Interval Translation Maps: Renormalization and Weak Mixing

Silvia Radinger based on joint work with Henk Bruin

23 April 2025 at the Erwin Schrödinger International Institute

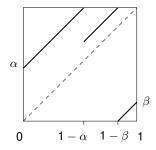
◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Two-parameter family of Interval Translation Maps (ITMs)

introduced by Bruin, Troubetzkoy in 2003

$$T_{\alpha,\beta}(x) = \begin{cases} x + \alpha, & x \in [0, 1 - \alpha), \\ x + \beta, & x \in [1 - \alpha, 1 - \beta), \\ x - 1 + \beta, & x \in [1 - \beta, 1] \end{cases}$$

on the parameter space $U = \{(\alpha, \beta) : 0 \le \beta \le \alpha \le 1\}$.



・ コット (雪) (小田) (コット 日)

Analyse the first return map to $[1 - \alpha, 1]$:



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Analyse the first return map to $[1 - \alpha, 1]$:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Analyse the first return map to $[1 - \alpha, 1]$:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Analyse the first return map to $[1 - \alpha, 1]$:

Analyse the first return map to $[1 - \alpha, 1]$:

Analyse the first return map to $[1 - \alpha, 1]$:

Analyse the first return map to $[1 - \alpha, 1]$:

On parameter space $U = \{(\alpha, \beta) : 0 \le \beta \le \alpha \le 1\}$ function *G* transforms $T_{\alpha,\beta}$ into $T_{\alpha',\beta'}$ with

$$(\alpha',\beta') = G(\alpha,\beta) = \left(\frac{\beta}{\alpha}, \frac{\beta-1}{\alpha} + \lfloor \frac{1}{\alpha} \rfloor\right).$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

On parameter space $U = \{(\alpha, \beta) : 0 \le \beta \le \alpha \le 1\}$ function *G* transforms $T_{\alpha,\beta}$ into $T_{\alpha',\beta'}$ with

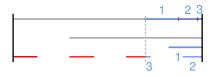
$$(\alpha',\beta') = G(\alpha,\beta) = \left(\frac{\beta}{\alpha}, \frac{\beta-1}{\alpha} + \lfloor \frac{1}{\alpha} \rfloor\right).$$

Two types of parameters

- Finite Type: $T_{\alpha,\beta}$ reduces to interval exchange transformation
- Infinite Type: $\Omega := \bigcap_{n \ge 0} \overline{T_{\alpha,\beta}^n([0,1])}$ is a Cantor set with $T_{\alpha,\beta}$ a minimal endomorphism.

The set of parameters (α, β) with $T_{\alpha,\beta}$ is of infinite type has Lebesgue measure zero.

S-adic Subshift

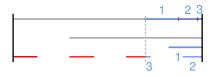


Symbolically, one renormalization step is given by the substitution

$$\chi_{k}: \begin{cases} 1 \to 2\\ 2 \to 31^{k}\\ 3 \to 31^{k-1} \end{cases} \quad \text{for } k = \left\lfloor \frac{1}{\alpha} \right\rfloor \in \mathbb{N}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

S-adic Subshift



Symbolically, one renormalization step is given by the substitution

$$\chi_{k}: \begin{cases} 1 \to 2\\ 2 \to 31^{k}\\ 3 \to 31^{k-1} \end{cases} \quad \text{for } k = \left\lfloor \frac{1}{\alpha} \right\rfloor \in \mathbb{N}$$

with incidence matrix

$$A_k = \begin{pmatrix} 0 & k & k-1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$
 and $\det(A_k) = -1$.

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

We define a S-adic subshift based on a sequence of substitutions χ_{k_i} , $k_i \in \mathbb{N}$. The itinerary of the point 1 is

$$\rho = \lim_{i\to\infty} \chi_{k_1} \circ \chi_{k_2} \circ \chi_{k_3} \circ \cdots \circ \chi_{k_i} (\mathbf{3}).$$

The subshift *X* is the closure of $\{\sigma^n(\rho)\}_{n\in\mathbb{N}}$ where σ is the left-shift.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

We define a S-adic subshift based on a sequence of substitutions χ_{k_i} , $k_i \in \mathbb{N}$. The itinerary of the point 1 is

$$\rho = \lim_{i\to\infty} \chi_{k_1} \circ \chi_{k_2} \circ \chi_{k_3} \circ \cdots \circ \chi_{k_i} (\mathbf{3}).$$

The **subshift** X is the closure of $\{\sigma^n(\rho)\}_{n \in \mathbb{N}}$ where σ is the **left-shift**.

Every *ITM of infinite type* in this family is uniquely characterised by a sequence $(k_i)_{i \in \mathbb{N}} \subset \mathbb{N}$ such that

 $k_{2i} > 1$ for infinitely many $i \in \mathbb{N}$ and $k_{2i-1} > 1$ for infinitely many $j \in \mathbb{N}$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The S-adic subshift (X, σ) , based on substitutions $(\chi_{k_i})_{i \in \mathbb{N}}$ from an ITM of infinite type, is

The S-adic subshift (X, σ) , based on substitutions $(\chi_{k_i})_{i \in \mathbb{N}}$ from an ITM of infinite type, is

- ► aperiodic
- left-proper

Proof.

Left-proper.

$$\chi_{k_i} \circ \chi_{k_{i+1}} : \begin{cases} 1 \to 31^{k_i} \\ 2 \to 31^{k_i-1}2^{k_{i+1}} \\ 3 \to 31^{k_i-1}2^{k_{i+1}-1}. \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The S-adic subshift (X, σ) , based on substitutions $(\chi_{k_i})_{i \in \mathbb{N}}$ from an ITM of infinite type, is

- ► aperiodic
- left-proper
- combinatorially recognizable

Proof.

Combinatorial Recognizability.

For example

$$x = \dots |2|311|31|2|2|311| \dots$$

= ... $\chi_2(1) \chi_2(2) \chi_2(3) \chi_2(1) \chi_2(1) \chi_2(2) \dots$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The S-adic subshift (X, σ) , based on substitutions $(\chi_{k_i})_{i \in \mathbb{N}}$ from an ITM of infinite type, is

- ► aperiodic
- left-proper
- combinatorially recognizable
- primitive (\Rightarrow (*X*, σ) is minimal).

Proof.

Primitivity.

$$\tilde{A}_{i} = \underbrace{A_{1}\cdots A_{1}}_{r_{i,1}\geq 0} \cdot A_{k_{i,1}} \cdot \underbrace{A_{1}\cdots A_{1}}_{r_{i,2} \text{ odd}} A_{k_{i,2}} \cdot \cdots \cdot A_{k_{i,m}} \cdot \underbrace{A_{1}\cdots A_{1}}_{r_{i,m+1} \text{ even}} \cdot A_{k_{i,m+1}} \cdot A_{k_{i,m+2}},$$

・ロト ・ 『 ト ・ ヨ ト ・ ヨ ト

is a full matrix for

▶
$$k_{i,j} \ge 2$$
 for $1 \le j \le m + 1$, $k_{i,m+2} \ge 1$.

Linearly Recurrent Subshift

Definition

A subshift (X, σ) is linearly recurrent if there is $L \in \mathbb{N}$ such that for every $x \in X$, every subword *w* reappears in *x* with gap $\leq L|w|$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Linearly Recurrent Subshift

Definition

A subshift (X, σ) is linearly recurrent if there is $L \in \mathbb{N}$ such that for every $x \in X$, every subword *w* reappears in *x* with gap $\leq L|w|$.

 \Rightarrow From linear recurrence follows unique ergodicity, no mixing, exact finite rank, \ldots

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Linearly Recurrent Subshift

Definition

A subshift (X, σ) is linearly recurrent if there is $L \in \mathbb{N}$ such that for every $x \in X$, every subword *w* reappears in *x* with gap $\leq L|w|$.

 \Rightarrow From linear recurrence follows unique ergodicity, no mixing, exact finite rank, \ldots

Theorem

The subshift (X, σ) associated to an ITM of infinite type is linearly recurrent if and only if

- \blacktriangleright $(k_i)_{i\in\mathbb{N}}$ is bounded and
- the sets $\{i : k_{2i} > 1\}$ and $\{i : k_{2i-1} > 1\}$ have bounded gaps.

Proof idea: Show \exists telescoping $(\chi_{k_i})_i$ into finitely many, left-proper substitutions with full incidence matrices.

Weakly Mixing

Definition

A minimal dynamical system (X, T) is called *weakly mixing* if the Koopman operator

$$U_T(f) = f \circ T$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

has 1 as its only eigenvalue.

If an eigenfunction *f* is

- ▶ in L^2 , then its eigenvalue is called *measurable*,
- continuous, then its eigenvalue is called *continuous*.

Eigenvalue Conditions - Periodic Case

Theorem (Host in 1986)

For a primitive substitution system a sufficient condition to have an eigenvalue $e^{2\pi i t}$ for some $t \in (0, 1)$ is

$$\sum_{n=1}^{\infty} \| \vec{t} \mathbf{A}^n \| < \infty, \qquad \vec{t} = (t, t, t),$$

where |||x||| is the distance of a vector to the nearest integer lattice point.

This condition was later expanded to hold for linearly recurrent S-adic shifts and their continuous eigenvalues.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Theorem

Every ITM of infinite type with (pre-)periodic sequence $(k_i)_{i\in\mathbb{N}}$ is weakly mixing.

Theorem

Every ITM of infinite type with (pre-)periodic sequence $(k_i)_{i\in\mathbb{N}}$ is weakly mixing.

Proof.

Define $A^n = A_{k_1} \cdots A_{k_n} > 0$ with period *n*.

► *Aⁿ* is irreducible matrix, eigenvalues are cubic numbers.

Theorem

Every ITM of infinite type with (pre-)periodic sequence $(k_i)_{i\in\mathbb{N}}$ is weakly mixing.

Proof.

Define $A^n = A_{k_1} \cdots A_{k_n} > 0$ with period *n*.

- \triangleright A^n is irreducible matrix, eigenvalues are cubic numbers.
- Stable space is one-dimensional in direction $E_3 = (u, v, -1)$.

Theorem

Every ITM of infinite type with (pre-)periodic sequence $(k_i)_{i\in\mathbb{N}}$ is weakly mixing.

Proof.

Define $A^n = A_{k_1} \cdots A_{k_n} > 0$ with period *n*.

- \triangleright A^n is irreducible matrix, eigenvalues are cubic numbers.
- Stable space is one-dimensional in direction $E_3 = (u, v, -1)$.
- For \vec{t} to be in integer translation of E_3 :

$$egin{pmatrix} t \ t \ t \end{pmatrix} + oldsymbol{s} egin{pmatrix} u \ v \ -1 \end{pmatrix} = egin{pmatrix} p \ q \ r \end{pmatrix} ext{ for } p,q,r \in \mathbb{Z} ext{ and reals } u,v > 0. \end{cases}$$

Theorem

Every ITM of infinite type with (pre-)periodic sequence $(k_i)_{i\in\mathbb{N}}$ is weakly mixing.

Proof.

Define $A^n = A_{k_1} \cdots A_{k_n} > 0$ with period *n*.

- \triangleright A^n is irreducible matrix, eigenvalues are cubic numbers.
- Stable space is one-dimensional in direction $E_3 = (u, v, -1)$.
- For \vec{t} to be in integer translation of E_3 :

$$egin{pmatrix} t \ t \ t \end{pmatrix} + s egin{pmatrix} u \ v \ -1 \end{pmatrix} = egin{pmatrix} p \ q \ r \end{pmatrix} ext{ for } p,q,r \in \mathbb{Z} ext{ and reals } u,v > 0. \end{cases}$$

Find λ_3 is a quadratic number, a contradiction.

General Case - Continuous Eigenvalues

Theorem (Durand, Frank, Maass in 2019)

Let (X, σ) be a subshift based on a proper Bratteli diagram. Then $e^{2\pi i t}$ is a continuous eigenvalue if and only if

$$\sum_{n=1}^{\infty} \max_{x \in X} \|\langle \boldsymbol{s}_n(x), \vec{t} \tilde{\boldsymbol{A}}_1 \cdots \tilde{\boldsymbol{A}}_n \rangle \| < \infty, \qquad \vec{t} = (t, t, t),$$

where

$$(s_n(x))_v = \sharp \{ e \in E_{n+1} : e \succ x_{n+1}, s(e) = v \},$$

the vector $s_n(x)$ counts the number of incoming edges that are higher in the order than edge x_{n+1} of the path *x*. **It depends on** \tilde{A}_{n+1} .

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Lyapunov Exponents

Proposition

For every ITM of infinite type with sequence $(k_i)_{i \in \mathbb{N}}$ the sequences of eigenvalues $(\lambda_{n,i})_{n \ge 1}$, i = 1, 2, 3, of $\prod_{i=1}^{n} A_{k_i}$ satisfy

$$\limsup_{n \to \infty} \frac{1}{n} \log \lambda_{n,3} < 0 \le \liminf_{n \to \infty} \frac{1}{n} \log |\lambda_{n,2}|$$
$$\le \limsup_{n \to \infty} \frac{1}{n} \log |\lambda_{n,2}| \le \liminf_{n \to \infty} \frac{1}{n} \log \lambda_{n,1}$$

Further there are vectors $\vec{v}_1, \vec{v}_2, \vec{v}_3 \in \mathbb{R}^3$, and C > 0 such that for all *n*, such that

$$\frac{1}{C}\lambda_{n,i} \leq \|\vec{v}_i\prod_{i=1}^n A_{k_i}\| \leq C\lambda_{n,i},$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

for i = 1, 2, 3 and for all $n \ge 1$.

Proof.

A_k preserves positive octant Q⁺.
 By primitivity, *Ã_i* is a positive integer matrix, thus log(λ₁) > 0 and unstable space in interior of Q⁺.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proof.

- *A_k* preserves positive octant Q⁺.
 By primitivity, *Ã_i* is a positive integer matrix, thus log(λ₁) > 0 and unstable space in interior of Q⁺.
- A_k⁻¹ preserves octant Q[−] = {x₁, x₂ ≥ 0 ≥ x₃}, change coordinates to Q⁺

$$B_k = UA_k^{-1}U^{-1} = \begin{pmatrix} 0 & 1 & k-1 \\ 1 & 0 & 0 \\ 0 & 1 & k \end{pmatrix}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 $\Rightarrow \log(\lambda_3) < 0.$

Proof.

- *A_k* preserves positive octant Q⁺.
 By primitivity, *Ã_i* is a positive integer matrix, thus log(λ₁) > 0 and unstable space in interior of Q⁺.
- A_k⁻¹ preserves octant Q[−] = {x₁, x₂ ≥ 0 ≥ x₃}, change coordinates to Q⁺

$$B_k = UA_k^{-1}U^{-1} = \begin{pmatrix} 0 & 1 & k-1 \\ 1 & 0 & 0 \\ 0 & 1 & k \end{pmatrix}$$

 $\Rightarrow \log(\lambda_3) < 0.$

By

$$\log(\lambda_1) + \log(\lambda_2) + \log(\lambda_3) = 0$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

if we can show $\log(\lambda_1) + \log(\lambda_3) \le 0$, then $\log(\lambda_2) \ge 0$.

Lyapunov Exponents

Proposition

For every ITM of infinite type with sequence $(k_i)_{i \in \mathbb{N}}$ the sequences of eigenvalues $(\lambda_{n,i})_{n \ge 1}$, i = 1, 2, 3, of $\prod_{i=1}^{n} A_{k_i}$ satisfy

$$\limsup_{n \to \infty} \frac{1}{n} \log \lambda_{n,3} < 0 \le \liminf_{n \to \infty} \frac{1}{n} \log |\lambda_{n,2}|$$
$$\le \limsup_{n \to \infty} \frac{1}{n} \log |\lambda_{n,2}| \le \liminf_{n \to \infty} \frac{1}{n} \log \lambda_{n,1}.$$

Proposition

Every linearly recurrent ITM of infinite type has two strictly positive (as lim inf) and one strictly negative (as lim sup) Lyapunov exponent.

Direction of the Stable Space

Follow $(u, v, 1 - (u + v))B_k$ normalised to unit length, indicate the first two coordinates

$$H_k: (u, v) = \frac{1}{D_k}(v, 1-v)$$
 for $D_k = k(1-v) + 1 - u$,

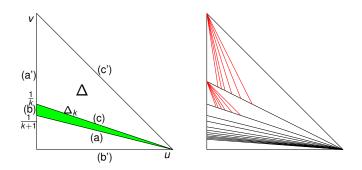
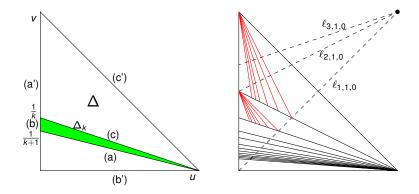


Figure: The simplex Δ and image $\Delta_k = H_k(\Delta)$ (left) and further images $H_{k_1}(H_{k_2}(\Delta))$ (right).

Direction of the Stable Space

To have \vec{t} in stable direction

$$(u, v) \in \ell_{p,q,r} = \{(u, v) \in \Delta : u(q - r) = v(p - r) + q - p\}.$$



・ロト ・聞ト ・ヨト ・ヨト

- 2

Results for Continuous Eigenvalues

Theorem

Let $T_{(\alpha,\beta)}$ be a ITM of infinite type with the stable space W^s . If $\vec{t} \notin W^s \mod 1$ for all $t \in (0,1)$, then $e^{2\pi i t}$ is not a continuous eigenvalue of the Koopman operator.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Results for Continuous Eigenvalues

Theorem

Let $T_{(\alpha,\beta)}$ be a ITM of infinite type with the stable space W^s . If $\vec{t} \notin W^s \mod 1$ for all $t \in (0,1)$, then $e^{2\pi i t}$ is not a continuous eigenvalue of the Koopman operator.

Theorem

There exist parameters (α, β) such that $\vec{t} \in W^s \mod 1$ and $e^{2\pi i t}$ is not a continuous eigenvalue of the Koopman operator.

$$\sum_{n=1}^{\infty} \max_{x \in X} \|\langle \boldsymbol{s}_n(x), \vec{t} \tilde{\boldsymbol{A}}_1 \cdots \tilde{\boldsymbol{A}}_n \rangle \| = \infty \text{ for } \vec{t} = (t, t, t),$$

・ロン ・四 と ・ ヨ と 一 ヨ

Measurable Eigenvalues

COI

Conditions for measurable eigenvalues are more difficult to compute:

Theorem (Bressaud, Durand, Maass in 2005)

A necessary and sufficient condition for $e^{2\pi it}$ to be a measurable eigenvalue is the following:

There is a sequence of functions $\rho_n: V_{n+1} \to \mathbb{R}$ such that

$$g_n(x) := t\left(ilde{S}_n(x) +
ho_n(w)
ight) mmod 1$$
nverges for $\mu ext{-a.e.} \ x \in X_{BV}$ as $n o \infty,$

(日) (日) (日) (日) (日) (日) (日)

where $\tilde{S}_n(x) = \sum_{j=1}^n \langle \tilde{s}_j(x), \vec{1}\tilde{A}_1 \cdots \tilde{A}_j \rangle$ is the minimal number of steps to the base of a tower.

Results for Measurable Eigenvalues

Theorem

Let $T_{(\alpha,\beta)}$ be a ITM of infinite type with $\liminf_n k_n < \infty$. If \vec{t} does not belong to the stable space $W^s \mod 1$ for all $t \in (0, 1)$, then the corresponding ITM is weakly mixing.

Remark: $\liminf_n k_n < \infty$ implies unique ergodicity

Results for Measurable Eigenvalues

Theorem

Let $T_{(\alpha,\beta)}$ be a ITM of infinite type with $\liminf_n k_n < \infty$. If \vec{t} does not belong to the stable space $W^s \mod 1$ for all $t \in (0, 1)$, then the corresponding ITM is weakly mixing.

Remark: $\liminf_n k_n < \infty$ implies unique ergodicity

Corollary

A linearly recurrent ITM of infinite type is

weakly mixing if and only if $\vec{t} \notin W^s \mod 1$ for all $t \in (0, 1)$.

Furthermore, any measurable eigenvalue is continuous.

Thank you for your attention!

- V. Berthé, P. Cecchi Bernales, Reem Yassawi, Coboundaries and eigenvalues of finitary S-adic systems, Preprint 2022, arXiv:2202.07270
- X. Bressaud, F. Durand, A. Maass, Necessary and sufficient conditions to be an eigenvalue for linearly recurrent dynamical Cantor systems. Journal of the London Mathematical Society 72 (2005) 799–816.
- H. Bruin, S. Troubetzkoy, *The Gauss map on a class of interval translation mappings.* Isr. J. Math. 137 (2003) 125–148.
- F. Durand, A. Frank, A. Maass, *Eigenvalues of minimal Cantor systems.* J. Eur. Math. Soc. 21 (2019) 727–775.
- B. Host, Valeurs propres des systèmes dynamiques définis par des substitutions de longueur variable. Ergod. Th. & Dynam. Sys. 6 (1986) 529–540.

(ロ) (同) (三) (三) (三) (○) (○)