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Two-parameter family of Interval Translation Maps
(ITMs)

introduced by Bruin, Troubetzkoy in 2003

Tα,β(x) =


x + α, x ∈ [0,1 − α),

x + β, x ∈ [1 − α,1 − β),

x − 1 + β, x ∈ [1 − β,1]

on the parameter space U = {(α, β) : 0 ≤ β ≤ α ≤ 1}.
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Renormalization

Analyse the first return map to [1 − α,1]:
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On parameter space U = {(α, β) : 0 ≤ β ≤ α ≤ 1} function G
transforms Tα,β into Tα′,β′ with

(α′, β′) = G(α, β) =
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1 2 3

1
23

On parameter space U = {(α, β) : 0 ≤ β ≤ α ≤ 1} function G
transforms Tα,β into Tα′,β′ with

(α′, β′) = G(α, β) =

(
β

α
,
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+
⌊1
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.

Two types of parameters
▶ Finite Type: Tα,β reduces to interval exchange transformation
▶ Infinite Type: Ω :=

⋂
n≥0 T n

α,β([0,1]) is a Cantor set with Tα,β a
minimal endomorphism.

The set of parameters (α, β) with Tα,β is of infinite type has Lebesgue
measure zero.



S-adic Subshift
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Symbolically, one renormalization step is given by the substitution

χk :


1 → 2
2 → 31k

3 → 31k−1

for k =
⌊1
α

⌋
∈ N
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Symbolically, one renormalization step is given by the substitution

χk :


1 → 2
2 → 31k

3 → 31k−1

for k =
⌊1
α

⌋
∈ N

with incidence matrix

Ak =

0 k k − 1
1 0 0
0 1 1

 and det(Ak ) = −1.



We define a S-adic subshift based on a sequence of substitutions χki ,
ki ∈ N. The itinerary of the point 1 is

ρ = lim
i→∞

χk1 ◦ χk2 ◦ χk3 ◦ · · · ◦ χki (3).

The subshift X is the closure of {σn(ρ)}n∈N where σ is the left-shift.



We define a S-adic subshift based on a sequence of substitutions χki ,
ki ∈ N. The itinerary of the point 1 is

ρ = lim
i→∞

χk1 ◦ χk2 ◦ χk3 ◦ · · · ◦ χki (3).

The subshift X is the closure of {σn(ρ)}n∈N where σ is the left-shift.

Every ITM of infinite type in this family is uniquely characterised by a
sequence (ki)i∈N ⊂ N such that

k2i > 1 for infinitely many i ∈ N and k2j−1 > 1 for infinitely many j ∈ N.



Proposition

The S-adic subshift (X , σ), based on substitutions (χki )i∈N from an
ITM of infinite type, is
▶ aperiodic

▶ left-proper
▶ combinatorially recognizable
▶ primitive (⇒ (X , σ) is minimal).
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ITM of infinite type, is
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Proof.

Left-proper.

χki ◦ χki+1 :


1 → 31ki

2 → 31ki−12ki+1

3 → 31ki−12ki+1−1.



Proposition

The S-adic subshift (X , σ), based on substitutions (χki )i∈N from an
ITM of infinite type, is
▶ aperiodic
▶ left-proper
▶ combinatorially recognizable

▶ primitive (⇒ (X , σ) is minimal).

Proof.

Combinatorial Recognizability.
For example

x = . . . | 2 | 3 1 1 | 3 1 | 2 | 2 | 3 1 1 | . . .
= . . . χ2(1) χ2(2) χ2(3) χ2(1) χ2(1) χ2(2) . . .



Proposition

The S-adic subshift (X , σ), based on substitutions (χki )i∈N from an
ITM of infinite type, is
▶ aperiodic
▶ left-proper
▶ combinatorially recognizable
▶ primitive (⇒ (X , σ) is minimal).

Proof.

Primitivity.

Ãi = A1 · · ·A1︸ ︷︷ ︸
ri,1≥0

·Aki,1 · A1 · · ·A1︸ ︷︷ ︸
ri,2 odd

Aki,2 · · · · · ·Aki,m · A1 · · ·A1︸ ︷︷ ︸
ri,m+1 even

·Aki,m+1 · Aki,m+2 ,

is a full matrix for
▶ ki,j ≥ 2 for 1 ≤ j ≤ m + 1, ki,m+2 ≥ 1.



Linearly Recurrent Subshift

Definition
A subshift (X , σ) is linearly recurrent if there is L ∈ N such that for
every x ∈ X , every subword w reappears in x with gap ≤ L|w |.

⇒ From linear recurrence follows unique ergodicity, no mixing, exact
finite rank, . . .

Theorem
The subshift (X , σ) associated to an ITM of infinite type is linearly
recurrent if and only if
▶ (ki)i∈N is bounded and
▶ the sets {i : k2i > 1} and {i : k2i−1 > 1} have bounded gaps.

Proof idea: Show ∃ telescoping (χki )i into finitely many, left-proper
substitutions with full incidence matrices.
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Weakly Mixing

Definition
A minimal dynamical system (X ,T ) is called weakly mixing if the
Koopman operator

UT (f ) = f ◦ T

has 1 as its only eigenvalue.

If an eigenfunction f is
▶ in L2, then its eigenvalue is called measurable,
▶ continuous, then its eigenvalue is called continuous.



Eigenvalue Conditions - Periodic Case

Theorem (Host in 1986)

For a primitive substitution system a sufficient condition to have an
eigenvalue e2πit for some t ∈ (0,1) is

∞∑
n=1

|||⃗tAn||| < ∞, t⃗ = (t , t , t),

where |||x ||| is the distance of a vector to the nearest integer lattice
point.

This condition was later expanded to hold for linearly recurrent S-adic
shifts and their continuous eigenvalues.



Periodic Case

Theorem
Every ITM of infinite type with (pre-)periodic sequence (ki)i∈N is
weakly mixing.

Proof.
Define An = Ak1 · · ·Akn > 0 with period n.
▶ An is irreducible matrix, eigenvalues are cubic numbers.
▶ Stable space is one-dimensional in direction E3 = (u, v ,−1).
▶ For t⃗ to be in integer translation of E3:t

t
t

+ s

 u
v
−1

 =

p
q
r

 for p,q, r ∈ Z and reals u, v > 0.

▶ Find λ3 is a quadratic number, a contradiction.
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General Case - Continuous Eigenvalues

Theorem (Durand, Frank, Maass in 2019)

Let (X , σ) be a subshift based on a proper Bratteli diagram. Then
e2πit is a continuous eigenvalue if and only if

∞∑
n=1

max
x∈X

|||⟨sn(x), t⃗ Ã1 · · · Ãn⟩||| < ∞, t⃗ = (t , t , t),

where
(sn(x))v = ♯{e ∈ En+1 : e ≻ xn+1, s(e) = v},

the vector sn(x) counts the number of incoming edges that are higher
in the order than edge xn+1 of the path x . It depends on Ãn+1.



Lyapunov Exponents

Proposition

For every ITM of infinite type with sequence (ki)i∈N the sequences of
eigenvalues (λn,i)n≥1, i = 1,2,3, of

∏n
i=1 Aki satisfy

lim sup
n→∞

1
n
log λn,3 < 0 ≤ lim inf

n→∞

1
n
log |λn,2|

≤ lim sup
n→∞

1
n
log |λn,2| ≤ lim inf

n→∞

1
n
log λn,1.

Further there are vectors v⃗1, v⃗2, v⃗3 ∈ R3, and C > 0 such that for all n,
such that

1
C
λn,i ≤ ∥v⃗i

n∏
i=1

Aki∥ ≤ Cλn,i ,

for i = 1,2,3 and for all n ≥ 1.



Proof.
▶ Ak preserves positive octant Q+.

By primitivity, Ãi is a positive integer matrix, thus log(λ1) > 0 and
unstable space in interior of Q+.

▶ A−1
k preserves octant Q− = {x1, x2 ≥ 0 ≥ x3},

change coordinates to Q+

Bk = UA−1
k U−1 =

0 1 k − 1
1 0 0
0 1 k


⇒ log(λ3) < 0.

▶ By
log(λ1) + log(λ2) + log(λ3) = 0

if we can show log(λ1) + log(λ3) ≤ 0, then log(λ2) ≥ 0.
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Lyapunov Exponents

Proposition

For every ITM of infinite type with sequence (ki)i∈N the sequences of
eigenvalues (λn,i)n≥1, i = 1,2,3, of

∏n
i=1 Aki satisfy

lim sup
n→∞

1
n
log λn,3 < 0 ≤ lim inf

n→∞

1
n
log |λn,2|

≤ lim sup
n→∞

1
n
log |λn,2| ≤ lim inf

n→∞

1
n
log λn,1.

Proposition

Every linearly recurrent ITM of infinite type has two strictly positive
(as lim inf) and one strictly negative (as lim sup) Lyapunov exponent.



Direction of the Stable Space
Follow (u, v ,1 − (u + v))Bk normalised to unit length, indicate the first
two coordinates

Hk : (u, v) =
1

Dk
(v , 1 − v) for Dk = k(1 − v) + 1 − u,

u

v

∆
∆k

1
k

1
k+1

(b)

(a)

(c)

(a’)

(b’)

(c’)

Figure: The simplex ∆ and image ∆k = Hk (∆) (left) and further images
Hk1(Hk2(∆)) (right).



Direction of the Stable Space

To have t⃗ in stable direction

(u, v) ∈ ℓp,q,r = {(u, v) ∈ ∆ : u(q − r) = v(p − r) + q − p}.

u

v

∆

∆k

1
k

1
k+1

(b)

(a)

(c)

(a’)

(b’)

(c’)

•

ℓ2,1,0

ℓ3,1,0

ℓ1,1,0



Results for Continuous Eigenvalues

Theorem
Let T(α,β) be a ITM of infinite type with the stable space W s. If
t⃗ ̸∈ W s mod 1 for all t ∈ (0,1), then e2πit is not a continuous
eigenvalue of the Koopman operator.

Theorem
There exist parameters (α, β) such that t⃗ ∈ W s mod 1 and e2πit is not
a continuous eigenvalue of the Koopman operator.

∞∑
n=1

max
x∈X

|||⟨sn(x), t⃗ Ã1 · · · Ãn⟩||| = ∞ for t⃗ = (t , t , t),
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Measurable Eigenvalues

Conditions for measurable eigenvalues are more difficult to compute:

Theorem (Bressaud, Durand, Maass in 2005)

A necessary and sufficient condition for e2πit to be a measurable
eigenvalue is the following:
There is a sequence of functions ρn : Vn+1 → R such that

gn(x) := t
(

S̃n(x) + ρn(w)
)
mod 1

converges for µ-a.e. x ∈ XBV as n → ∞,

where S̃n(x) =
∑n

j=1⟨s̃j(x), 1⃗Ã1 · · · Ãj⟩ is the minimal number of steps
to the base of a tower.



Results for Measurable Eigenvalues

Theorem
Let T(α,β) be a ITM of infinite type with lim infn kn < ∞. If t⃗ does not
belong to the stable space W s mod 1 for all t ∈ (0,1), then the
corresponding ITM is weakly mixing.

Remark: lim infn kn < ∞ implies unique ergodicity

Corollary

A linearly recurrent ITM of infinite type is

weakly mixing if and only if t⃗ ̸∈ W s mod 1 for all t ∈ (0,1).

Furthermore, any measurable eigenvalue is continuous.
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Thank you for your attention!
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