
Three roads from tensors models to continuous geometry

Nicolas Delporte & Vincent Rivasseau

IJCLab, Université Paris-Saclay
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Introduction Motivation

Motivation

We use the perspective

Quantizing Gravity ' Randomizing Geometry

Functional integral quantization, in Euclidean setting

Z '
∑
S

∫
Dg e −

∫
S AEH (g)

where Dg and even S are to be defined...

A fundamental difficulty is that the theory on a four dimensional flat space is
perturbatively not renormalisable =⇒ non-UV complete.

In two dimensions, random matrix models are among the most successful ways
to explore quantum gravity non perturbatively & ab initio.

The Tensor Track generalizes this success to use tensors to explore to quantum
gravity in higher dimensions [VR ’11, ’12, ’13, ’16, ’18, ’20].
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Introduction Renormalization

Renormalization

Physics is mathematics plus scales.

Since 1930’s, the idea that physics also depends on the probing scale was
independently exploited in particle physics and condensed matter:

- [Gell-Mann, Low, Dyson] “dress” an elementary particle with an effective
(renormalized) charge;

- [Stueckelberg, Petermann, Kadanoff] block spin transformations to recover
scaling laws near critical point.

Wilson fused both points of view [Wilson ’71]:

e−Sk [φ<k ] =

∫
k<k′<Λ

Dφk′e
−SΛ[φk′<k+φk′>k ].

Fluctuations of higher energy scales are integrated out, generates a flow of the
effective action in theory space.
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Introduction Renormalization

Renormalization Group

Given a QFT defined by a set of (dimensionless) couplings {gi}i=1,..., after
regularization, they flow with the probing scale µ as

βi :=
dgi

d logµ
= f (g1, . . . ).

UV/IR fixed points form universality
classes of QFTs, characterized by

• symmetries,

• spacetime dimensions,

• number of degrees of freedom.

Relevant, irrelevant, marginal
directions.
Asymptotic freedom: UV Gaussian
fixed point.

[Credit: David Tong]

A theory is renormalizable if it has a finite number of relevant couplings.
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Introduction Tensor Models: a survey

Tensor Models in 0 dimensions

Generalising vector and matrix models, tensor models are:

Field: Ta1...ar rank r (unsymmetrized) tensor, transforms under G⊗r (G of
rank N):

T ′b1...br =
∑
a

U
(1)

b1a1 . . .U
(r)
br arTa1...ar , U(i) ∈ G .

Action and Observables: G⊗r -invariants (B “bubbles”).

S = S0 + Sint ;

S0(T , T̄ ) =
∑
a

Ta1...ar T̄a1...ar︸ ︷︷ ︸
propagator

; Sint =
∑

r -colored graphs B

tB TrB(T , T̄ ) .

︸ ︷︷ ︸
interaction

This action is invariant under the symmetry G⊗r .
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Introduction Tensor Models: a survey

Tensor invariants as Colored Graphs

Example (r = 3, G = U(N)):∑
δa1p1δa2q2δa3r3 δb1r1δb2p2δb3q3 δc1q1δc2r2δc3p3

Ta1a2a3Tb1b2b3Tc1c2c3 T̄p1p2p3 T̄q1q2q3 T̄r1r2r3

White (black) vertices for T (T̄ ).

Edges for δacqc colored by c, the
position of the index.
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Introduction Tensor Models: a survey

Tensor invariants as Colored Graphs

Example (r = 3, G = U(N)):

TrB(T , T̄ ) =
∑∏

v

Ta1
v ...a

r
v

∏
v̄

T̄q1
v̄ ...q

r
v̄

r∏
c=1

∏
ec=(w,w̄)

δacw qcw̄

White (black) vertices for T (T̄ ).

Edges for δacqc colored by c, the
position of the index.
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Introduction Tensor Models: a survey

Feynman expansion

S(T , T̄ ) =
∑

Tb1...br T̄q1...qr

r∏
c=1

δbcqc +
∑

r -colored graphs B

tB TrB(T , T̄ ) ,

Z(tB) =

∫
[dT̄dT ] e−Nr−1S(T ,T̄ )

Feynman expansion:

• Taylor expand the interactions (r -colored graphs)

• Perform the Gaussian integrals by Wick theorem ((r + 1)-colored graphs)

Z({tBi }) =
∑∫

T ,T̄

e−Nr−1TT̄ tB1 TrB1 (T , T̄ )tB2 TrB2 (T , T̄ ) . . .

=
∑

(r+1)-colored G

A(G)
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Introduction Tensor Models: a survey
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Introduction Tensor Models: a survey

1/N expansion

Without other rescaling of couplings, vacuum graphs indexed by Gurau degree

A(G) ∼ N r−ω(G) , ω(G) =
1

2(r − 1)!

∑
J

g(J ) .

J : embeddings of the colored graph on the plane (jackets), of genus g(J ).

ω = 0 ⇐⇒ g(J ) = 0 ∀J ⇐⇒ melonic. [Gurau ’10]

- Iterative self-insertion of the fundamental melon.
- Counted by edge-colored rooted (r + 1)-ary trees.
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Introduction Tensor Models: a survey

Optimal scalings

What scaling can allow an interaction to contribute infinitely at leading order?

SN(T ) = N r/2

(
T · T +

∑
B

tBN
−ρ(B)IB

)
, ρ(B) =

FB
r − 1

− r

2
,

for Maximally Single Trace interactions (1 face for each pair of colors):

allows generalized melonic diagrams [Carrozza, Tanasa ’15, Ferrari, VR, Valette ’17]:

(still trees).
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Introduction Tensor Models: a survey

Large-N limits

Vectors vi Matrices Mij Tensors Tij...k

Cyclomatic number Genus Gurau degree

Branched polymers
(dH = 2, dS = 4/3)

Brownian sphere
(dH = 4, dS = 2)

Branched polymers
(dH = 2, dS = 4/3)

(vivi ) Tr(Mn) (2n)-regular graphs ∼ n!

Higher-spins String theory Unknown!
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Introduction Tensor Models: a survey

A surprise: the SYK model

The Sachdev-Ye-Kitaev model is a quantum system of N Majorana fermions at
temperature 1/β with quenched disorder [Kitaev ’15, Maldacena Stanford ’16]

H = −
∑

1≤i<j<k<l≤N

Jijklχiχjχkχl

{χi , χj} = δij
〈
J2
ijkl

〉
=

3!

N3
J2

whose large N and strong coupling limits (1� βJ � N) present

- approximate reparameterization symmetry,

- saturation of chaos bound [Maldacena et al. ’15].

→ Simplest model of holography (AdS2/CFT1)
→ Recent progress regarding the black hole information paradox [Strings ’20].

It is solvable because this limit is melonic.
1d tensor models present the same features, without disorder [Witten ’16].
Motivated the study of d ≥ 1 tensor models.
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Introduction Tensor Models: a survey

Tensor models: a (partial) timeline

2010: Colored models [Gurau]

2011: Single scaling limit [Gurau et al.]

Universality [Gurau]

2012: Uncolored models [Bonzom et al.]

Asymptotically safe and free models [Ben Geloun et al., Carrozza et al.]

2013: Melons are branched polymers [Gurau, Ryan]

Double scaling limit [Dartois et al.] → cherry trees
Counting invariants [Ben Geloun et.]

Structure at all orders [Gurau, Schaeffer]

2014: Analyticity and Borel summability [Delepouve al.]

2015: Symmetry breaking [Delepouve, Gurau]

2016: Enhanced models: branched polymers, baby universes, Brownian map
[Bonzom] (and later [Lionni ’17] for many more bubble types)

2017: Melon dominance in irreps of O(N)3 tensor models [Gurau, Benedetti et al.,

Carrozza] and later Sp(N) [Carrozza, Pozsgay ’18]

Subleading corrections [Bonzom et al.], Crystallization theory [Casali et al.]

Melonic CFTs [Giombi et al., Benedetti et al., etc.]

2018: Melonic limit in turbulence [Dartois et al.]

2020: Tensor eigenvalues [Evnin; Gurau], Data analysis [Lahoche et al.]
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First Road: Double and Multiple Scaling Double Scaling for Matrices and Tensors

Double Scaling for Matrices

To go beyond the result of [Gurau, Ryan ’13] that the melons are branched
polymers and find more interesting geometries, one needs to incorporate the
sub-leading contributions in 1/N.

One should try the double scaling limit. In the matrix case, let us consider the
following partition function

Z(N, λ) =

∫
dMe−N( 1

2
tr M2−λ

4
tr M4) ,

F (N, λ) = log(Z) =
∑
g≥0

N2−2gFg (λ) ,

where Fg (λ) is the generating series of the genus g ribbon graphs.
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First Road: Double and Multiple Scaling Double Scaling for Matrices and Tensors

Double Scaling for Matrices II

All Fg ’s are holomorphic in a certain domain of λ and meet a singularity at λc .
The behaviour of Fg around λc is of the form

Fg (λ) ∼ Kg (λ− λc)
(2−γ)

2
χ(g),

with γ = − 1
m

for some m ≥ 2, Kg is some constant and χ(g) = 2− 2g . Given
the diverging point λc , the double scaling is when both N →∞ and λ→ λc in

a correlated way. Setting x = N−1(λ− λc)
γ−2

2 , we obtain

F (x) =
∑
g≥0

x2g−2Kg .

The Kg ’s behave as (2g)! since the resulting series sums all Feynman graphs.
Related to integrable minimal models.
[Brézin, Kazakov, Gross, Migdal, Douglas, Shenker, Miljokovic, Klebanov, Bleher, Eynard...]

Nicolas Delporte & Vincent Rivasseau (IJCLab) Tensors models and Random Geometry October 13, 2020 17 / 39



First Road: Double and Multiple Scaling Double Scaling for Matrices and Tensors

Double Scaling for Tensors

Just as for matrix models, there is a single and double scaling limit.

For instance, in the quartic interacting model, of rank r , with coupling
constant λ [Dartois, Gurau, VR ’13] we introduce the variable

x = N r−2[(4r)−1 + λ
]
⇒ λ = − 1

4r
+

x

N r−2
,

and send N →∞ and λ→ − 1
4r

while keeping x fixed. We obtain a power
series in x

G2 = N1−r/2
∑
p≥0

cp

xp− 1
2

+O(N1/2−r/2) ,

which has a new critical point in x at xc = 1/4(r − 1). The corresponding
double scaling-limit is

Ḡ2,double(N) = 2− 4N1−r/2
√

r(x − xc) +O(N1/2−r/2).

A disappointment remains: the singularity stays of the branched polymer type
for r < 6, but at a different location.
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First Road: Double and Multiple Scaling Multiple Scaling and Topological Recursion

Multiple Scaling and Topological Recursion

• Contrary to matrix models, the double scaling limit still resums only
triangulations of the sphere, so much less than general triangulations.

• In further contrast to matrix models, at least for r = 6, there is a triple
scaling limit [Dartois ’15].

• The Hubbard-Stratonovich transformation maps the quartic tensor model
to a multi-matrix model which (after subtracting the leading order)
satisfies the blobbed topological recursion [Borot and al, Bonzom and al ’16].
[cf. R. Wulkenhaar’s talk]

• This road, although mathematically the purest, is difficult to follow:
requires fine analysis of subleading orders which gets quickly involved.

Nicolas Delporte & Vincent Rivasseau (IJCLab) Tensors models and Random Geometry October 13, 2020 19 / 39



Second Road: Flowing from Trees to New Fixed Points
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Second Road: Flowing from Trees to New Fixed Points Breaking the Propagator

Breaking the Propagator

When there are no space available, breaking the isotropy of the covariance can
be a useful device to generate a scale hierarchy between the degrees of freedom
and to define the direction of the flow.

The ultra-violet corresponds to lowest covariance and to many degrees of
freedom; the infra-red corresponds to highest covariance and fewer degrees of
freedom.

The flow of the renormalisation group, as it should, is from ultra-violet to
infra-red, averaging from the many degrees of freedom towards the fewer
degrees of freedom.

Precursor for matrices in [Brézin, Zinn-Justin ’92].
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Second Road: Flowing from Trees to New Fixed Points Breaking the Propagator

Asymptotic freedom

Our tensors are still 0-dimensional, but let us distinguish the rank of the tensor
from the space dimension.

Let us substitute a propagator of a Laplacian type (eventually some power of
the Laplacian), which is independent (diagonal) but not identically distributed

S0(T , T̄ ) =
∑
a

Ta1...ar ∆a1...ar T̄a1...ar ,︸ ︷︷ ︸
propagator

∆a1...ar = a2
1 + ...+ a2

r .

Equipped with a quartic interaction Sint , it is renormalisable in rank 5 and
surprisingly, it shares with the non-abelian gauge theories the property of being
asymptotically free [Ben Geloun ’13]. The large N limit consists of only melonic
graphs. It is their combinatorics which are responsible for the phenomenon of
asymptotic freedom so it is significant since it is protected by topological
reasons [VR ’15].
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Second Road: Flowing from Trees to New Fixed Points Finding New Fixed Points

Finding New Fixed Points

It is tempting to launch a flow from the UV towards the IR to discover new
fixed points which may be new geometries different from branched polymers.

• From truncated Wetterich equation one might find new fixed points with
reasonable accuracy [Benedetti et al. ’14].

• The fixed points and their associated geometries may share some
universality, as it is reasonable to expect from fixed points of the
renormalisation group.

• In A. Eichhorn’s program a potential candidate for a continuum limit in
such a model was found, which features two relevant directions
[Eichhorn, Lumma et al. ’19].
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Third road: Random Geometry from Trees QFT on Random Trees

QFT on random trees [ND, VR ’19]

If we can approximate the sub-dominant terms as matter fields living on the
branched polymers (and it’s a big “if”), we shall get in this approximation an
SYK-type model on a random tree.

This motivates the study of quantum fields theories on trees, which is the third
and newest road to discover interesting geometries in the tensor track.

Scalar field defined on random trees (equivalent to branched polymers) is the
simplest QFT on an ensemble of interesting random geometry.

Preliminary results: on average, the standard power counting analysis for the
superficial degree of divergence of amplitudes is consistent with d = dS
(= 4/3).
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Third road: Random Geometry from Trees QFT on Random Trees

Random Walk Expansion [Symanzik ’69]

Tools: Renormalization group flow + Random walks.

Idea: 2-point function as a sum over random walks, with precise heat kernel
estimates of [Barlow, Kumagai ’06],
→ evaluate generic amplitudes and start an RG analysis.

Related works: Similar expansions (random walks, random currents, laces), on
fixed geometry, allowed to analyze rigorously correlation functions for various
statistical models (mostly scalar, Ising, Potts,...) [Aizenman, Fröhlich, Duplantier,

Brydges, Duminil-Copin...].

- triviality of the universality class of φ4 in d ≥ 4,

- prove relations between and bounds on critical exponents below critical
dimensions,

- bounds on β-functions.

But seems hard to work on far-from-free models.
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Third road: Random Geometry from Trees QFT on Random Trees

The “spacetime”: Galton-Watson branching process

The ensemble T of rooted binary trees, conditioned on having an infinite spine
S (criticality), can be seen as having side branches T (with |T | = n vertices,
n <∞), with independent measure:

µ(T ) = 2−|T | .

The probability measure on T is then:

P[τ ] :=
∏
i∈S

µ(Ti ), E[f ] :=
∑
τ∈T

P[τ ]f (τ).

Spectral dimension dS: if pt(x) is the probability for a random walk starting at
x to be at x in a time t, then

pt(x) ∼
t→∞

1

tdS/2
, dS = 4/3 for T [Wheater et al. ’06].
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Third road: Random Geometry from Trees QFT on Random Trees

Propagating the matter field

On a fixed graph Γ, the (positive def) Laplacian is given by: LΓ = DΓ − AΓ

(DΓ: degree matrix ; AΓ: incidence matrix)
and its inverse kernel, the propagator, by a sum over random walks:

CΓ,m(x , y) =
∑
ω:x→y

∏
v∈Γ

[
1

dv + m2

]nv (ω)

∼
∫ ∞

0

dt e−m2tpt(x , y) ,

with an IR regulator m.
We then use the Euler β-function identity:

L−ζ =
sinπζ

π

∫ ∞
0

dm
2m1−2ζ

L+ m2
,

(0 < ζ ≤ 1 to maintain positivity properties), for long-range propagator:

C ζΓ (x , y) =
sinπζ

π

∫ ∞
0

dm 2m1−2ζ
∑
ω:x→y

∏
v∈Γ

[
1

dv + m2

]nv (ω)

.

[analogous to a Källen-Lehmann representation]
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Third road: Random Geometry from Trees QFT on Random Trees

Motivating the rescaling

With our convention for external legs [VR et al. ’85], the IR degree of divergence
for a scalar field of mass dimension (d − 2ζ)/2 and φq interaction:

ω(G) = (d − 2ζ)E − d(V − 1) = (d − 2ζ)(qV − N)/2− d(V − 1) ,

(V vertices, E internal legs, N external legs, qV = 2E + N),

we tuned ζ to

ζ =
d

2
− d

q
,

implying a just-renormalizable theory

ω(G) = d

(
1− N

q

)
.

We showed it is compatible with d = dS .
For q = 4, 2- and 4-point functions need renormalization.
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Third road: Random Geometry from Trees QFT on Random Trees

Field theory

Partition function (quenched):

Z(Γ;λ) =

∫
e
−λ

∑
x∈VΓ

φ4(x)
dµCΓ (φ) =

∫
dνΓ(φ).

Correlation functions (quenched):

SN(Γ; z1, ..., zN) =

∫
φ(z1)...φ(zN) dνΓ(φ) =

∞∑
V=0

(−λ)V

V !

∑
G

AG (Γ; z1, ..., zN).

[Feynman graphs G on graphs Γ.]

For {z1, ..., zN} ∈ S, we want the annealed quantity:

E[SN(Γ; z1, ..., zN)] =
∑
Γ∈T

P[Γ]SN(Γ; z1, ..., zN).
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Third road: Random Geometry from Trees QFT on Random Trees

RG: multiscale analysis (in the IR)

(1) Decompose the propagators into “proper time” slices Ij = [M2(j−1),M2j ]:

C =

ρ∑
j=0

C j ; A(G) =
∑
µ

Aµ(G)

(j = 0 is UV, ρ is IR; external propagators at scale ρ – “regularization”).

(2) Identify superficial degree of divergence ω and divergent graphs.
Given G and µ, high subgraphs control the divergence:

HS : (scales of internal legs) < (scales of external legs)

|Aµ(G)| ≤
∏

Gi∈HS

Mω(Gi ).

(3) Localization: expand the divergent subgraphs around reference point.
(need counterterms – “renormalization”)

(4) RG flow: integrate out lower scales j < i gives theory at scale i .
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Third road: Random Geometry from Trees QFT on Random Trees

Probabilistic estimates [Barlow, Kumagai]

For a parameter λ ≥ 1, the ball B(x , r) is said λ–good if:

r 2λ−2 ≤ |B(x , r)| ≤ r 2λ.

Crucially, they showed that it occurs more often, for larger and larger λ:

P[B(x , r) is not λ–good] ≤ O(1)e−O(1)λ.

Then, they obtained the quenched bounds:
Given r > 0 and that B(x , r) is λ–good, if t ∈ [r 3λ−6, r 3λ−5], then

• for any K ≥ 0 and any y ∈ T with d(x , y) ≤ Kt1/3

pt(x , y) ≤ O(1)
(

1 +
√
K
)
t−2/3λ3 ,

• for any y ∈ T with d(x , y) ≤ O(1)rλ−19

pt(x , y) ≥ O(1)t−2/3λ−17.
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Our results: Propagators

Slicing the propagator into proper time slices Ij = [M2(j−1),M2j ]:

C ζ,jT (x , y) =
u=m2

∫ ∞
0

du u−ζ
∫
Ij

dt pt(x , y)e−ut = Γ(1− ζ)

∫
Ij

dt pt(x , y)tζ−1 ,

Lemma (Single Line)

• E
[
C ζ,jT (x , x)

]
≤ O(1)M−2j/3, E

[∑
y C

ζ,j
T (x , y)

]
≤ O(1)M2j/3

• E
[
C ζ,jT (x , x)

]
≥ O(1)M−2j/3, E

[∑
y C

ζ,j
T (x , y)

]
≥ O(1)M2j/3.

Interpretation: a typical volume integration corresponds to d = 2; while in
proper time t, the propagator scales as t−1/3.
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Our results: Convergent graphs

Theorem (N > 4)

For a completely convergent graph (no 2- or 4-point subgraphs) G of order
V (G) = n, the limit as limρ→∞ E(AG ) of the averaged amplitude exists and
obeys the uniform bound

E(AG ) ≤ K n(n!)β

where β = 52
3
a.

aNot optimal

Comment: the proof uses Cauchy-Schwarz, the preceding bounds and slicing
the space into rings that are asked to be λ-good; however intersecting rings
don’t have independent probabilities (which we assumed) and lead to the
factorial growth.
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Third road: Random Geometry from Trees Our results

Our results: Divergent graphs I

We want to know how an amplitude changes when moving an external leg from
one point z to a close point y :

Lemma

Defining ∆ζ,j
T (x ; y , z) :=

∣∣∣C ζ,jT (x , y)− C ζ,jT (x , z)
∣∣∣, we obtain

E[∆ζ,j
T (x ; y , z)] ≤ O(1)M−2j/3M−j/3

√
d(y , z).

Comment: uniform in x ∈ S and the factor M−j/3
√

d(y , z) is the gain,

provided d(y , z)� rj = M2j/3. The inequality for y , z ∈ τ

|f (y)− f (z)|2 ≤ d(y , z)E(f , f ),

proved very useful (E(f , f ) ∼
∑

x∼y∈τ (f (x)− f (y))2).
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Third road: Random Geometry from Trees Our results

Our results: Divergent graphs II

For jm � jM , we want to compare the “bare” amplitude

Abare
T (x , z) :=

∑
y∈T

C jM
T (x , y)C jm

T (y , z)

to the “localized” amplitude at z

Aloc
T (x , z) := C jM

T (x , z)
∑
y∈T

C jm
T (y , z).

Lemma

Introducing the averaged “renormalized” amplitude
Āren(x , z) := E[Abare

T (x , z)− Aloc
T (x , z)], we have∣∣Āren(x , z)
∣∣ ≤ cM−2(jM−jm)/3−(jM−jm)/3.
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Third road: Random Geometry from Trees Our results

Our results: Divergent graphs III

The previous lemma allows to write 4-point subgraphs as a local 4-vertex, plus
corrections unseen by the external scale, defining hence a renormalized
amplitude Aren:

Theorem (N ≥ 4)

For a graph G with N(G) ≥ 4 and no 2-point subgraph G of order V (G) = n,
the averaged renormalized amplitude E[Aren

G ] = limρ→∞ E[Aren
G ,ρ] is convergent

as ρ→∞ and obeys the same uniform bound than in the completely
convergent case, namely

E(Aren
G ) ≤ K n(n!)β .
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Conclusions and Futur Prospectives

Conclusions and Futur Prospectives

• Summary: Three roads to get beyond melons:
→ multiple scalings
→ symmetry breaking/ RG flow
→ start with branched polymers and decorate them with a QFT

• Results: it is the spectral dimension which enters the RG power counting.

Questions:

(1) Can we see the large-N limit of tensors as a field theory on random trees?

(2) Do we really have a CFT? What is the group?

(3) Is there a saturation of the chaos bound for a QFT on random tree?
(This can reveal the presence of a bulk dual).

(4) Other geometries?

Thank you!
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