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join the mathematical QFT community.
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Herzlichen Glückwunsch Harald!
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Algebraic quantum field theory

A convenient framework to investigate conceptual problems in
QFT is the Algebraic Quantum Field Theory.

It started as the axiomatic framework of Haag-Kastler: a model is
defined by associating to each region O of Minkowski spacetime
M an algebra A(O) of observables that can be measured in O.
The physical notion of subsystems is realized by the condition of
isotony, i.e.: O1 ⊂ O2 ⇒ A(O1) ⊂ A(O2). We obtain a net of
algebras.
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Further properties we want

One can also ask for further, physically motivated properties:
causality and time-slice axiom.

Causality: If O1,O2 ⊂ M are spacelike separated (no causal
curve joining them), then

[A(O1),A(O2)] = {0},

where [., .] is the commutator in the sense of A(O3), where O3
contains both O1 and O2.

Time-slice axiom: If N is a neighborhood of a Cauchy-surface
in O, then A(N ) is isomorphic to A(O).
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Constructing models

Constructing models of interacting QFTs satisfying Haag-Kastler
axioms is one of the most important problems in AQFT.

A new idea for constructing local nets for interacting theories has
been proposed in: Buchholz, D. and Fredenhagen, K., A
C∗-algebraic approach to interacting quantum field theories,
CMP 2020.
Main idea: theory described by an abstract C∗-algebra
generated by a collection of unitaries, with a number of relations.
These unitaries are interpreted as local S-matrices and are
labelled by local functionals. This approach is motivated by
results from perturbative algebraic quantum field theory
(pAQFT).
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Classical theory
Quantum theory

(Classical) physical input

Spacetime (M, g), where g is a globally hyperbolic Lorentzian
metric, i.e. has a Cauchy surface (good for specifying initial data
for PDEs).

Configuration space E(M): choice of objects we want to study in
our theory (scalars, vectors, tensors,. . . ).
Typically E(M) is a space of smooth sections of some vector
bundle E π−→ M over M.

For the scalar field: E(M) ≡ C∞(M,R).
For Yang-Mills with trivial bundle: E(M) ≡ Ω1(M, k), where k is a Lie
algebra of a compact Lie group.
For effective QG: E(M) = Γ((T ∗M)⊗2).

We use notation ϕ ∈ E(M), also if it has several components.
Dynamics: we use a modification of the Lagrangian formalism
(fully covariant).
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Classical theory
Quantum theory

Classical observables

We go one level of abstraction higher. Classical observables are
now functions on E(M) itself, i.e. elements of C∞(E(M),C).

For simplicity of notation we drop M, if no confusion arises, i.e.
write E , C∞(E ,C), etc.
Localization of functionals governed by their spacetime support:

supp F = {x ∈ M|∀ neighbourhoods U of x ∃ϕ, ψ ∈ E ,
supp ψ ⊂ U such that F (ϕ+ ψ) �= F (ϕ)} .

F is local (notation: F ∈ Floc) if it is of the form:

F (ϕ) =

∫

M

α(ϕ(x), ∂ϕ(x), . . . ) dµg(x) ,

where dµg ≡
√
−gd4x .
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Classical theory
Quantum theory

Dynamics

Dynamics is introduced by a generalized lagrangian L, which is a
Lagrangian density integrated with a cutoff.

More precisely, L : D → Floc, where D(M) = C∞
0 (M,R).

L(f )[ϕ] =
∫

M

(
1
2ϕ

2 +
1
2
∇µϕ∇µϕ

)
fdµg ,

L(f )[A] = −1
2

∫

M

f tr(F ∧ ∗F ), F being field strength for A,

L(f )[g] .
=

∫
R[g] f dµg

A local functional F induces a generalized Lagrangian LF by:
LF (f )[φ]

.
= F [fφ].

To simplify notation, I will write LF simply as F .
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Classical theory
Quantum theory

Classical Dynamics

Let L be a generalized Lagrangian and ϕ ∈ E . Define
δL : Ec × E → R by

δL(ψ)[ϕ] .
= L(f )[ϕ+ ψ]− L(f )[ϕ] ,

where ϕ ∈ E , ψ ∈ Ec (compactly supported
configuration)
and f ≡ 1 on suppψ (the map δL(ψ)[ϕ]
does not depend on the particular choice of f ).

The above definition can be turned into a difference quotient and
we can use it to introduce the Euler-Lagrange derivative of L.
The Euler-Lagrange derivative of L is a 1-form on E defined by

〈dL(ϕ), ψ〉 .
= lim

t→0
1
t δL(tψ)[ϕ] =

∫
δL(f )
δϕ(x)

ψ(x) , with ψ ∈ Ec and

f ≡ 1 on suppψ. The field equation is: dL(ϕ) = 0.

M
supp(f )

supp(ψ)
f ≡ 1
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Dynamical spacetimes

Define dynamical spacetimes as pairs (M, L) where M is a
globally hyperbolic spacetime and L is a Lagrangian of the form
L = L0 + V0, where L0 is kinnetic term (so something of the form
g(dϕ, dϕ)) and V0 depends only of the value of the field ϕ and
the value of its first derivative (no higher derivatives enter.)

Floc(M, L) is the space of local functionals F on M that can be
added to L so that the EOMs of L + F are globally hyperbolic
(potentially with a modified metric).
The corresponding generalized Lagrangians are called
interactions w.r.t L and their set is denoted by Int(M, L).
Interactions (which can also be understood as perturbations of L)
play a key role in this formulation.
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Dynamical Algebra

The dynamical algebra A(M, L) is a C*-algebra freely generated by
unitaries S(M,L)(F ), F ∈ Floc(M, L) with S(M,L)(c) = eic1 for constant
functionals c, c ∈ R, modulo the following relations (for simplicity we
drop the subscript (M, L)):

A1 Locality/Causality: Let G ∈ Floc(M, L) and
F ,H ∈ Floc(M, L + G). Then

S(F + G + H) = S(F + G)S(G)−1S(G + H)

when suppF ∩ JL+G
− (suppH) = ∅ where JL+G

− denotes the causal
past with respect to the metric induced by L + G,

A2 Dynamical relation (on-shell) For all F ∈ Floc(M, L) we require
S(F ) = S(Fψ + δL(ψ)) , ψ ∈ D(M,Rn) ,

where
Fψ[φ]

.
= F [φ+ ψ] , δL(ψ) .

= L(f )ψ − L(f ) ,

for any f ∈ D(M) satisfying f ≡ 1 on suppψ.
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Motivation from pAQFT

Consider a dynamical spacetime (M, L0), where M is globally
hyperbolic and L0 is a quadratic Lagrangian, leading to a
normally hyperbolic linear PDE: Pϕ = 0.

In this case, we our disposal retarded and advanced Green
functions ∆A/R and their difference is the commutator function
∆ = ∆R −∆A.

We add to
i
2
∆ a symmetric distribution H with

PxH(x , y) = 0 = Py H(x , y), so that the resulting W =
i
2
∆+ H is

of positive type and has a particularly nice singluarity structure (it
ends up being the 2-point function of the quantized theory).

We introduce the Feynman propagator ∆F =
i
2
(∆R +∆A) + H.
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Motivation from pAQFT

Denote Dij =

〈
�∆F,

δ2

δϕiδϕj

〉
and for F1, . . . ,Fn ∈ Floc with

pariwise disjoint supports define their time-ordered product by

Tn(F1⊗· · ·⊗Fn)(ϕ) = exp(
∑

1≤i<j≤n

Dij)(F1(ϕ1) . . .Fn(ϕn))
∣∣∣
ϕ1=···=ϕn=ϕ

.

This has to be extended to arguments with arbitrary support and
is done by means of Epstein-Glaser renormalization.
In Epstein-Glaser renormalization one constructs Tn by an
inductive procedure (in n) and at each step Tns are required to
satisfy the Epstein-Glaser axioms.
On the technical level, this procedure amounts to construction of
extensions of certain distributions.
One of the crucial axioms is Causal factorisation property:

Tn(V1, . . . ,Vn) = Tk (V1, . . . ,Vk ) � Tn−k (Vk+1, . . . ,Vn) ,

if suppVk+1, . . . , suppVn not later than suppV1, . . . , suppVk .
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Motivation from pAQFT

It can be shown that an appropriate family (Tn)n∈N of extended
time-ordered products exists, but is not unique (more about this
later).

Define the S-matrix:

S(V )
.
=

∞∑

n=0

1
n!

(
i
�

)n

Tn(V⊗n) ,

Casual factorisation property for Tns implies that:

S(V1 + V + V2) = S(V2 + V )S(V )−1S(V + V1) ,

where suppV1 not later than suppV2.
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More about time-ordered products

From (Tn)n∈N we can also define a map T on multilocal
functionals F by: T F .

=
⊕

n∈N

Tn ◦ m−1.

Formally it corresponds to the path integral with the oscillating
Gaussian measure “with covariance i�∆F”,

T F (ϕ)
formal
=

∫
F (ϕ− φ) dµi�∆F(φ) .

Define the time-ordered product by:

F ·T G .
= T (T −1F · T −1G)

Hence: SV ) = eiV/�
T .

·T is the time-ordered version of �, in the sense that:

F ·T G = F � G, if the support of F is later than the support of G
F ·T G = G � F , if the support of G is later than the support of F .
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Convergence in sine-Gordon model

Theorem (Bahns, KR 2016)

The formal S-matrix S(λV ) = eiλV/�
T in the sine-Gordon model with

V = cos(aΦ(f )) and 0 < β = �a2/4π < 1, f ∈ D(M), converges as a
functional on the configuration space in the appropriate topology
(related to Hörmander topology on distribution spaces).

Similarly, we have constructed relative S-matrices SλV (Φ(g)),
where Φ(g) is the smeared field.
Using these results, and a class of Hadamard states locally
normal to the massive vacuum, in [Bahns, Fredenhagen, KR CMP 2021,
arXiv:1712.02844] we constructed the local net of von Neumann
algebras.
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Renormalisation group in pAQFT

Non-uniqueness in constructing Tns is described using
Stückelberg-Petermann renormalization group. It is essentially a
group of maps from formal power series in Floc to formal power
series in Floc, satisfying some extra conditions (more later!).

The key to understand this is the main theorem of
renormalization. It states that given T , another T̃ is a valid
time-ordered product if and only if there exists an element Z of
the renormalization group such that:

eiV/�
T̃

= eiZ (V )/�
T .

Intuitively, we can think of Z as adding finite counter terms or
changing the values of the coupling constants.
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Non-perturbative Renormalization Group

In the C∗-algebraic framework, the renormalization group R(M, L) for
a Lagrangian L = L0 + V , with V ∈ Int(M, L0), is the set of all
bijections Z of Floc(M, L) which satisfy the following conditions:

R 1 (Compact support) The support of Z is compact.

R 2 (Invariance of support) Z preserves the support of functionals.
R 3 (Locality) Let G ∈ Floc(M, L) and F ,H ∈ Floc(M, L + G) with

suppF ∩ suppH = ∅. Then
Z (F + G + H) = Z (F + G)− Z (G) + Z (G + H) .
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Non-perturbative Renormalization Group

R 4 (Dynamics) Z preserves the dynamics, i.e.
Z (Fψ + δL(ψ)) = Z (F )ψ + δL(ψ) , ψ ∈ D(M,Rn) .

R 5 (Field shift) Under shifts in configuration space, Z transforms as
Z (Fψ − V (f )) = Z (F − V (f ))ψ + δV (ψ)

with ψ ∈ D(M,Rn), f ∈ D(M), f ≡ 1 on suppψ, and
F ∈ Floc(M, L − V ).
(NB: For L = L0 this is just Z (Fψ) = Z (F )ψ)

R 6 (Causal Stability) Z does not change the causal structure.
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Symmetry transformations

We consider an n-component real scalar field ϕ, i.e. the classical
configuration space is E = C∞(M,Rn).

The group of (compactly supported) symmetry transformations is
defined as:

Gc(M)
.
= C∞

c (M,Aff(Rn))� Diffc(M)

with the product defined by:

(Φ1, χ1) · (Φ2, χ2)
.
= (Φ1 ◦ (χ1Φ2), χ1χ2) .

The group Gc(M) acts on Floc(M, L) by g∗
.
= Φ∗χ∗.

We also introduce an L-dependent action of Gc(M) on Floc(M, L):
(g,F ) �→ gLF .

= δgL + g∗F .
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Anomalies

In perturbation theory, the Master Ward Identity (MWI)
guarantees that classical symmetries remain unbroken.

Here, possible deviations from MWI are described in terms of a
maps ζ : Gc(M) → R(M, L) satisfying ζe = idFloc(M,L),
supp ζg ⊂ suppg and the cocycle relation:

ζgh = ζh(ζg)
h where (ζg)

h .
= h−1

L ζghL , g,h ∈ Gc(M) ,

The set of these cocycles is denoted by Z(M, L).

A3 (Unitary Anomalous Master Ward Identity) Let (M, L) be some
dynamical spacetime. A representation π of A(M, L) satisfies the
unitary AMWI if there exists some ζ ∈ Z(M, L) such that:

π ◦ S(M,L) ◦ gL = π ◦ S(M,L) ◦ ζg , g ∈ Gc(M) .
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Anomalies

Let Iζ denote the intersection of all ideals annihilated by
representations which satisfy the unitary AMWI for a specific ζ,
and let A(M, L, ζ) denote the quotient A(M, L)/Iζ .

The C*-algebra A(M, L, ζ) is generated by the unitaries
S(M,L,ζ)(F ) = S(M,L)(F ) + Iζ .
For F with suppF ∩ suppg = ∅ the unitary AMWI reads

S(M,L,ζ)(δgL + F ) = S(M,L,ζ)(ζg(0) + F )

In particular: S(M,L,ζ)(δgL) = S(M,L,ζ)
(
ζg(0)

)
.

The interpretation of ζg(0) in path integral formulation is as the
logarithm of the Jacobian corresponding to the symmetry
transformation g. The infinitesimal version thereof is the
renormalized BV Laplacian ∆ [Fredenhagen, KR CMP 2013].
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Time-slice axiom

Theorem
Let N ⊂ M be a causally convex and globally hyperbolic
neighbourhood of a Cauchy surface of M with respect to the causal
structure induced by the Lagrangian L and let ζ ∈ Z(M, L) be a
cocycle. Then

A(N, L�N , ζ �N) = A(M, L, ζ) .

Here, ζ �N : Gc(N) → R(N, L�N) is obtained by the restriction of
ζ : Gc(M) → R(M, L).

Kasia Rejzner From perturbative to non-perturbative AQFT 24 / 26



Introduction
Construction

Classical theory
Quantum theory

Relative Cauchy evolution
Morphisms αV ,± interpolate between the algebra A(M, L′) and
the perturbed algebra A(M, L), with L = L′ + V .

αV ,+(S(M,L)(F )) = S(M′,L′)(V (f ))−1S(M′,L′)(F + V (f )) ,

αV ,−(S(M,L)(F )) = S(M′,L′)(F + V (f ))S(M′,L′)(V (f ))−1 .

They induce isomorphisms αV ,± from A(M, L′ + V , ζV ) to
A(M, L′, ζ), where

ζW
g (F )

.
= ζg(F + W (f ))− W (f ) ∈ Floc(M, L′ + W ) .

Let N± be two neighborhoods of Cauchy surfaces in (M, L′), one
in the past and the other in the future of the support of the
perturbation V , w.r.t. the causal structure induced by L′. They are
embedded into M by χ± and the induced morphisms are αχ± .
We define α̃V ,−

.
= αχ− ◦ α−1

V ,− and α̃V ,+
.
= αχ+ ◦ α−1

V ,+

We find that the relative Cauchy evolution automorphism βV of
A(M, L′, ζ) defined via these maps is given by

βV
.
= α̃V ,+ ◦ α̃−1

V ,− = Ad
(
S(M,L′,ζ)(V (f ))−1) .

Hence it is unitarily implemented by S-matrices.
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