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Introduction

There is a well-known isomorphism between special orthogonal Lie
algebra s0(3) and R3. For the first structure, the Lie bracket is
given by the matrix commutator [X,Y] = XY — Y X for

X,Y € s0(3), and for the second by the cross product x for
vectors from R3. The mapping

0 —z vy T
X=1 = 0 —za|r—uv=|y
-y x 0 z

gives this isomorphism (s0(3), [, -]) = (R?, x).

The main goal of my presentation is to show that one can
construct a similar isomorphism for any Lie algebra. We will show
that Lie algebras have a lot in common with linear maps, and more
precisely with linear maps with a fixed eigenvector.



Lie algebra

A Lie algebra is vector space over a field R equipped with Lie
bracket [-, -] : g X g —> g with is a bilinear, antisymmetric map,
which satisfies the Jacobi identity

[z, 9], 2] + [z, 2], y] + [[y, 2], 2] = O

for all z,y,z € g.



The basic ingredient is a pair (F,v) consisting of a linear mapping
F € End(V') with an eigenvector v. This pair allows to build a Lie
bracket on a dual space to a linear space V.

In our considerations, we will restrict ourselves to the linear space
V over a field R. It means that we will analyze in detail only real
Lie algebras. However, we want to emphasize that the presented
formulas also work for vector spaces over the field of complex
numbers.



Eigenvalue problem

We present some constructions of a Lie bracket on a space V*
having a pair: linear mapping and its eigenvector. A pair (F,v)
gives a Lie bracket on a dual space V*:

Theorem

If V is a vector space, F': V — V is a linear map and v € V is an
eigenvector of the map F, then (V*,[-,-](r)), is a Lie algebra,
where the Lie bracket is given by

[¥, @) (rw) = () (1) — (v) F*(8)
for ), ¢ € V*.



We can identify V and V* with RV with the canonical basis

{e1,e2,...,en} (i.e. V.~ V* ~RY). Then the Lie bracket can be
rewritten in the form

[u, w](Fpy = (w|v)FTu — (u|v)FTw  for u,w € RY,

where (-|-) is the scalar product in RV,



Theorem
Let [-,-](F.v) be given by

then the Lie algebra (V*,[,](p.)) is solvable.
Proof.

We say that a linear subspace h is an ideal of a Lie algebra g when
[g,h] C b. Of course the set [h, b] is also an ideal. Then we define
a sequence of ideals (the derived series

g ogo...0g D> )

g9 =g, g =[g,0], g? = [gW,gMV], ..., = [V, g, ...

A Lie algebra g is called solvable if, for some positive integer i,
g(i) =0.
In this case we get 92 = [[g. (). 9. 8) (i) = 0. s



In addition, if we introduce the following sequence of ideals (the
lower central series gy 2 g(1) 2 - 2 9() 2 -+ -)

80) =9, 9(1) = [900),9), 82) = [801),8),-- -+ 8 = [8i-1), 9], -+ -,

we say that algebra g is called nilpotent if the lower central series
terminates g(;) = 0 for some i € N. Obviously, a nilpotent Lie
algebra is also solvable.

Theorem
If F' is a nilpotent operator, then (V*,[-,"](r)) is a nilpotent Lie
algebra.



Lie algebra generalized az + b-group

If we look at this bracket we notice that this is a structure of a Lie
bracket for a Lie algebra generalized ax + b-group

[(w1,t1), (w2,t2)] = (t1 Dwa — t2Dwy, 0),

where V =W x R, W is N — 1-dimensional linear space,
wi,ws € W, t1,to € R and D is established endomorphism
End(W). Identification is given by association V = V* = RY and

-
putting v = (w1, t1),d = (wa,t2), v=-en, F = < _g 8 )

[ I Beltits, D. Beltits, Quasidiagonality of C*-algebras of
solvable Lie groups, Integr. Equ. Oper. Theory, 90:5, 2018.




We show that these solvable algebras are the basic bricks of the
construction of all other Lie algebras.



The linear combination of Lie brackets |-, ]z,

[, -l(c.w) gives a Lie bracket

Theorem

Let V' be a vector space over R. If F,G € End(V), v,w € V are
such that:

» v is an eigenvector of the map F,
» w is an eigenvector of the map G,

» the following condition is true

vAWA[E,GI*+wAGuAF*+vAFwAG*=0.
Then (V*, [, ']?F,v),(G,w))’ where

[0, B F0) () = [ Bl (Fr) + AL, Bl (G )
is a Lie algebra for every \ € R.



Example — the three-dimensional Lie algebras

Let us take V' = IR? with the standard basis {e1, 2, e3}. We will
show how to easily connect three-dimensional real Lie algebras with
the corresponding linear mappings and their eigenvectors. We will
restrict ourselves to the eigenvector v = (0,0,1)". Lie brackets will

be defined in the space V* = (Rg)T with the dual base {e}, €3, e5}.

[§ Patera, J., Sharp, R.T., Winternitz, P., Zassenhaus, H.:
Invariants of real low dimension Lie algebras. J. Math. Phys.
17. 986 (1976)



If we take

A 000
F=10 X 0],
0 0 O

where A\, Ay € R, we obtain the Lie bracket of the form
[V, @) (Fo) = M1 (V103 — ¥3¢1) €] + A2 (Y203 — P3da) €3,

where ¢ = Wr¢f + ey + ¥sej and ¢ = dief + dach + daej. The
commutator rules are following

[61(7 6;](}7',7)) = Oa [61, 6;](F,U) = )\16?, [€;a eg](F,'u) = )\263

1. For \; = Aa = 1, we recognize the Lie structure related to the
Lie algebra g3 3.

2. For A1 = =Xy =1, we recognize the Lie structure related to
the Lie algebra g3 4.

3. For A1 =1, A9 = a, we recognize the Lie structure related to
the Lie algebra g5 ;.



Linear mappings and their eigenvectors giving three

dimensional Lie algebras

F v Casimir | Name
000 0
F = 1 00 v = 0 1 93,1
000 1
1 00 0 o
F=11 10 v=10 rie *1 93,2
000 1
1 00 0 -
F=10 10 v=1{0 — 93,3
00 0 1 e
1 0 O 0
F = 0 -1 0 v = 0 T1T2 93,4
0O 0 O 1
1 00 0 -
F=10 a 0 v=10 -2 955
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General structure

For a Lie algebra g with the basis {e1,e2,...,en}, given by
N

commutator relations [e;, e;] = > cfjek, we can assign N-pairs
k=1

(Fr,en)s- s (FN—it1:€i), ..., (Fn,e€1).



1 2 N-1
CIN C%N C}VN X 0
GnN ©N CN 0
F = : : :
1 2 N-1
CcNaN NN oo Ny |0
0 0 e 0 0
The mapping F3 corresponds as the vector e,,. In the above matrix,
the structure constants cﬁ\,, i=1,...,N —1 do not appear. They
will be placed in the next mappings Fb, ..., Fy. To be precise, cf-\jfv

will appear in the mapping Fn_;1.




Fy_iy1=

2 N—1
CIN C%N C}VN i 0
Con CoN Con 0
: : : )
1 2 -1
CN-1N CN_1N cyoin |9
0 0 0 0
1 2 i—1 i+1 N
c%z- céi ¢ i 0 clﬁ.1 levz
11— 7
€ €2 Coi | 0] e Gy
1 2 i—1 i+1 N
Ci—1i Ci—14 o1 | 0] ¢l Ci—1i
0 0 0 0 0 0
+1
0 0 0 [0]—ci 0
N
0 0 0 0 0 0 —c'y




0o, o ... 0
0|—cty ... O

Fy =
0 0 0 =y
Theorem
Every Lie algebra (g, [-,-]) is isomorphic to the corresponding Lie

algebra (RV, [ '](thl),._,,(FN,’UN))'

~

The isomorphism (ga ['7 ]) = (RN7 [‘7 '](Fl,vl),...,(FN,vN)> is not
canonical, we can assign the linear mappings and their eigenvectors
differently.



Casimir functions

Using relations between the Lie algebra, the Lie-Poisson structure
and the Nambu bracket, we show that the algebra invariants
(Casimir functions) are solutions of an equation which has an
interesting geometric significance.

Theorem
Casimir functions ¢;, i =1, ..., k, for the Lie algebra
(RN, [, @ (Fy o1),....(Fw,on)) Satisty the following equation

N
VCZ Z /\ ’Uj =0.

The Hodge star operator * : /\2 V— /\Nﬁ2 Vv



For a pair (F,v) giving a Lie algebra structure, we

always have N—2 Casimir functions

Theorem
Let (RN, [,-](Fen)) be a Lie algebra, then Casimirs
ci,i=1,2,..., N — 2, of the algebra fulfill the following conditions
(Fz|Vei(x)) = 0,
(en|Vei(x)) =0

for all z € RV .

[§ A. Dobrogowska, M. Szajewska, Eigenvalue problem versus
Casimir functions for Lie algebras, Anal. Math. Phys. 14
(2024), 1-24.



Casimir functions

Definition
N
A non-zero tensor t €\ V is s-partially decomposable if there exist
N-—s
wi,i=1,2,...,s, vectors and N — s-tensor u € A\ V such that

t=wi ANwa A...\ws A u.



Finally, the following theorem holds

Theorem
Let pairs (Fj,v;), j =1,...,N, give any Lie algebra g. Functions
ci, 1=1,...,s, are functionally independent Casimir functions for g

N N—-2
if and only ifx 3 (Fjz Av;) € N\ RY is s-partially decomposable,
j=1
N—s—2
i.e. if there exist w; € RN, i=1,2,...,s,uc€ /N R such that
N
*Z(ij/\vj) =wi Awa A ... \Nws Au.
j=1

Furthermore, V¢; ~ w;.

If we have a single pair (F, en), then obviously the tensor Fx A ey
N-2

is decomposable, so consequently the tensor x (Fz Aey) € A RY

is decomposable. Therefore, algebra with this pair must always

have N — 2 Casimir functions.



If there are N — 2 smooth Casimir functions c1,...,cy_o, this
corresponds to the situation that the Poisson bracket arises from
the Nambu bracket by fixing N — 2 functions as Casimir functions.
In this case, the formula has a form

{f,g}Q=wdf NdgAdci A...Nden_a,  f,g € CP(RY),

where Q = dzq A ... Adzy is the standard volume element on R,
and u is some function on RY. The case, where there are less
smooth Casimir functions, namely c1,...,¢c5, s < N — 2, then the
Poisson bracket has a form

{f,g}Q=df Ndg Ndci A...N\dcs A u.
In details studied in

[ P.A. Damianou, F. Petalidou, Poisson Brackets with Prescribed
Casimirs, Canad. J. Math. 64 (5), (2012) 991-1018.

It is connected with s 4 2-linear Nambu bracket in dimension N,

higher than s + 2.

[ Chan C. Chandre, A. Horikoshi, Classical Nambu brackets in

hifirher dimensions, J. Math. Phis. 64, 12023i 052702.



Nambu bracket

In 1973, Nambu proposed a generalization of the Poisson bracket
on R? to the Nambu bracket in the form

0 > afi, Ofs, 0
{f1, f2, f3}(x) = o . fa) _ > eijkaj:; (X)(%fj(x)aﬁ

8(.’1}1,.%'2,1’3) ivj k=1

(),

where ¢ is Levi-Civita tensor and f1, f2, f3 € C*°(R3). In general, a
Nambu bracket {-,...,-} : C®°(M) x --- x C°(M) — C>*(M)

n
is a n-linear, skew-symmetric map, which satisfies the generalized
Jacobi identity (fundamental identity)

{fla"'>fn—17{glv'-->gn}} = Z{glv'-'7{f17"'>fn—1>gi}7'--agn}
=1

and Leibniz rule
{f17' . '7fn—17fg} = f{fla” . 7fn—179} + {f17' . '7fn—17f}g'
D



Left-symmetric algebras

Let us now remind what is left-symmetric algebra.

Definition
Structure (g, ®) is called left-symmetric algebra, if bilinear
multiplication e: g x g — g has a property that the associator

(7)1 @ X gxg— ggiven by
(x,y,2) = (xoy)ez—m1e(yez) for all x,Y,2 €9
is symmetric in x and y, i.e.,

(z,y,2) = (y, 2, 2).

Left-symmetric algebras have been introduced by A. Cayley (1896).
Then they were forgotten for a long time until Vinberg (1960) and
Koszul (1961) introduced them in the context of convex
homogeneous cones and affinely flat manifolds.



Left-symmetric algebras

Let us now remind what is left-symmetric algebra.

Definition
Structure (g, o) is called left-symmetric algebra, if bilinear
multiplication e: g X g — g has a property that the associator

()1 @ Xxgxg— ggiven by
(v,y,2) = (xoy)ez—1e(yez) for all T,Y,2€ ¢
is symmetric in x and y, i.e.,

(z,y,2) = (y,z, 2).

Every left-symmetric algebra carries a canonical Lie bracket defined
as follows

[z,y] =z ey—yeu.



Left-symmetric algebras

The Jacobi identity is fulfilled because of the symmetry of the
associator mapping in the first two arguments

[, [y, 2] + [z, [=,9]] + [y, [z, 2] =(@, 9, 2) + (y, 2, %) + (2, 2,9)
- (y,x,z) - (z,y,x) - (ZE,Z,y).



Left-symmetric algebras

A pair (F,v), which gives us the eigenvalue problem, also gives
multiplication on dual space V*. The multiplication
o: V* x V* — V*is given by formula
aef:=—a(v)F*(B).
For this multiplication following theorem holds

Theorem
Structure (V*, @) is left—symmetric algebra.

(:8,7) = (a e B) ey —ae(Bey)
= a(v)B(v)F* (AL — F*)(y)
= (8,a,7).

G A. Dobrogowska, K. Wojciechowicz, Lie Algebras, Eigenvalue
Problems and Left-Symmetric Algebras, J. Geometry and

Simmetri in Phisics 69, i2024i 59-67.



Example
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It is well known that the Lie algebra of an left-symmetric algebra
can not be semisimple.

[§ Dietrich Burde, Left-symmetric structures on simple modular
Lie algebras, Journal of Algebra 169, (1994) 112-138.



A collection of two eigenvalue problems (Fy,vy), (Fa,v2) gives the
multiplication on V*

ae = —a(v)F(8) — av2) F5 (B).



50(3)

Example
0 -1 0 —UuUzwsy
1 0 0 , €3 uew = uswi
0 0 O —Uugwy
0 0 1
0 0 0 |.,es
0 0 0

For the Lie algebra s0(3) the associator can be written as

w1 21 U9
(u, w, 2) = ugzy 0 +usws | 290 | —wiz1 | us
w3 0 0

= (u,w, 2)r, + (u,w, 2)c + (u, w, 2)R.



sl(2,R)

Example
0 -2 0 —U2wW1
0 0 0 , €3 uew = 27J,3w1
0 0 O UgW3
1 0 O
00 O , €2
0 0 -1

Let us notice that for sl(2,R) associator is given by

—UwW221 0 —QU3
(u,w,z) = | 2(ugws + uswa)z1 | +uszs | 0 | +wiz 0
—UW223 2wy 0

= (u,w, 2)r, + (u,w, 2)c + (u, w, 2)R.



Thank you for your
attention



