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The Fibonacci sequence: start with 0 and substitute

0 — 01, 1—0

Iterating gives, writing F for the substitution/morphism,

Fo(0) =
F(0)
F0) =
F3(0)

]:k+1(0) :

0

01
010
010 01

FK(F(0)) = F¥(01) = FX(0)F*(1) = F*(0)F*1(0)

The limit o := F°°(0) is well-defined. Alphabet ¥ = {0,1}

o = 01001010010010100101001001010010010100101001001010.. ..

This is a pure morphic sequence.
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Morphic sequence: pure morphic 4+ coding.

Example: ¥ = {0, 1,2}, morphism G given by
0~ 01, 1+—12, 2~ 0.
and coding 7: X — T with T ={0,1} by
0~ 0, 1—1, 2+ 0.
Then

G*0)=011212012001120010112 ...

coding: LI ddlllllliiidd
7(6*(0))=011010010001100010110 ...

Same sequence might have different generating morphisms.
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m Complexity of a morphism F: ¥ — X*:

IF[ = 1F ().
acx
Example: Fibonacci 0 — 01,1+ 0 has |F| = 3.

m Complexity of a morphic sequence o over ¥:

o might be generated in different ways by

®m a morphism G : T — T* over some alphabet T
macoding7: T — .

Complexity o: smallest possible complexity of such G.

Example: 7°°(0) = 010010100100101... has complexity 3.
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Theorem (Dekking, 1994)

Let o be a morphic sequence. Any arithmetic subsequence of o is
a morphic sequence.

o = 01001010010010100101001001010010010100101001001010. ..
o 1 o 1 0o 1 O 1 O 1 0 1

(o[4n+ 2])n>0 = 01010101010100000010101010101011 ...

Question: Complexity of this arithmetic subsequence? Morphism?
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Complexity of (c[4n + 2]),>0: Split o in blocks of length 4:

o = 0100 | 1010 | 0100 | 1010 | 0101 | 0010 | 0101 | 0010 ...
These blocks will be ‘letters’ in a new alphabet A:

ap = 0100, a; = 1010, a» = 0101, a3 = 0010, a4 = 1001.
Then o looks like

§ = apai1apa1 32a33233323334333430a430 343031 - - -
Coding 7 : A — {0,1}: map each letter to its third bit:
T(ap) = 7(a2) = 7(as) =0, 7(a1) = 7(a3) = 1.

Still to find: morphism G : A — A* generating &.
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Naive approach:
G(ao) ~ F(0100) = 0100 | 101.

Problem: 101 is not a letter in A.
Trick: consider powers of F. We find

| F8(0100)| = 76, | F°(1010)| = 68, | F8(0101)| = 68,
| F8(0010)| = 76, | F8(1001)| = 68.

All multiples of 4. So images can be written as words over A. We
can take
G~ F°.
Complexity:
2xT76+3x68
1 =

89.
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Why does this work?
Let F, = Fp—1 + Fp—2 with Fp =0, F; = 1 (Fibonacci numbers).

7 8 9
13 21 34

n |
F

1 2 3
1 2

0 5 6
0 1 5 8

w| &

3>

Then
|FX0)| = Fiio,  |F*(1)| = Fiqa

In our example
|7°(0100)| = | F°(0)| + |F(1)| + | F°(0)| + |F°(0)]
:F8+F7+F8+F8:4-F7+3~F6.

It works because Fg =0 mod 4.
For (c[mn + k])n>0: need Fj with F; =0 mod m.
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3000 *

®  First zero of F,, mod m
%  Period of F, mod m $¥

2500 -~ *
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Complexity: > 41G(a)|
For m = 4: five blocks of length 4 exist, so |A| = 5.
Length of |G(a)]:

| F2(0100)| = | F°(0)| + |F°(1)| + |F°(0)] + [F°(0)]
=F+F+F+F=4-FF+3:F,

so |G(a)| < TF = Fg for all a.

= > |G(a)| < |A|- Fg =5-21 =105.
acA

For general m: | A| = m+ 1 (factor complexity of o) and
|g(a)| < Fz(m)+2

with z(m) the index of the first Fibonacci number divisible by m.
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Let o be the Fibonacci sequence. The arithmetic subsequence
(oc[mn + k])n>0 has complexity at most

(m + 1)Fz(m)+27

where z(m) = min{j : F; =0 mod m}.

m (m + 1)Fz(m)+2 m (m + 1)Fz(m)+2
2 15 10 17567
3 32 11 1728
4 105 12 4901
5 78 13 476
6 2639 14 1820895
7 440 : :
8 189 29 29610
9 3770 30 | 125634925674311
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Remarks:

m The actual complexity of our construction is slightly smaller
than (m + 1)F(m)1o.

m The true complexity of (o[mn + k]),>0 might be much
smaller. Open question! -

m Brute force gives candidate morphisms + one needs a proof.
Example: (c[2n])n>0 has compl. 8, (c[2n + 1]),>0 has 9.
Our construction has 13.
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Thank you!
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