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The problem: Pricing a Digital option

Let Xt be a d-dimensional stochastic process satisfying the SDE for
0 < t ≤ 1

dXt = a(Xt , t)dt + σ(Xt , t)dWt .

Let (Ft)0≤t≤1 be the natural filtration of Wt .

We want to price a digital option of the form (dropping discounting)

P[X1 ∈ K ] = E[ IX1∈K ]

for some K ⊂ Rd . Let {X `
t}1t=0 be an approximation of the path {Xt}1t=0

at level ` using h−1` ≡ 2` timesteps.

For |E[ IX1∈K − I
X

`
1∈K

]| . hα` , a Monte Carlo estimator of E[ IX1∈K ] has

computational complexity ε−2−α to achieve MSE ε.
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Multilevel Monte Carlo

Consider a hierarchy of corrections {∆P`}L`=0 such that

E[ ∆P` ] =




E
[
I
X

0
1∈K

]
` = 0

E
[
I
X

`
1∈K
− I

X
`−1
1 ∈K

]
otherwise.

MLMC can be formulated as

E
[
IX1∈K

]
=
∞∑

`=0

E[ ∆P` ] ≈
L∑

`=0

1

M`

M∑

m=1

∆P
(m)
`

Assuming

Var[ ∆P` ] . hβd` , |E[ ∆P` ]| . hα` , Work(∆P`) . h−1`

then to compute with MSE ε2 the complexity of MLMC is
O(ε−2+max((βd−1),0)/α) when βd 6= 1 and O(ε−2|log ε|2) otherwise.
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Examples: Classical Method

Using ∆P` = I
X

`
1
− I

X
`−1
1

, note that Var[ ∆P` ] . hβd` is an implication of

E
[(

X
`
1 − X

`−1
1

)2 ]1/2

≈ O(hβd` ).

Euler-Maruyama has α = 1 and βd ≈ 1/2 and complexity is O(ε
−5/2)

(Compare to O(ε−2|log ε|2) for a Lipschitz payoff).

Milstein has α = 1 and βd ≈ 1 and complexity is O(ε−2|log ε|2)
(Compare to O(ε−2) for a Lipschitz payoff).

Antithetic Milstein has the same rates es Euler-Maruyama (better
rates possible with at least a Lipschitz payoff).
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Conditional Expectation

For some 0 < τ < 1, let

∆Q` := E[ ∆P` | F1−τ ].

Note E[ ∆Q` ] = E[ ∆P` ].

We can consider the MLMC estimator based on ∆Q` instead of ∆P`. The
work and (hopefully improved) variance convergence of ∆Q` becomes
relevant.
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Computing ∆Q`

In 1D, taking τ ≡ h` and using Euler-Maruyama for the last step we know
that the conditional distribution of ∆P` given F1−τ is Gaussian and we
can compute ∆Q` exactly.

Let g(x) = E
[
I
X

`
1∈K
|X `

1−τ = x
]
, then (roughly)

E[ ∆Q2
` ] ≈ E

[(
g(X

`
1−τ )− g(X

`−1
1−τ )

)2 ]

. E[ g ′ ]× E
[ ∣∣X `

1−τ − X `−1
1−τ
∣∣2
]

. O(h
− 1/2+β
` )
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Examples: Conditional Expectations

Euler-Maruyama has β = 1, hence Var[ ∆Q` ] ≈ O(h
1/2
` ). Using the

Conditional expectation does not offer an advantage over the classical
method.

Milstein has β = 2, hence Var[ ∆Q` ] ≈ h
3/2
` and complexity is O(ε−2).

Antithetic Milstein estimator has similar complexity to
Euler-Maruyama. We do have β = 2 but involves the second
derivative which grows like h

3/2
` .
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Path splitting to estimate ∆Q`

More generally, for any method and any τ , we can use path splitting
(Monte Carlo) with sufficient number of samples, leading to increased
work.
See, e.g., Glasserman (2004) and Burgos & Giles (2012) for more
information on this method (for computing options and sensitivities).

When τ → 0, i.e., splitting late,

Var[ ∆Q` ] ≤ E
[

(E[ ∆P` | F1−τ ])2
]

= E
[

(∆P`)
2
]

= O(hβd` )

leads to worse variance.

When τ → 1, i.e., splitting early,

Var[ ∆Q` ] ≤ E
[

(E[ ∆P` | F1−τ ])2
]

= (E[ ∆P` ])2 = O(h2βd` )

leads to worse work.
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Solution: More splitting

For τ ′ > τ

∆Q ′` := E[ ∆Q` | F1−τ ′ ]

= E[E[ ∆P` | F1−τ ] | F1−τ ′ ]

Again E[ ∆Q ′` ] = E[ ∆P ]

Now we have finer control over τ, τ ′ and the number of samples we can
use to compute the two expectations.
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Path Branching

Let 1− τ`′ = 1− 2−`
′

for `′ ∈ {1, . . . , `}.
For every `′, starting from X1−τ`′ at time 1− τ`′ , create two sample
paths {Xt}1−τ`′≤t≤1−τ`′+1

which depend on two independent samples
of the Brownian motion {Wt}1−τ`′≤t≤1−τ`′+1

.

Evaluate the payoff difference ∆P
(i)
` for every X

(i)
1 for i ∈ {1, . . . , 2`}

Define the Monte Carlo average as ∆P` := 2−`
∑2`

i=1 ∆P
(i)
`

0 1

1−
τ 1

1−
τ 2

1−
τ 3

t

1
2
3
4
5
6
7
8

0 1
1−
τ 1

1−
τ 2

1−
τ 3
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Main Assumptions & Bounds

Assumption

Assume that there exists βd, βc, p > 0 such that for all τ > h`

E[ (∆P`)
2 ] . hβd`

and E
[

(E[ ∆P` | F1−τ ])2
]
.

hβc`
τ 1/2

Theorem (Work/Variance bounds)

E[ ∆P` ] = E[ ∆P` ]

Work(∆P`) . ` h−1`

Var[ ∆P` ] . hβd+1
` + hβc`
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Proof

Recall τ`′ = 2−`
′

Work(∆P`) ≤ h−1`

(
(1− τ1) +

`−1∑

`′=1

2`
′
(τ`′ − τ`′+1) + 2`τ`

)

. ` h−1`

Var[ ∆P` ] ≤ E




 1

2`

2`∑

i=1

∆P
(i)
`




2 


≤ 1

2`
E[ ∆P2

` ] +
1

22`

∑̀

i=1

∑̀

j=1,i 6=j

E[ ∆P
(i)
` ∆P

(j)
` ]

≤ 1

2`
E[ ∆P2

` ] +
1

22`

∑̀

i=1

∑̀

j=1,i 6=j

E[ (E[ ∆P` | F1−τ (i,j) ])2 ]

0 1

1−
τ 1

1−
τ 2

1−
τ 3

t

1
2
3
4
5
6
7
8
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Examples: Path Branching

Euler-Maruyama has βd ≈ 1/2 and βc ≈ 1 hence Var[ ∆P` ] ≈ O(h`).
The complexity is O(ε−2|log ε|4) (Compare to O(ε−2|log ε|2) for a
Lipschitz payoff).

Milstein has βd ≈ 1 and βc ≈ 2 hence Var[ ∆P` ] = O(h2` ) and
complexity is O(ε−2) (Same as for a Lipschitz payoff).

Antithetic Milstein estimator has better rates!
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Simplified Assumptions on SDE solution/Approximation

Theorem (Based on SDE solution and approximation)

Assume that for some δ0 > 0 and all 0 < δ ≤ δ0 and 0 < τ ≤ 1, and
letting d∂K (x) = miny∈∂K‖x − y‖, there is a constant C independent of
δ, τ and F1−τ such that

E
[

(P[ d∂K (X1) ≤ δ | F1−τ ])2
]
≤ C

δ2

τ 1/2
.

Assume additionally that there is q > 2 and β > 0 such that

E
[ (

X1 − X
`
1

)q ]1/q
. h

β/2
`

Then βd =
β

2
×
(

1− 1

q + 1

)
and βc = β ×

(
1− 2

q + 2

)
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MLMC Complexity

When q is arbitrary,

βd ≈
β

2
and βc ≈ β

and for β ≤ 2
Var[ ∆P` ] ≈ O(hβ` )

Work(∆P`) = O(`h−1` )

Using Euler-Maryama: β = 1 and the MLMC computational
complexity is approximately o

(
ε−2+ν

)
for any ν > 0 and for MSE ε.

Using Milstein: β = 2 and the complexity is O(ε−2).
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SDEs with Gaussian Transition Kernels

Lemma

Assume that a and σ are bounded and uniformly Hölder continuous and σ
is uniformly elliptic and when ∂K is “nice” then there is C > 0 such that

E
[

(P[ d∂K (X1) ≤ δ | F1−τ ])2
]
≤ C

δ2

τ 1/2

and E
[

(P[ d∂K (exp(X1)) ≤ δ | F1−τ ])2
]
≤ C

δ2

τ 1/2
.

Proof. Based on bounding the conditional density of X1 by a Gaussian
density. E.g.

E
[

(P[ d∂K (X1) ≤ δ | F1−τ ])2
]

.
1

τ 1/2

(∫ δ

−δ
dx

)
× E[P[ d∂K (X1) ≤ δ | F1−τ ] ] .

δ2

τ 1/2
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Numerical Results on GBM
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Numerical Results on GBM

∆P`, E-M ∆P`, E-M
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Antithetic estimator

For the Clark-Cameron SDE (dXt = W1,t dW2,t), using a Milstein scheme
requires sampling Lévy areas.

Giles & Szpruch (2014) proposed an antithetic Milstein scheme (with Lévy
area set to zero). Applying to digital options we set

∆P` =




I
X

`
1∈K

` = 0

1
2

(
I
X

`
1∈K

+ I
X

`,(a)
1 ∈K

)
− I

X
`−1
1 ∈K ` > 0

where X
`
1 and X

`,(a)
1 are an identically distributed antithetic pair.

We have for all q > 2

E
[ ∥∥∥X1 − X

`
1

∥∥∥
q ]1/q

≤ C h
1/2
`

and E
[ ∥∥∥∥

1

2
(X

`
1 + X

`,(a)
1 )− X

`−1
1

∥∥∥∥
q ]1/q

≤ C h`.
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area set to zero). Applying to digital options we set

∆P` =




I
X

`
1∈K

` = 0

1
2

(
I
X

`
1∈K

+ I
X

`,(a)
1 ∈K

)
− I

X
`−1
1 ∈K ` > 0

where X
`
1 and X

`,(a)
1 are an identically distributed antithetic pair.

We have for all q > 2

E
[ ∥∥∥X1 − X

`
1

∥∥∥
q ]1/q

≤ C h
1/2
`

and E
[ ∥∥∥∥

1

2
(X

`
1 + X

`,(a)
1 )− X

`−1
1

∥∥∥∥
q ]1/q

≤ C h`.

Haji-Ali (HWU) MLMC and Path Branching ESI — 2 May, 2022 18 / 22



Antithetic estimator

For the Clark-Cameron SDE (dXt = W1,t dW2,t), using a Milstein scheme
requires sampling Lévy areas.

Giles & Szpruch (2014) proposed an antithetic Milstein scheme (with Lévy
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Antithetic estimator

Lemma (Antithetic rates)

Under similar assumptions on the SDE, we have for the antithetic Milstein
scheme

E[ (∆P`)
2 ] . h

1/2(1−1/(q+1))
`

and E
[

(E[ ∆P` | F1−τ ])2
]
. h

2(1−5/(q+5))
` /τ

3/2.

In other words

βd =
1

2
×
(

1− 1

q + 1

)
and βc = 2×

(
1− 5

q + 5

)
.

When q is arbitrary, we show that for any ν > 0,

Var[ ∆P` ] . h
3/2−ν
`
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Numerical Results on Clark-Cameron
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Numerical Results on Clark-Cameron
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What’s done

We also consider a sequence τ`′ = 2−η`
′

for some η > 0. For η > 1,
this reduces the work of ∆P` to O(2`).

More theoretical and numerical analysis for antithetic estimators.

A modular analysis: Application to other problems involving
conditional expectations and filtrations can be done by proving
assumptions.
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What’s TODO

Computing sensitivities: Using bumping, the variance increases as the
bump distance decreases. Branching can help.

Pricing other options (Barrier).

Particle systems and Multi-index Monte Carlo.

Approximate CDFs. Need to tighten theory to deal with increasing
number of discontinuities.

Parabolic SPDEs with MLMC or MIMC. Method extends naturally,
but analysis could be more challenging.
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Elliptic SDEs

Definiton ((Si) sets)

We say that a set S ⊂ Rd is an (Si) set if there exists an orthonormal
matrix A and a Lipschitz function f such that S = AS̃ for the set

S̃ = {x ∈ Rd : f (x−1) = x1},

and AS̃ denoting the image of S̃ under the transformation x → Ax .

Lemma

For K ⊂ Rd assume that ∂K ⊆ ⋃n
j=1 Sj for some finite n and (Si) sets

{Sj}nj=1. Assume further that a and σ are bounded and uniformly Hölder
continuous and σ is uniformly elliptic then

E
[

(P[ d∂K (X1) ≤ δ | F1−τ ])2
]
≤ C

δ2

τ 1/2
.
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A nice set

f1(x)

f2(y)

δK = {x ∈ R2 : x21 + x22 = 1}
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A not-so-nice set

∂K = {(r , θ) ∈ R+×[0, 2π] : r = (n + θ/π)−
1
2 , n ∈ N}
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Exponentials of Elliptic SDEs

What about a Geometric Brownian Motion Yt = exp(Xt)?

dYt = aYt dt + σYt dWt

dXt = a dt + σ dWt

Lemma

For K ⊂ Rd assume that ∂K ⊆ ⋃n
j=1 exp(Sj) for some finite n and (Si)

sets {Sj}nj=1. Assume further that a and σ are bounded and uniformly
Hölder continuous and σ is uniformly elliptic then

E
[

(P[ d∂K (exp(X1)) ≤ δ | F1−τ ])2
]
≤ C

δ2

τ 1/2
.
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