ, ϕ](F,v) = ϕ(v)F ∗(ψ)− ψ(v)F ∗(ϕ),

then the Lie algebra (V ∗, [·, ·](F,v)) is solvable.

Proof.
We say that a linear subspace h is an ideal of a Lie algebra g when

[g, h] ⊆ h. Of course the set [h, h] is also an ideal. Then we de�ne

a sequence of ideals (the derived series

g(0) ⊇ g(1) ⊇ · · · ⊇ g(i) ⊇ . . . )

g(0) = g, g(1) = [g, g], g(2) = [g(1), g(1)], . . . , g(i) = [g(i−1), g(i−1)], . . .

A Lie algebra g is called solvable if, for some positive integer i,
g(i) = 0.
In this case we get g(2) = [[g, g](F,v), [g, g](F,v)](F,v) = 0.



In addition, if we introduce the following sequence of ideals (the

lower central series g(0) ⊇ g(1) ⊇ · · · ⊇ g(i) ⊇ . . . )

g(0) = g, g(1) = [g(0), g], g(2) = [g(1), g], . . . , g(i) = [g(i−1), g], . . . ,

we say that algebra g is called nilpotent if the lower central series

terminates g(i) = 0 for some i ∈ N. Obviously, a nilpotent Lie

algebra is also solvable.

Theorem
If F is a nilpotent operator, then (V ∗, [·, ·](F,v)) is a nilpotent Lie

algebra.



Lie algebra generalized ax+ b-group

If we look at this bracket we notice that this is a structure of a Lie

bracket for a Lie algebra generalized ax+ b-group

[(w1, t1), (w2, t2)] = (t1Dw2 − t2Dw1, 0),

where V =W ⋉R, W is N − 1-dimensional linear space,

w1, w2 ∈W , t1, t2 ∈ R and D is established endomorphism

End(W ). Identi�cation is given by association V ∼= V ∗ ∼= RN and

putting ψ = (w1, t1), ϕ = (w2, t2), v = eN , F =

(
−D⊤ 0

0 0

)
[ψ, ϕ](F,v) = ϕ(v)F ∗(ψ)− ψ(v)F ∗(ϕ),

I. Beltiµ , D. Beltiµ , Quasidiagonality of C∗-algebras of
solvable Lie groups, Integr. Equ. Oper. Theory, 90:5, 2018.



We show that these solvable algebras are the basic bricks of the

construction of all other Lie algebras.



The linear combination of Lie brackets [·, ·](F,v),
[·, ·](G,w) gives a Lie bracket

Theorem
Let V be a vector space over R. If F,G ∈ End(V ), v, w ∈ V are

such that:

▶ v is an eigenvector of the map F ,

▶ w is an eigenvector of the map G,

▶ the following condition is true

v ∧ w ∧ [F,G]∗ + w ∧Gv ∧ F ∗ + v ∧ Fw ∧G∗ = 0.

Then (V ∗, [·, ·]λ(F,v),(G,w)), where

[ψ, ϕ]λ(F,v),(G,w) = [ψ, ϕ](F,v) + λ[ψ, ϕ](G,w)

is a Lie algebra for every λ ∈ R.



Example � the three-dimensional Lie algebras

Let us take V = R3 with the standard basis {e1, e2, e3}. We will

show how to easily connect three-dimensional real Lie algebras with

the corresponding linear mappings and their eigenvectors. We will

restrict ourselves to the eigenvector v = (0, 0, 1)⊤. Lie brackets will

be de�ned in the space V ∗ =
(
R3

)⊤
with the dual base {e∗1, e∗2, e∗3}.

Patera, J., Sharp, R.T., Winternitz, P., Zassenhaus, H.:

Invariants of real low dimension Lie algebras. J. Math. Phys.

17. 986 (1976)



If we take

F =

λ1 0 0
0 λ2 0
0 0 0

 ,

where λ1, λ2 ∈ R, we obtain the Lie bracket of the form

[ψ, ϕ](F,v) = λ1 (ψ1ϕ3 − ψ3ϕ1) e
∗
1 + λ2 (ψ2ϕ3 − ψ3ϕ2) e

∗
2,

where ψ = ψ1e
∗
1 + ψ2e

∗
2 + ψ3e

∗
3 and ϕ = ϕ1e

∗
1 + ϕ2e

∗
2 + ϕ3e

∗
3. The

commutator rules are following

[e∗1, e
∗
2](F,v) = 0, [e∗1, e

∗
3](F,v) = λ1e

∗
1, [e∗2, e

∗
3](F,v) = λ2e

∗
2.

1. For λ1 = λ2 = 1, we recognize the Lie structure related to the

Lie algebra g3,3.

2. For λ1 = −λ2 = 1, we recognize the Lie structure related to

the Lie algebra g3,4.

3. For λ1 = 1, λ2 = a, we recognize the Lie structure related to

the Lie algebra ga3,5.



Linear mappings and their eigenvectors giving three

dimensional Lie algebras

F v Casimir Name

F =

0 0 0
1 0 0
0 0 0

 v =

0
0
1

 x1 g3,1

F =

1 0 0
1 1 0
0 0 0

 v =

0
0
1

 x1e
−x2

x1 g3,2

F =

1 0 0
0 1 0
0 0 0

 v =

0
0
1

 x2
x1

g3,3

F =

1 0 0
0 −1 0
0 0 0

 v =

0
0
1

 x1x2 g3,4

F =

1 0 0
0 a 0
0 0 0

 v =

0
0
1

 x1
xa2

ga3,5



F =

0 −1 0
1 0 0
0 0 0

 v =

0
0
1

 x21 + x22 g3,6

F =

a −1 0
1 a 0
0 0 0

 v =

0
0
1

 (x21 + x22)e
2aarctg

x1
x2 ga3,7

F =

0 −2 0
0 0 0
0 0 0

 v =

0
0
1

 x1x3 + x22 g3,8

G =

1 0 0
0 0 0
0 0 −1

 w =

0
1
0


F =

0 −1 0
1 0 0
0 0 0

 v =

0
0
1

 x21 + x22 + x23 g3,9

G =

0 0 1
0 0 0
0 0 0

 w =

0
1
0





General structure

For a Lie algebra g with the basis {e1, e2, . . . , eN}, given by

commutator relations [ei, ej ] =
N∑
k=1

ckijek, we can assign N -pairs

(F1, eN ), . . . , (FN−i+1, ei), . . . , (FN , e1).



[ei, eN ] =

N∑
k=1

ckiNek

F1 =


c11N c21N . . . cN−1

1N 0

c12N c22N . . . cN−1
2N 0

...
...

. . .
...

...

c1N−1 N c2N−1 N . . . cN−1
N−1 N 0

0 0 . . . 0 0

 ,

The mapping F1 corresponds as the vector en. In the above matrix,

the structure constants cNiN , i = 1, . . . , N − 1 do not appear. They

will be placed in the next mappings F2, . . . , FN . To be precise, cNiN
will appear in the mapping FN−i+1.



F1 =


c11N c21N . . . cN−1

1N 0

c12N c22N . . . cN−1
2N 0

...
...

. . .
...

...

c1N−1 N c2N−1 N . . . cN−1
N−1 N 0

0 0 . . . 0 0

 ,

FN−i+1 =



c11 i c21 i . . . ci−1
1 i 0 ci+1

1 i . . . cN1 i

c12 i c22 i . . . ci−1
2 i 0 ci+1

2 i . . . cN2 i
...

...
. . .

...
...

...
. . .

...

c1i−1 i c2i−1 i . . . ci−1
i−1 i 0 ci+1

i−1 i . . . cNi−1 i

0 0 . . . 0 0 0 . . . 0

0 0 . . . 0 0 −ci+1
i i+1 . . . 0

...
...

. . .
...

...
...

. . .
...

0 0 . . . 0 0 0 0 −cNi N


,



FN =


0 0 . . . 0

0 −c21 2 . . . 0
...

...
. . .

...

0 0 0 −cN1 N

 .

Theorem
Every Lie algebra (g, [·, ·]) is isomorphic to the corresponding Lie

algebra (RN , [·, ·](F1,v1),...,(FN ,vN )).

The isomorphism (g, [·, ·]) ∼= (RN , [·, ·](F1,v1),...,(FN ,vN )) is not
canonical, we can assign the linear mappings and their eigenvectors

di�erently.



Casimir functions

Using relations between the Lie algebra, the Lie�Poisson structure

and the Nambu bracket, we show that the algebra invariants

(Casimir functions) are solutions of an equation which has an

interesting geometric signi�cance.

Theorem
Casimir functions ci, i = 1, . . . , k, for the Lie algebra

(RN , [ψ, ϕ](F1,v1),...,(FN ,vN )) satisfy the following equation

∇ci(x) ∧ ⋆
N∑
j=1

(Fj(x) ∧ vj) = 0.

The Hodge star operator ⋆ :
∧2 V −→

∧N−2 V



For a pair (F, v) giving a Lie algebra structure, we

always have N−2 Casimir functions

Theorem
Let (RN , [·, ·](F,eN )) be a Lie algebra, then Casimirs

ci, i = 1, 2, . . . , N − 2, of the algebra ful�ll the following conditions

⟨Fx|∇ci(x)⟩ = 0,

⟨eN |∇ci(x)⟩ = 0

for all x ∈ RN .

A. Dobrogowska, M. Szajewska, Eigenvalue problem versus

Casimir functions for Lie algebras, Anal. Math. Phys. 14

(2024), 1-24.



Casimir functions

De�nition

A non-zero tensor t ∈
N∧
V is s-partially decomposable if there exist

wi, i = 1, 2, . . . , s, vectors and N − s-tensor u ∈
N−s∧

V such that

t = w1 ∧ w2 ∧ . . . ∧ ws ∧ u.



Finally, the following theorem holds

Theorem
Let pairs (Fj , vj), j = 1, . . . , N , give any Lie algebra g. Functions
ci, i = 1, . . . , s, are functionally independent Casimir functions for g

if and only if ⋆
N∑
j=1

(Fjx ∧ vj) ∈
N−2∧

RN is s-partially decomposable,

i.e. if there exist wi ∈ RN , i = 1, 2, . . . , s, u ∈
N−s−2∧

RN such that

⋆

N∑
j=1

(Fjx ∧ vj) = w1 ∧ w2 ∧ . . . ∧ ws ∧ u.

Furthermore, ∇ci ∼ wi.

If we have a single pair (F, eN ), then obviously the tensor Fx ∧ eN

is decomposable, so consequently the tensor ⋆ (Fx ∧ eN ) ∈
N−2∧

RN

is decomposable. Therefore, algebra with this pair must always

have N − 2 Casimir functions.



If there are N − 2 smooth Casimir functions c1, . . . , cN−2, this

corresponds to the situation that the Poisson bracket arises from

the Nambu bracket by �xing N − 2 functions as Casimir functions.

In this case, the formula has a form

{f, g}Ω = u df ∧ dg ∧ dc1 ∧ . . . ∧ dcN−2, f, g ∈ C∞(RN ),

where Ω = dx1 ∧ . . . ∧ dxN is the standard volume element on RN ,

and u is some function on RN . The case, where there are less

smooth Casimir functions, namely c1, . . . , cs, s < N − 2, then the

Poisson bracket has a form

{f, g}Ω = df ∧ dg ∧ dc1 ∧ . . . ∧ dcs ∧ u.
In details studied in

P.A. Damianou, F. Petalidou, Poisson Brackets with Prescribed

Casimirs, Canad. J. Math. 64 (5), (2012) 991�1018.

It is connected with s+ 2-linear Nambu bracket in dimension N ,

higher than s+ 2.

Chan C. Chandre, A. Horikoshi, Classical Nambu brackets in

higher dimensions, J. Math. Phys. 64, (2023) 052702.



Nambu bracket

In 1973, Nambu proposed a generalization of the Poisson bracket

on R3 to the Nambu bracket in the form

{f1, f2, f3}(x) =
∂(f1, f2, f3)

∂(x1, x2, x3)
=

3∑
i,j,k=1

ϵijk
∂f1
∂xi

(x)
∂f2
∂xj

(x)
∂f3
∂xk

(x),

where ϵ is Levi-Civita tensor and f1, f2, f3 ∈ C∞(R3). In general, a

Nambu bracket {·, . . . , ·} : C∞(M)× · · · × C∞(M)︸ ︷︷ ︸
n

−→ C∞(M)

is a n-linear, skew-symmetric map, which satis�es the generalized

Jacobi identity (fundamental identity)

{f1, . . . , fn−1, {g1, . . . , gn}} =

n∑
i=1

{g1, . . . , {f1, . . . , fn−1, gi}, . . . , gn}

and Leibniz rule

{f1, . . . , fn−1, fg} = f{f1, . . . , fn−1, g}+ {f1, . . . , fn−1, f}g.



Left-symmetric algebras

Let us now remind what is left-symmetric algebra.

De�nition
Structure (g, •) is called left-symmetric algebra, if bilinear

multiplication • : g× g → g has a property that the associator

(·, ·, ·) : g× g× g → g given by

(x, y, z) = (x • y) • z − x • (y • z) for all x, y, z ∈ g

is symmetric in x and y, i.e.,

(x, y, z) = (y, x, z).

Left-symmetric algebras have been introduced by A. Cayley (1896).

Then they were forgotten for a long time until Vinberg (1960) and

Koszul (1961) introduced them in the context of convex

homogeneous cones and a�nely �at manifolds.



Left-symmetric algebras

Let us now remind what is left-symmetric algebra.

De�nition
Structure (g, •) is called left-symmetric algebra, if bilinear

multiplication • : g× g → g has a property that the associator

(·, ·, ·) : g× g× g → g given by

(x, y, z) = (x • y) • z − x • (y • z) for all x, y, z ∈ g

is symmetric in x and y, i.e.,

(x, y, z) = (y, x, z).

Every left-symmetric algebra carries a canonical Lie bracket de�ned

as follows

[x, y] = x • y − y • x.



Left-symmetric algebras

The Jacobi identity is ful�lled because of the symmetry of the

associator mapping in the �rst two arguments

[x, [y, z]] + [z, [x, y]] + [y, [z, x]] =(x, y, z) + (y, z, x) + (z, x, y)

− (y, x, z)− (z, y, x)− (x, z, y).



Left-symmetric algebras

A pair (F, v), which gives us the eigenvalue problem, also gives

multiplication on dual space V ∗. The multiplication

• : V ∗ × V ∗ → V ∗ is given by formula

α • β := −α(v)F ∗(β).

For this multiplication following theorem holds

Theorem
Structure (V ∗, •) is left�symmetric algebra.

(α, β, γ) = (α • β) • γ − α • (β • γ)
= α(v)β(v)F ∗(λI− F ∗)(γ)

= (β, α, γ).

A. Dobrogowska, K. Wojciechowicz, Lie Algebras, Eigenvalue

Problems and Left-Symmetric Algebras, J. Geometry and

Symmetry in Physics 69, (2024) 59-67.



Example

F u • w g

1.

 0 0 0
1 0 0
0 0 0

  −u3w2

0
0

 g3,1

2.

 1 0 0
1 1 0
0 0 0

  −u3(w1 + w2)
−u3w2

0

 g3,2

3.

 1 0 0
0 1 0
0 0 0

  −u3w1

−u3w2

0

 g3,3

4.

 1 0 0
0 a 0
0 0 0

  −u3w1

−au3w2

0

 ga3,4

5.

 a −1 0
1 a 0
0 0 0

  −u3(aw1 + w2)
−u3(−w1 + aw2)

0

 ga3,5

Table: Three dimensional Lie algebras given by one eigenvalue problem

and left-symmetric algebras related with them.



It is well known that the Lie algebra of an left-symmetric algebra

can not be semisimple.

Dietrich Burde, Left-symmetric structures on simple modular

Lie algebras, Journal of Algebra 169, (1994) 112-138.



A collection of two eigenvalue problems (F1, v1), (F2, v2) gives the
multiplication on V ∗

α • β = −α(v1)F ∗
1 (β)− α(v2)F

∗
2 (β).



so(3)

Example 0 −1 0
1 0 0
0 0 0

 , e3

 u • w =

 −u3w2

u3w1

−u2w1


 0 0 1

0 0 0
0 0 0

 , e2



For the Lie algebra so(3) the associator can be written as

(u,w, z) = u2z2

 w1

0
w3

+ u3w3

 z1
z2
0

− w1z1

 u2
u3
0


= (u,w, z)L + (u,w, z)C + (u,w, z)R.



sl(2,R)

Example 0 −2 0
0 0 0
0 0 0

 , e3

 u • w =

 −u2w1

2u3w1

u2w3


 1 0 0

0 0 0
0 0 −1

 , e2



Let us notice that for sl(2,R) associator is given by

(u,w, z) =

 −u2w2z1
2(u2w3 + u3w2)z1

−u2w2z3

+ u3z3

 0
0

2w1

+ w1z1

−2u3
0
0


= (u,w, z)L + (u,w, z)C + (u,w, z)R.
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