Constructing morphisms for arithmetic subsequences of Fibonacci

Wieb Bosma and **Henk Don** Radboud University Nijmegen

Geuversfest, Nijmegen, 2024

(Picture by Dr. Oetker)

Constructing morphisms for arithmetic subsequences of Fibonacci

Wieb Bosma and **Henk Don** Radboud University Nijmegen

Geuversfest, Nijmegen, 2024 Uniform Distribution of Sequences, ESI, Wien, 2025 (Picture by Dr. Oetker) The Fibonacci sequence: start with 0 and substitute

$$0\mapsto 01, \qquad 1\mapsto 0$$

Iterating gives, writing ${\cal F}$ for the substitution/morphism,

$$\mathcal{F}^{1}(0) = 01
\mathcal{F}^{2}(0) = 01 0
\mathcal{F}^{3}(0) = 010 01
\vdots
\mathcal{F}^{k+1}(0) = \mathcal{F}^{k}(\mathcal{F}(0)) = \mathcal{F}^{k}(01) = \mathcal{F}^{k}(0)\mathcal{F}^{k}(1) = \mathcal{F}^{k}(0)\mathcal{F}^{k-1}(0)$$

The limit $\sigma:=\mathcal{F}^\infty(0)$ is well-defined. Alphabet $\Sigma=\{0,1\}$

This is a pure morphic sequence.

 $\mathcal{F}^0(0) = 0$

Morphic sequence: pure morphic + coding.

Example:
$$\Sigma = \{0, 1, 2\}$$
, morphism \mathcal{G} given by

$$0\mapsto 01, \qquad 1\mapsto 12, \qquad 2\mapsto 0.$$

and coding
$$au:\Sigma o {\mathcal T}$$
 with ${\mathcal T}=\{0,1\}$ by $0\mapsto 0, \qquad 1\mapsto 1, \qquad 2\mapsto 0.$

Then

Same sequence might have different generating morphisms.

■ Complexity of a morphism $\mathcal{F}: \Sigma \to \Sigma^*$:

$$|\mathcal{F}| = \sum_{a \in \Sigma} |\mathcal{F}(a)|.$$

Example: Fibonacci $0 \mapsto 01, 1 \mapsto 0$ has $|\mathcal{F}| = 3$.

- Complexity of a morphic sequence σ over Σ :
 - σ might be generated in different ways by
 - lacksquare a morphism $\mathcal{G}:T o T^*$ over some alphabet T
 - a coding $\tau : T \to \Sigma$.

Complexity σ : smallest possible complexity of such \mathcal{G} .

Example: $\mathcal{F}^{\infty}(0) = 010010100100101...$ has complexity 3.

Theorem (Dekking, 1994)

Let σ be a morphic sequence. Any arithmetic subsequence of σ is a morphic sequence.

Question: Complexity of this arithmetic subsequence? Morphism?

Complexity of $(\sigma[4n+2])_{n\geq 0}$: Split σ in blocks of length 4:

$$\sigma = 0100 \mid 1010 \mid 0100 \mid 1010 \mid 0101 \mid 0010 \mid 0101 \mid 0010 \dots$$

These blocks will be 'letters' in a new alphabet A:

$$a_0 = 0100$$
, $a_1 = 1010$, $a_2 = 0101$, $a_3 = 0010$, $a_4 = 1001$.

Then σ looks like

$$\tilde{\sigma} = a_0 a_1 a_0 a_1 a_2 a_3 a_2 a_3 a_2 a_3 a_4 a_3 a_4 a_0 a_4 a_0 a_4 a_0 a_1 \dots$$

Coding $\tau: A \to \{0,1\}$: map each letter to its third bit:

$$\tau(a_0) = \tau(a_2) = \tau(a_4) = 0, \qquad \tau(a_1) = \tau(a_3) = 1.$$

Still to find: morphism $\mathcal{G}: \mathcal{A} \to \mathcal{A}^*$ generating $\tilde{\sigma}$.

Naive approach:

$$G(a_0) \simeq F(0100) = 0100 \mid 101.$$

Problem: 101 is not a letter in A.

Trick: consider powers of \mathcal{F} . We find

$$\begin{split} |\mathcal{F}^6(0100)| &= 76, \qquad |\mathcal{F}^6(1010)| = 68, \qquad |\mathcal{F}^6(0101)| = 68, \\ |\mathcal{F}^6(0010)| &= 76, \qquad |\mathcal{F}^6(1001)| = 68. \end{split}$$

All multiples of 4. So images can be written as words over \mathcal{A} . We can take

$$\mathcal{G}\simeq\mathcal{F}^6$$
.

Complexity:

$$\frac{2 \times 76 + 3 \times 68}{4} = 89.$$

Why does this work?

Let
$$F_n = F_{n-1} + F_{n-2}$$
 with $F_0 = 0, F_1 = 1$ (Fibonacci numbers).

Then

$$|\mathcal{F}^k(0)| = F_{k+2}, \qquad |\mathcal{F}^k(1)| = F_{k+1}$$

In our example

$$|\mathcal{F}^{6}(0100)| = |\mathcal{F}^{6}(0)| + |\mathcal{F}^{6}(1)| + |\mathcal{F}^{6}(0)| + |\mathcal{F}^{6}(0)|$$

= $F_{8} + F_{7} + F_{8} + F_{8} = 4 \cdot F_{7} + 3 \cdot F_{6}$.

It works because $F_6 \equiv 0 \mod 4$.

For $(\sigma[mn+k])_{n\geq 0}$: need F_j with $F_j\equiv 0\mod m$.

Complexity: $\sum_{a \in \mathcal{A}} |\mathcal{G}(a)|$

For m = 4: five blocks of length 4 exist, so $|\mathcal{A}| = 5$.

Length of $|\mathcal{G}(a)|$:

$$\begin{aligned} |\mathcal{F}^6(0100)| &= |\mathcal{F}^6(0)| + |\mathcal{F}^6(1)| + |\mathcal{F}^6(0)| + |\mathcal{F}^6(0)| \\ &= F_8 + F_7 + F_8 + F_8 = 4 \cdot F_7 + 3 \cdot F_6, \end{aligned}$$

so $|\mathcal{G}(a)| \leq \frac{4 \cdot F_8}{4} = F_8$ for all a.

$$\implies \sum_{a \in A} |\mathcal{G}(a)| \le |\mathcal{A}| \cdot F_8 = 5 \cdot 21 = 105.$$

For general m: |A| = m + 1 (factor complexity of σ) and

$$|\mathcal{G}(a)| \leq F_{z(m)+2}$$

with z(m) the index of the first Fibonacci number divisible by m.

Theorem

Let σ be the Fibonacci sequence. The arithmetic subsequence $(\sigma[mn+k])_{n\geq 0}$ has complexity at most

$$(m+1)F_{z(m)+2},$$

where $z(m) = \min\{j : F_j \equiv 0 \mod m\}$.

m	$(m+1)F_{z(m)+2}$	m	$(m+1)F_{z(m)+2}$
2	15	10	17567
3	32	11	1728
4	105	12	4901
5	78	13	476
6	2639	14	1820895
7	440	:	:
8	189	29	29610
9	3770	30	125634925674311

Remarks:

- The actual complexity of our construction is slightly smaller than $(m+1)F_{z(m)+2}$.
- The true complexity of $(\sigma[mn+k])_{n\geq 0}$ might be much smaller. **Open question!**
- Brute force gives candidate morphisms + one needs a proof. **Example:** $(\sigma[2n])_{n\geq 0}$ has compl. 8, $(\sigma[2n+1])_{n\geq 0}$ has 9. Our construction has 13.

Thank you!