Multilevel Path Branching for Digital Options

Al Haji-Ali Joint work with Mike Giles (University of Oxford)

Heriot-Watt University

ESI — 2 May, 2022

The problem: Pricing a Digital option

Let X_t be a d-dimensional stochastic process satisfying the SDE for $0 < t \leq 1$

$$\mathrm{d}X_t = a(X_t, t)\,\mathrm{d}t + \sigma(X_t, t)\,\mathrm{d}W_t.$$

Let $(\mathcal{F}_t)_{0 \le t \le 1}$ be the natural filtration of W_t .

The problem: Pricing a Digital option

Let X_t be a d-dimensional stochastic process satisfying the SDE for $0 < t \le 1$

$$\mathrm{d}X_t = a(X_t, t)\,\mathrm{d}t + \sigma(X_t, t)\,\mathrm{d}W_t.$$

Let $(\mathcal{F}_t)_{0 \le t \le 1}$ be the natural filtration of W_t .

We want to price a digital option of the form (dropping discounting)

$$\mathbb{P}[X_1 \in K] = \mathbb{E}[\mathbb{I}_{X_1 \in K}]$$

for some $K \subset \mathbb{R}^d$. Let $\{\overline{X}_t^\ell\}_{t=0}^1$ be an approximation of the path $\{X_t\}_{t=0}^1$ at level ℓ using $h_{\ell}^{-1} \equiv 2^{\ell}$ timesteps.

The problem: Pricing a Digital option

Let X_t be a d-dimensional stochastic process satisfying the SDE for $0 < t \le 1$

$$\mathrm{d}X_t = a(X_t, t)\,\mathrm{d}t + \sigma(X_t, t)\,\mathrm{d}W_t.$$

Let $(\mathcal{F}_t)_{0 \le t \le 1}$ be the natural filtration of W_t .

We want to price a digital option of the form (dropping discounting)

$$\mathbb{P}[X_1 \in K] = \mathbb{E}[\mathbb{I}_{X_1 \in K}]$$

for some $K \subset \mathbb{R}^d$. Let $\{\overline{X}_t^\ell\}_{t=0}^1$ be an approximation of the path $\{X_t\}_{t=0}^1$ at level ℓ using $h_\ell^{-1} \equiv 2^\ell$ timesteps.

For $|\mathbb{E}[\mathbb{I}_{X_1 \in K} - \mathbb{I}_{\overline{X}_1^\ell \in K}]| \lesssim h_\ell^{\alpha}$, a Monte Carlo estimator of $\mathbb{E}[\mathbb{I}_{X_1 \in K}]$ has computational complexity $\varepsilon^{-2-\alpha}$ to achieve MSE ε .

Multilevel Monte Carlo

Consider a hierarchy of corrections $\{\Delta P_{\ell}\}_{\ell=0}^{L}$ such that

$$\mathbb{E}[\Delta P_{\ell}] = \begin{cases} \mathbb{E}\big[\mathbb{I}_{\overline{X}_{1}^{0} \in \mathcal{K}}\big] & \ell = 0\\ \mathbb{E}\big[\mathbb{I}_{\overline{X}_{1}^{\ell} \in \mathcal{K}} - \mathbb{I}_{\overline{X}_{1}^{\ell-1} \in \mathcal{K}}\big] & \text{otherwise.} \end{cases}$$

MLMC can be formulated as

$$\mathbb{E}\big[\mathbb{I}_{X_1 \in K}\big] = \sum_{\ell=0}^{\infty} \mathbb{E}[\Delta P_{\ell}] \approx \sum_{\ell=0}^{L} \frac{1}{M_{\ell}} \sum_{m=1}^{M} \Delta P_{\ell}^{(m)}$$

Multilevel Monte Carlo

Consider a hierarchy of corrections $\{\Delta P_{\ell}\}_{\ell=0}^{L}$ such that

$$\mathbb{E}[\Delta P_{\ell}] = \begin{cases} \mathbb{E}\big[\mathbb{I}_{\overline{X}_{1}^{0} \in \mathcal{K}}\big] & \ell = 0\\ \mathbb{E}\big[\mathbb{I}_{\overline{X}_{1}^{\ell} \in \mathcal{K}} - \mathbb{I}_{\overline{X}_{1}^{\ell-1} \in \mathcal{K}}\big] & \text{otherwise.} \end{cases}$$

MLMC can be formulated as

$$\mathbb{E}\big[\mathbb{I}_{X_1 \in K}\big] = \sum_{\ell=0}^{\infty} \mathbb{E}[\Delta P_{\ell}] \approx \sum_{\ell=0}^{L} \frac{1}{M_{\ell}} \sum_{m=1}^{M} \Delta P_{\ell}^{(m)}$$

Assuming

 $\operatorname{Var}[\Delta P_{\ell}] \lesssim h_{\ell}^{\beta_{\mathsf{d}}}, \qquad |\mathbb{E}[\Delta P_{\ell}]| \lesssim h_{\ell}^{\alpha}, \qquad \operatorname{Work}(\Delta P_{\ell}) \lesssim h_{\ell}^{-1}$

then to compute with MSE ε^2 the complexity of MLMC is $\mathcal{O}(\varepsilon^{-2+\max((\beta_d-1),0)/\alpha})$ when $\beta_d \neq 1$ and $\mathcal{O}(\varepsilon^{-2}|\log \varepsilon|^2)$ otherwise.

Examples: Classical Method

Using $\Delta P_{\ell} = \mathbb{I}_{\overline{X}_{1}^{\ell}} - \mathbb{I}_{\overline{X}_{1}^{\ell-1}}$, note that $\operatorname{Var}[\Delta P_{\ell}] \lesssim h_{\ell}^{\beta_{\mathsf{d}}}$ is an implication of $\mathbb{E}\left[\left(\overline{X}_{1}^{\ell} - \overline{X}_{1}^{\ell-1}\right)^{2}\right]^{1/2} \approx \mathcal{O}(h_{\ell}^{\beta_{\mathsf{d}}}).$

- Euler-Maruyama has $\alpha = 1$ and $\beta_d \approx 1/2$ and complexity is $\mathcal{O}(\varepsilon^{-5/2})$ (Compare to $\mathcal{O}(\varepsilon^{-2}|\log \varepsilon|^2)$ for a Lipschitz payoff).
- Milstein has $\alpha = 1$ and $\beta_d \approx 1$ and complexity is $\mathcal{O}(\varepsilon^{-2}|\log \varepsilon|^2)$ (Compare to $\mathcal{O}(\varepsilon^{-2})$ for a Lipschitz payoff).
- Antithetic Milstein has the same rates es Euler-Maruyama (better rates possible with at least a Lipschitz payoff).

For some 0 $<\tau<$ 1, let

$$\Delta Q_{\ell} \coloneqq \mathbb{E}[\Delta P_{\ell} | \mathcal{F}_{1-\tau}].$$

Note $\mathbb{E}[\Delta Q_{\ell}] = \mathbb{E}[\Delta P_{\ell}].$

For some $0 < \tau < 1$, let

$$\Delta Q_{\ell} \coloneqq \mathbb{E}[\Delta P_{\ell} \,|\, \mathcal{F}_{1-\tau}\,].$$

Note $\mathbb{E}[\Delta Q_{\ell}\,] = \mathbb{E}[\Delta P_{\ell}\,].$

We can consider the MLMC estimator based on ΔQ_{ℓ} instead of ΔP_{ℓ} . The work and (hopefully improved) variance convergence of ΔQ_{ℓ} becomes relevant.

Computing ΔQ_{ℓ}

In 1D, taking $\tau \equiv h_{\ell}$ and using Euler-Maruyama for the last step we know that the conditional distribution of ΔP_{ℓ} given $\mathcal{F}_{1-\tau}$ is Gaussian and we can compute ΔQ_{ℓ} exactly.

Let
$$g(x) = \mathbb{E}\Big[\mathbb{I}_{\overline{X}_{1}^{\ell} \in \mathcal{K}} | \overline{X}_{1-\tau}^{\ell} = x\Big]$$
, then (roughly)
 $\mathbb{E}[\Delta Q_{\ell}^{2}] \approx \mathbb{E}\Big[\Big(g(\overline{X}_{1-\tau}^{\ell}) - g(\overline{X}_{1-\tau}^{\ell-1})\Big)^{2}\Big]$
 $\lesssim \mathbb{E}[g'] \times \mathbb{E}\Big[|X_{1-\tau}^{\ell} - X_{1-\tau}^{\ell-1}|^{2}\Big]$
 $\lesssim \mathcal{O}(h_{\ell}^{-1/2+\beta})$

- Euler-Maruyama has β = 1, hence Var[ΔQ_ℓ] ≈ O(h_ℓ^{1/2}). Using the Conditional expectation does not offer an advantage over the classical method.
- Milstein has $\beta = 2$, hence $\operatorname{Var}[\Delta Q_{\ell}] \approx h_{\ell}^{3/2}$ and complexity is $\mathcal{O}(\varepsilon^{-2})$.
- Antithetic Milstein estimator has similar complexity to Euler-Maruyama. We do have $\beta = 2$ but involves the second derivative which grows like $h_{\ell}^{3/2}$.

Path splitting to estimate ΔQ_ℓ

More generally, for any method and any τ , we can use path splitting (Monte Carlo) with sufficient number of samples, leading to increased work.

See, e.g., Glasserman (2004) and Burgos & Giles (2012) for more information on this method (for computing options and sensitivities).

• When au
ightarrow 0, i.e., splitting late,

$$\operatorname{Var}[\Delta Q_{\ell}] \leq \mathbb{E}\Big[\left(\mathbb{E}[\Delta P_{\ell} \,|\, \mathcal{F}_{1-\tau}\,]\right)^2\Big] = \mathbb{E}\Big[\left(\Delta P_{\ell}\right)^2\Big] = \mathcal{O}(h_{\ell}^{\beta_{\mathsf{d}}})$$

leads to worse variance.

• When $\tau \rightarrow 1$, i.e., splitting early,

$$\operatorname{Var}[\Delta Q_{\ell}] \leq \mathbb{E}\Big[\left(\mathbb{E}[\Delta P_{\ell} \,|\, \mathcal{F}_{1-\tau}\,]\right)^2\Big] = (\mathbb{E}[\Delta P_{\ell}\,])^2 = \mathcal{O}(h_{\ell}^{2\beta_{\mathsf{d}}})$$

leads to worse work.

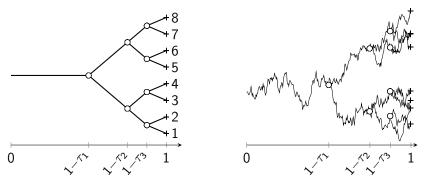
For $\tau' > \tau$

$$\begin{split} \Delta Q'_{\ell} &\coloneqq \mathbb{E}[\Delta Q_{\ell} \,|\, \mathcal{F}_{1-\tau'}\,] \\ &= \mathbb{E}[\,\mathbb{E}[\,\Delta P_{\ell} \,|\, \mathcal{F}_{1-\tau}\,] \,|\, \mathcal{F}_{1-\tau'}\,] \\ \text{Again} \qquad \mathbb{E}[\,\Delta Q'_{\ell}\,] &= \mathbb{E}[\,\Delta P\,] \end{split}$$

Now we have finer control over τ, τ' and the number of samples we can use to compute the two expectations.

Path Branching

- Let $1 \tau_{\ell'} = 1 2^{-\ell'}$ for $\ell' \in \{1, \dots, \ell\}$.
- For every ℓ' , starting from $X_{1-\tau_{\ell'}}$ at time $1-\tau_{\ell'}$, create two sample paths $\{X_t\}_{1-\tau_{\ell'} \leq t \leq 1-\tau_{\ell'+1}}$ which depend on two independent samples of the Brownian motion $\{W_t\}_{1-\tau_{\ell'} \leq t \leq 1-\tau_{\ell'+1}}$.
- Evaluate the payoff difference $\Delta P_{\ell}^{(i)}$ for every $X_1^{(i)}$ for $i \in \{1, \dots, 2^{\ell}\}$
- Define the Monte Carlo average as $\Delta \mathcal{P}_{\ell} := 2^{-\ell} \sum_{i=1}^{2^{\ell}} \Delta \mathcal{P}_{\ell}^{(i)}$



Main Assumptions & Bounds

Assumption

Assume that there exists $eta_{\sf d},eta_{\sf c},{\it p}>0$ such that for all $au>h_\ell$

$$\mathbb{E}[\,(\Delta P_\ell)^2\,] \lesssim h_\ell^{eta_d}$$
 and $\mathbb{E}\Big[\,(\mathbb{E}[\,\Delta P_\ell\,|\,\mathcal{F}_{1- au}\,])^2\,\Big] \lesssim rac{h_\ell^{eta_c}}{ au^{1/2}}$

Theorem (Work/Variance bounds)

$$\begin{split} \mathbb{E}[\Delta \mathcal{P}_{\ell}] &= \mathbb{E}[\Delta P_{\ell}] \\ \text{Work}(\Delta \mathcal{P}_{\ell}) \lesssim \ \ell \ h_{\ell}^{-1} \\ \text{Var}[\Delta \mathcal{P}_{\ell}] \lesssim \ h_{\ell}^{\beta_{\mathsf{d}}+1} + h_{\ell}^{\beta_{\mathsf{c}}} \end{split}$$

Proof

Recall $\tau_{\ell'} = 2^{-\ell'}$ $\mathsf{Work}(\Delta \mathcal{P}_{\ell}) \leq h_{\ell}^{-1} \left((1 - \tau_1) + \sum_{\ell'=1}^{\ell-1} 2^{\ell'} (\tau_{\ell'} - \tau_{\ell'+1}) + 2^{\ell} \tau_{\ell} \right)$ $\leq \ell h_{\ell}^{-1}$ $\operatorname{Var}[\Delta \mathcal{P}_{\ell}] \leq \mathbb{E} \left| \left(\frac{1}{2^{\ell}} \sum_{i=1}^{2^{\ell}} \Delta P_{\ell}^{(i)} \right)^{2} \right|$ $\leq rac{1}{2^\ell} \mathbb{E}[\,\Delta P_\ell^2\,] + rac{1}{2^{2\ell}} \sum^\ell \;\; \sum^\ell \;\; \mathbb{E}[\,\Delta P_\ell^{(i)} \Delta P_\ell^{(j)}\,]$ t i=1 i=1 $i\neq i$ $\leq \frac{1}{2^\ell} \mathbb{E}[\,\Delta P_\ell^2\,] + \frac{1}{2^{2\ell}} \sum^\ell \sum^\ell \mathbb{E}[\,(\mathbb{E}[\,\Delta P_\ell\,|\,\mathcal{F}_{1-\tau^{(i,j)}}\,])^2\,]$ i=1 i=1 $i\neq i$

• Euler-Maruyama has $\beta_d \approx 1/2$ and $\beta_c \approx 1$ hence $\operatorname{Var}[\Delta \mathcal{P}_\ell] \approx \mathcal{O}(h_\ell)$. The complexity is $\mathcal{O}(\varepsilon^{-2}|\log \varepsilon|^4)$ (Compare to $\mathcal{O}(\varepsilon^{-2}|\log \varepsilon|^2)$ for a Lipschitz payoff).

• Milstein has $\beta_d \approx 1$ and $\beta_c \approx 2$ hence $\operatorname{Var}[\Delta \mathcal{P}_{\ell}] = \mathcal{O}(h_{\ell}^2)$ and complexity is $\mathcal{O}(\varepsilon^{-2})$ (Same as for a Lipschitz payoff).

• Antithetic Milstein estimator has better rates!

Simplified Assumptions on SDE solution/Approximation

Theorem (Based on SDE solution and approximation)

Assume that for some $\delta_0 > 0$ and all $0 < \delta \le \delta_0$ and $0 < \tau \le 1$, and letting $d_{\partial K}(x) = \min_{y \in \partial K} ||x - y||$, there is a constant C independent of δ, τ and $\mathcal{F}_{1-\tau}$ such that

$$\mathbb{E}\Big[\left(\mathbb{P}[\,d_{\partial K}(X_1) \leq \delta \,|\, \mathcal{F}_{1-\tau}\,]\right)^2\,\Big] \leq C\,\frac{\delta^2}{\tau^{1/2}}.$$

Assume additionally that there is q > 2 and $\beta > 0$ such that

$$\mathbb{E}\Big[\left(X_1 - \overline{X}_1^\ell\right)^q\Big]^{1/q} \lesssim h_\ell^{\beta/2}$$

Then $\beta_{\mathsf{d}} = \frac{\beta}{2} \times \left(1 - \frac{1}{q+1}\right)$ and $\beta_{\mathsf{c}} = \beta \times \left(1 - \frac{2}{q+2}\right)$

MLMC Complexity

When q is arbitrary,

and for

$$eta_{\mathsf{d}} pprox rac{eta}{2} \quad ext{and} \quad eta_{\mathsf{c}} pprox eta$$
 $eta \leq 2$
 $\operatorname{Var}[\Delta \mathcal{P}_{\ell}] pprox \mathcal{O}(h_{\ell}^{eta})$
 $\operatorname{Work}(\Delta \mathcal{P}_{\ell}) = \mathcal{O}(\ell h_{\ell}^{-1})$

- Using Euler-Maryama: $\beta = 1$ and the MLMC computational complexity is approximately $o(\varepsilon^{-2+\nu})$ for any $\nu > 0$ and for MSE ε .
- Using Milstein: $\beta = 2$ and the complexity is $\mathcal{O}(\varepsilon^{-2})$.

SDEs with Gaussian Transition Kernels

Lemma

Assume that a and σ are bounded and uniformly Hölder continuous and σ is uniformly elliptic and when ∂K is "nice" then there is C > 0 such that

$$\mathbb{E}\Big[\left(\mathbb{P}[d_{\partial K}(X_1) \leq \delta \,|\, \mathcal{F}_{1-\tau}\,]\right)^2\Big] \leq C \, \frac{\delta^2}{\tau^{1/2}}$$

SDEs with Gaussian Transition Kernels

Lemma

Assume that a and σ are bounded and uniformly Hölder continuous and σ is uniformly elliptic and when ∂K is "nice" then there is C > 0 such that

$$\mathbb{E}\Big[\left(\mathbb{P}[\,d_{\partial K}(X_1) \le \delta \,|\, \mathcal{F}_{1-\tau}\,]\right)^2\Big] \le C\,\frac{\delta^2}{\tau^{1/2}}$$

and $\mathbb{E}\Big[\left(\mathbb{P}[\,d_{\partial K}(\exp(X_1)) \le \delta \,|\, \mathcal{F}_{1-\tau}\,]\right)^2\Big] \le C\,\frac{\delta^2}{\tau^{1/2}}$

SDEs with Gaussian Transition Kernels

Lemma

Assume that a and σ are bounded and uniformly Hölder continuous and σ is uniformly elliptic and when ∂K is "nice" then there is C > 0 such that

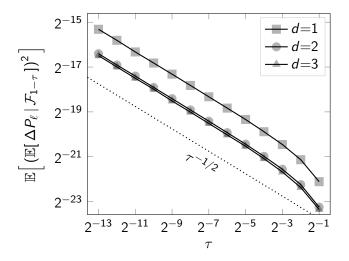
$$\mathbb{E}\Big[\left(\mathbb{P}[d_{\partial K}(X_1) \le \delta \,|\, \mathcal{F}_{1-\tau}\,]\right)^2\Big] \le C\,\frac{\delta^2}{\tau^{1/2}}$$

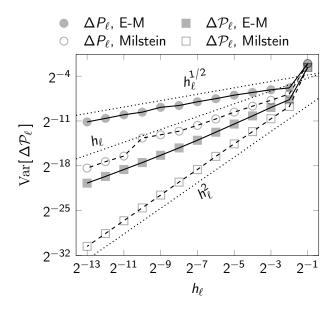
and
$$\mathbb{E}\Big[\left(\mathbb{P}[d_{\partial K}(\exp(X_1)) \le \delta \,|\, \mathcal{F}_{1-\tau}\,]\right)^2\Big] \le C\,\frac{\delta^2}{\tau^{1/2}}$$

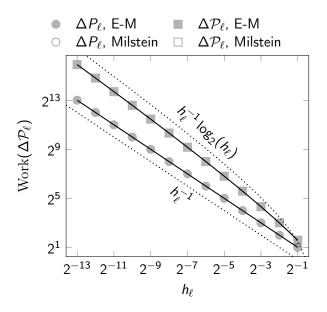
Proof. Based on bounding the conditional density of X_1 by a Gaussian density. E.g.

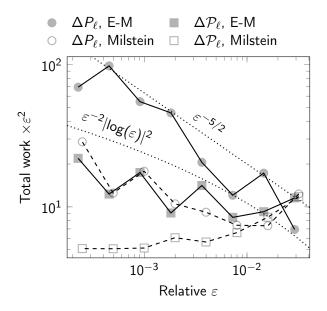
$$\mathbb{E}\Big[\left(\mathbb{P}[d_{\partial K}(X_{1}) \leq \delta \,|\, \mathcal{F}_{1-\tau}\,]\right)^{2}\Big]$$

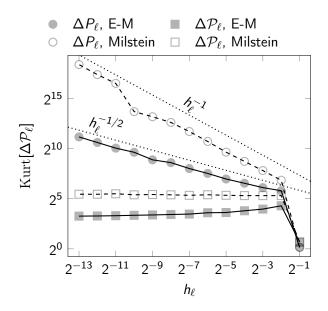
$$\lesssim \frac{1}{\tau^{1/2}} \left(\int_{-\delta}^{\delta} \mathrm{d}x\right) \times \mathbb{E}[\mathbb{P}[d_{\partial K}(X_{1}) \leq \delta \,|\, \mathcal{F}_{1-\tau}\,]] \lesssim \frac{\delta^{2}}{\tau^{1/2}}$$











For the Clark-Cameron SDE ($dX_t = W_{1,t} dW_{2,t}$), using a Milstein scheme requires sampling Lévy areas.

For the Clark-Cameron SDE ($dX_t = W_{1,t} dW_{2,t}$), using a Milstein scheme requires sampling Lévy areas.

Giles & Szpruch (2014) proposed an antithetic Milstein scheme (with Lévy area set to zero). Applying to digital options we set

$$\Delta P_{\ell} = \begin{cases} \mathbb{I}_{\overline{X}_{1}^{\ell} \in \mathcal{K}} & \ell = 0\\ \frac{1}{2} \left(\mathbb{I}_{\overline{X}_{1}^{\ell} \in \mathcal{K}} + \mathbb{I}_{\overline{X}_{1}^{\ell,(\mathfrak{a})} \in \mathcal{K}} \right) - \mathbb{I}_{\overline{X}_{1}^{\ell-1} \in \mathcal{K}} & \ell > 0 \end{cases}$$

where \overline{X}_1^{ℓ} and $\overline{X}_1^{\ell,(a)}$ are an identically distributed antithetic pair.

For the Clark-Cameron SDE ($dX_t = W_{1,t} dW_{2,t}$), using a Milstein scheme requires sampling Lévy areas.

Giles & Szpruch (2014) proposed an antithetic Milstein scheme (with Lévy area set to zero). Applying to digital options we set

$$\Delta P_{\ell} = \begin{cases} \mathbb{I}_{\overline{X}_{1}^{\ell} \in \mathcal{K}} & \ell = 0\\ \frac{1}{2} \left(\mathbb{I}_{\overline{X}_{1}^{\ell} \in \mathcal{K}} + \mathbb{I}_{\overline{X}_{1}^{\ell,(\mathfrak{a})} \in \mathcal{K}} \right) - \mathbb{I}_{\overline{X}_{1}^{\ell-1} \in \mathcal{K}} & \ell > 0 \end{cases}$$

where \overline{X}_1^{ℓ} and $\overline{X}_1^{\ell,(a)}$ are an identically distributed antithetic pair. We have for all q > 2

$$\mathbb{E}\Big[\left\|X_1 - \overline{X}_1^\ell\right\|^q\Big]^{^{1/q}} \le C h_\ell^{^{1/2}}$$

and
$$\mathbb{E}\Big[\left\|\frac{1}{2}(\overline{X}_1^\ell + \overline{X}_1^{\ell,(a)}) - \overline{X}_1^{\ell-1}\right\|^q\Big]^{^{1/q}} \le C h_\ell.$$

Lemma (Antithetic rates)

Under similar assumptions on the SDE, we have for the antithetic Milstein scheme

$$\mathbb{E}[(\Delta P_{\ell})^{2}] \lesssim h_{\ell}^{1/2(1-1/(q+1))}$$

and
$$\mathbb{E}\Big[(\mathbb{E}[\Delta P_{\ell} | \mathcal{F}_{1-\tau}])^{2}\Big] \lesssim h_{\ell}^{2(1-5/(q+5))}/\tau^{3/2}$$

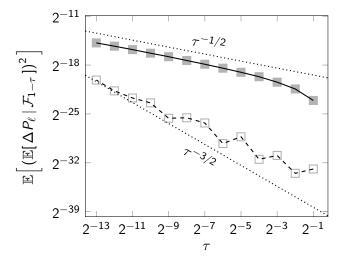
In other words

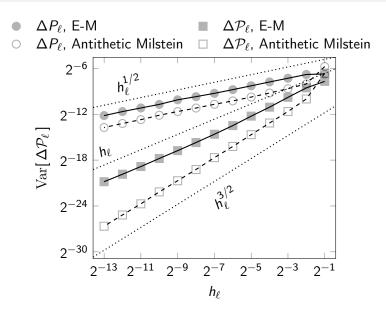
$$eta_{\mathsf{d}} = rac{1}{2} imes \left(1 - rac{1}{q+1}
ight) \qquad ext{and} \qquad eta_{\mathsf{c}} = 2 imes \left(1 - rac{5}{q+5}
ight).$$

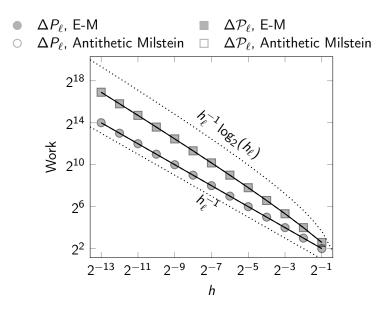
When q is arbitrary, we show that for any $\nu > 0$,

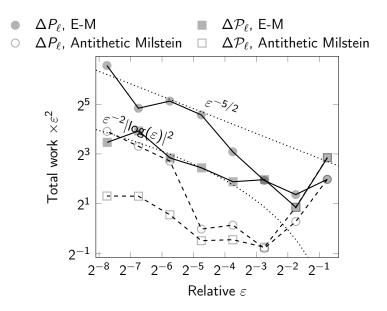
$$\operatorname{Var}[\Delta \mathcal{P}_{\ell}] \lesssim h_{\ell}^{3/2-
u}$$

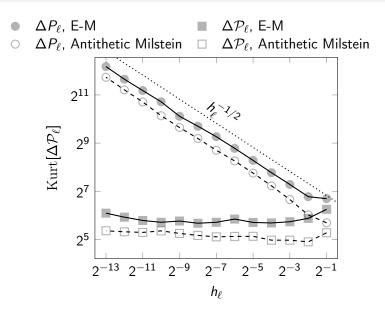
- ΔP_{ℓ} , E-M ΔP_{ℓ} , E-M
- $\bigcirc \Delta P_{\ell}$, Antithetic Milstein $\Box \Delta P_{\ell}$, Antithetic Milstein











• We also consider a sequence $\tau_{\ell'} = 2^{-\eta\ell'}$ for some $\eta > 0$. For $\eta > 1$, this reduces the work of $\Delta \mathcal{P}_{\ell}$ to $\mathcal{O}(2^{\ell})$.

• More theoretical and numerical analysis for antithetic estimators.

• A modular analysis: Application to other problems involving conditional expectations and filtrations can be done by proving assumptions.

What's TODO

- Computing sensitivities: Using bumping, the variance increases as the bump distance decreases. Branching can help.
- Pricing other options (Barrier).
- Particle systems and Multi-index Monte Carlo.
- Approximate CDFs. Need to tighten theory to deal with increasing number of discontinuities.
- Parabolic SPDEs with MLMC or MIMC. Method extends naturally, but analysis could be more challenging.

Elliptic SDEs

Definiton ((Si) sets)

We say that a set $S \subset \mathbb{R}^d$ is an (Si) set if there exists an orthonormal matrix A and a Lipschitz function f such that $S = A\widetilde{S}$ for the set

$$\widetilde{S} = \{x \in \mathbb{R}^d : f(x_{-1}) = x_1\},$$

and $A\widetilde{S}$ denoting the image of \widetilde{S} under the transformation $x \to Ax$.

Lemma

For $K \subset \mathbb{R}^d$ assume that $\partial K \subseteq \bigcup_{j=1}^n S_j$ for some finite *n* and (Si) sets $\{S_j\}_{j=1}^n$. Assume further that a and σ are bounded and uniformly Hölder continuous and σ is uniformly elliptic then

$$\mathbb{E}\Big[\left(\mathbb{P}[d_{\partial K}(X_1) \leq \delta \,|\, \mathcal{F}_{1-\tau}\,]\right)^2\Big] \leq C\,\frac{\delta^2}{\tau^{1/2}}.$$

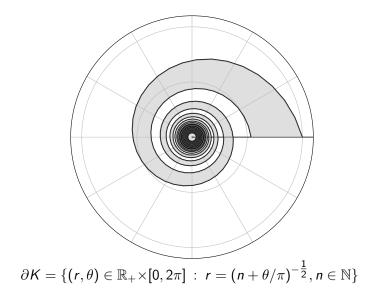
A nice set

 $\cdots f_1(x) \\ \cdots f_2(y)$ $\delta K = \{ x \in \mathbb{R}^2 : x_1^2 + x_2^2 = 1 \}$

Haji-Ali (HWU)

MLMC and Path Branching

A not-so-nice set



Exponentials of Elliptic SDEs

What about a Geometric Brownian Motion $Y_t = \exp(X_t)$?

$$dY_t = aY_t dt + \sigma Y_t dW_t$$
$$dX_t = a dt + \sigma dW_t$$

Exponentials of Elliptic SDEs

What about a Geometric Brownian Motion $Y_t = \exp(X_t)$?

$$dY_t = aY_t dt + \sigma Y_t dW_t$$
$$dX_t = a dt + \sigma dW_t$$

Lemma

For $K \subset \mathbb{R}^d$ assume that $\partial K \subseteq \bigcup_{j=1}^n \exp(S_j)$ for some finite n and (Si) sets $\{S_j\}_{j=1}^n$. Assume further that a and σ are bounded and uniformly Hölder continuous and σ is uniformly elliptic then

$$\mathbb{E}\Big[\left(\mathbb{P}[\left.d_{\partial \mathcal{K}}(\exp(X_1)\right) \leq \delta \,|\, \mathcal{F}_{1-\tau}\,]\right)^2\Big] \leq C\,\frac{\delta^2}{\tau^{1/2}}.$$