Nathan Reading NC State University

Erwin Schrödinger Institute 21 February 2025

Planar models in finite type Planar models in affine type Noncrossing partitions of a marked surface Connections with representation theory

Early work was joint with Laura Brestensky, including her thesis research. Representation theory connections are joint with Eric Hanson.

The noncrossing partition poset

(W, S): a Coxeter system with reflections T. Coxeter element: c = product of S in any order. Absolute order $u \leq_T w$ is prefix order for T. The noncrossing partition poset is $[1, c]_T$.

 $W \implies [1, c]_T$ is a lattice (Bessis, Brady-Watt).

Classical finite types (A, B, D): \exists planar models.

Heuristic: Project a small orbit to Coxeter plane \rightarrow planar model.

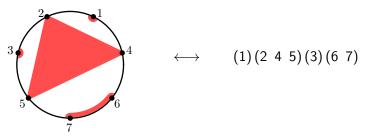
One motivation: Garside structures for Artin groups (Barbara Baumeister's talk)

The prototypical example is type A (Kreweras/Biane):

$$W = S_{n+1}, \qquad s_i = (i \ i+1).$$

- *i* is a down element if s_{i-1} precedes s_i in c
- *i* is an up element if s_{i-1} follows s_i in *c*.
- $[1, c]_{\mathcal{T}} \leftrightarrow$ nc partitions of the (n + 1)-cycle
 - (1 down elements, increasing n+1 up elements, decreasing).

Example:
$$c = s_3 s_5 s_2 s_1 s_6 s_4 = (1 \ 4 \ 6 \ 7 \ 5 \ 3 \ 2)$$

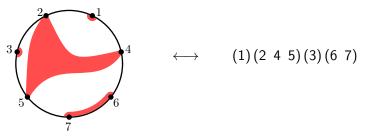


The prototypical example is type A (Kreweras/Biane):

$$W = S_{n+1}, \qquad s_i = (i \ i+1).$$

- *i* is a down element if s_{i-1} precedes s_i in c
- *i* is an up element if s_{i-1} follows s_i in *c*.
- $[1, c]_T \leftrightarrow$ nc partitions of the (n + 1)-cycle
 - (1 down elements, increasing n+1 up elements, decreasing).

Example:
$$c = s_3 s_5 s_2 s_1 s_6 s_4 = (1 \ 4 \ 6 \ 7 \ 5 \ 3 \ 2)$$



Type B (Reiner/Athanasiadis-Reiner):

W is the group B_n of signed permutations.

The choice of c is a choice of a signing of $\{1, 2, ..., n-1\}$ $(n-1 \text{ elements of } \{\pm 1, ..., \pm (n-1)\}$, distinct absolute values). $[1, c]_T \leftrightarrow \text{ centrally symmetric nc partitions of the } (2n)\text{-cycle}$ (-n signing, increasing n opposites of signing, decreasing)

Example:



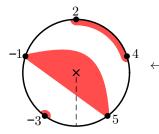
Type B (Reiner/Athanasiadis-Reiner):

W is the group B_n of signed permutations.

The choice of c is a choice of a signing of $\{1, 2, ..., n-1\}$ $(n-1 \text{ elements of } \{\pm 1, ..., \pm (n-1)\}$, distinct absolute values). $[1, c]_T \leftrightarrow \text{ centrally symmetric nc partitions of the } (2n)\text{-cycle}$ (-n signing, increasing n opposites of signing, decreasing)

Example:

Or: Noncrossing partitions of a disk with an orbifold point



$$\rightarrow$$
 (-3)(3)(2 4)(-4 -2)(5 1 -5 -1)

Type D (Athanasiadis-Reiner):

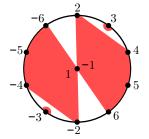
W is the group D_n of even-signed permutations.

Project a smallest W-orbit to the Coxeter plane: two points land in the center.

... some combinatorial way to encode Coxeter elements...

 $[1, c]_{\mathcal{T}} \leftrightarrow$ centrally sym. nc partitions of disk with a double point.

Example:



$$\longleftrightarrow \begin{array}{cccc} (-1 & 2 & 4 & 5 & 6) (3) \\ (1 & -2 & -4 & -5 & -6) (-3) \end{array}$$

Type D (Athanasiadis-Reiner):

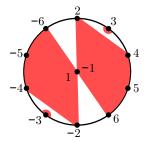
W is the group D_n of even-signed permutations.

Project a smallest W-orbit to the Coxeter plane: two points land in the center.

... some combinatorial way to encode Coxeter elements...

 $[1, c]_{\mathcal{T}} \leftrightarrow$ centrally sym. nc partitions of disk with a double point.

Example:



It isn't possible to "mod out" by the symmetry without recording some additional information.

Affine Coxeter groups (Euclidean Artin groups)

W not finite $\implies [1, c]_T$ need not be a lattice.

Affine Coxeter group: a Cox. group generated by affine reflections.

McCammond and Sulway extended the affine Coxeter group W to a larger group, by "factoring translations", thus extending $[1, c]_T$ to a lattice (Garside structure for a supergroup of the Artin group).

Affine Coxeter groups (Euclidean Artin groups)

W not finite $\implies [1, c]_T$ need not be a lattice.

Affine Coxeter group: a Cox. group generated by affine reflections.

McCammond and Sulway extended the affine Coxeter group W to a larger group, by "factoring translations", thus extending $[1, c]_T$ to a lattice (Garside structure for a supergroup of the Artin group).

Recent research: Planar diagrams for $[1, c]_T$ and the larger lattice in classical affine types (jointly with Laura Brestensky as part of her thesis research).

Affine Coxeter groups (Euclidean Artin groups)

W not finite $\implies [1, c]_T$ need not be a lattice.

Affine Coxeter group: a Cox. group generated by affine reflections.

McCammond and Sulway extended the affine Coxeter group W to a larger group, by "factoring translations", thus extending $[1, c]_T$ to a lattice (Garside structure for a supergroup of the Artin group).

Recent research: Planar diagrams for $[1, c]_T$ and the larger lattice in classical affine types (jointly with Laura Brestensky as part of her thesis research).

Type \widetilde{A} is as nice as one could hope:

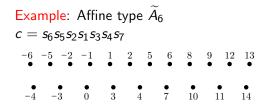
- A natural combinatorial construction of the larger lattice.
- An easy combinatorial restriction obtains $[1, c]_T$.

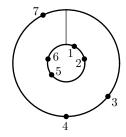
Noncrossing partitions of classical affine types

Run the heuristic from finite type: Project a "small" orbit to the "Coxeter plane", then mod out by some symmetries.

Classical cases:

- The orbit is indexed $\{\mathbf{e}_i : i \in \mathbb{Z}\}$.
- The projection is an infinite strip with translational symmetry.
- This becomes an annulus.





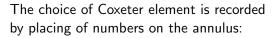
Translation \leftrightarrow mod-7 symmetry.

Type \widetilde{A} : Affine permutations and periodic permutations

Type \widetilde{A}_{n-1} affine Coxeter group \widetilde{S}_n is affine permutations π of \mathbb{Z} : • $\pi(i+n) = \pi(i) + n$ for all $i \in \mathbb{Z}$ • $\sum_{i=1}^n \pi(i) = \binom{n+1}{2}$.

Larger group $S_{\mathbb{Z}} \pmod{n}$: $\pi(i+n) = \pi(i) + n \quad \forall i$.

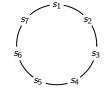
Cycle notation: $(a_1 \ a_2 \ \cdots \ a_k)_n$ means $\prod_{q \in \mathbb{Z}} (a_1 + qn \ a_2 + qn \ \cdots \ a_k + qn)$. Infinite cycles are $(\cdots \ a_1 \ a_2 \ \cdots \ a_k \ a_i + qn \ \cdots), \quad q \neq 0$. Reflections: $T = \{(i \ j)_n : i < j, i \not\equiv j \pmod{n}\}$. Loops: $\ell_i = (\cdots \ i \ i + n \ \cdots)$ $L = \{\ell_i^{\pm 1} : i \in 1, \dots, n\}$ Generators: \widetilde{S}_n generated by T. $S_{\mathbb{Z}}(\mod{n})$ generated by $T \cup L$. The Coxeter diagram for \widetilde{S}_n is an *n*-cycle. Example: n = 6

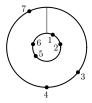


Place $1, \ldots, n$ in clockwise order.

- *i* on the outer boundary iff s_{i-1} is before s_i .
- *i* on the inner boundary iff s_{i-1} is after s_i .

Example: $c = s_6 s_5 s_2 s_1 s_3 s_4 s_7$





Compare Josue Vazquez-Becerra's talk.

Take the annulus, numbered pts. on the inner and outer boundary.

Noncrossing partitions: Set partitions plus additional topology.

An embedded block is

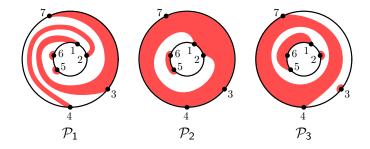
- a disk block, a closed disk containing at least one numbered point.
- a dangling annular block, a closed annulus with one boundary component containing numbered points, the other a nontrivial closed curve.
- a nondangling annular block, a closed annulus with each component of its boundary containing numbered points.

A noncrossing partition is a collection of embedded blocks:

- the embedded blocks are disjoint;
- every numbered point is in some block;
- there is at most one annular block.

Considered up to isotopy.

Noncrossing partitions of an annulus (continued)



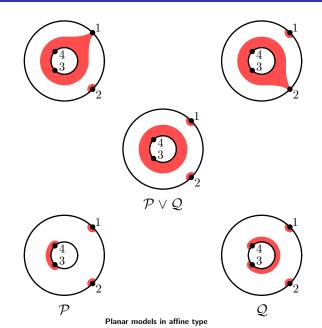
Noncrossing partition lattice \widetilde{NC}_{c}^{A} :

 $\mathcal{P} \leq \mathcal{Q}$ iff every block of \mathcal{P} is contained in a block of \mathcal{Q} .

Theorem. NC_c^A is a graded lattice, with rank function given by n minus the number of non-annular blocks.

Proof idea. The partial order is containment of curve sets. The meet is intersection of curve sets.

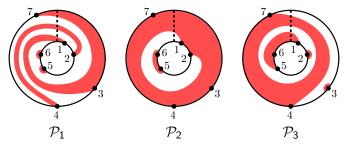
The lattice property needs dangling annular blocks



Isomorphisms

Define a map perm : $\widetilde{NC_c^A} \to S_{\mathbb{Z}} \pmod{n}$: Read boundaries of blocks as cycles (keep the interior of the block on the right).

Add n each time you cross the date line clockwise, or subtract n when crossing counterclockwise.



 $perm(\mathcal{P}_1) = (1 - 7 - 4)_7 (2 - 3)_7 (5)_7 (6)_7$ $perm(\mathcal{P}_2) = (\cdots 2 \ 1 - 5 \cdots) (\cdots 3 \ 4 \ 7 \ 10 \cdots) (5 \ 6)_7$ $perm(\mathcal{P}_3) = (1 - 1 - 2)_7 (2)_7 (3)_7 (\cdots 4 \ 7 \ 11 \cdots)$

Isomorphisms (continued)

perm : $NC_c^A \to S_{\mathbb{Z}} \pmod{n}$ reads boundaries of blocks as cycles (interior on the right), $\pm n$ when crossing the date line.

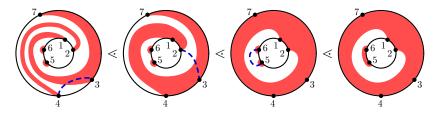
 $\widetilde{NC}_{c}^{A,\circ}$: Noncrossing partitions with no dangling annular blocks.

Theorem.

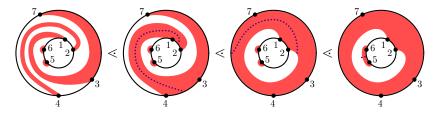
- perm : $\widetilde{NC}_c^A \to S_{\mathbb{Z}} \pmod{n}$ is an isomorphism from \widetilde{NC}_c^A to $[1, c]_{\mathcal{T} \cup L}$ in $S_{\mathbb{Z}} \pmod{n}$.
- It restricts to an isomorphism from $\widetilde{NC}_{c}^{A,\circ}$ to $[1, c]_{T}$ in \widetilde{S}_{n} (the noncrossing partition poset).

Cover relations in \widetilde{NC}_c^A

Covers in \widetilde{NC}_c^A are described by simple connectors



or by cutting curves.

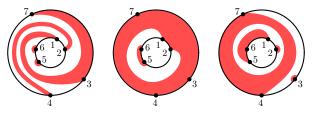


Planar models in affine type

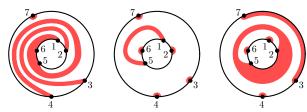
Kreweras complements

Kreweras complementation:

- an antiautomorphism of NC_c^A
- restricts to an antiautomorphism of $\widetilde{NC}_{c}^{A,\circ}$.

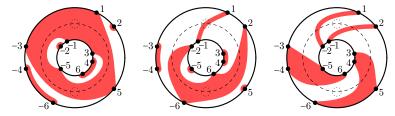


 $\downarrow \mathsf{Krew}$

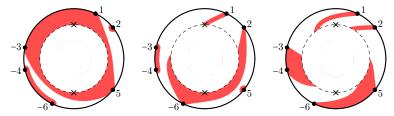


Planar models in affine type

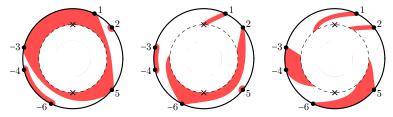
 $[1, c]_T$ is the lattice of symmetric n.c. partitions of an annulus



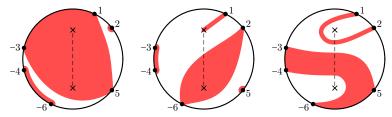
 $[1, c]_T$ is the lattice of symmetric n.c. partitions of an annulus



 $[1, c]_T$ is the lattice of symmetric n.c. partitions of an annulus



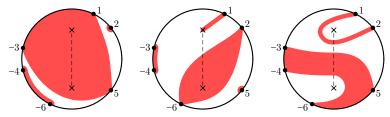
or noncrossing partitions of a disk with 2 orbifold points.



 $[1, c]_T$ is the lattice of symmetric n.c. partitions of an annulus

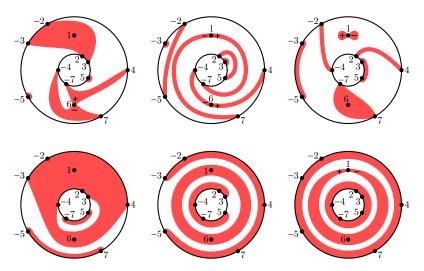


or noncrossing partitions of a disk with 2 orbifold points.



Affine type \widetilde{D}

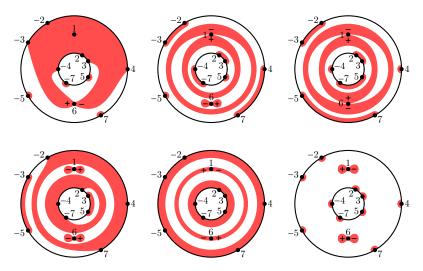
Symmetric n.c. partitions of an annulus with two double points



Planar models in affine type

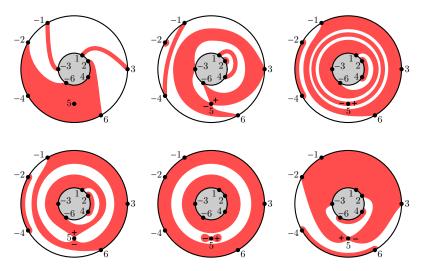
Affine type \widetilde{D} (continued)

Symmetric n.c. partitions of an annulus with two double points



Affine type \widetilde{B}

Symmetric n.c. partitions of an annulus with one double point



Planar models in affine type

Classical affine cases:

The planar model suggested by projecting an orbit to the Coxeter plane captures the noncrossing partition poset $[1, c]_T$. (Exclude dangling annular blocks.)

Types \widetilde{A} , \widetilde{B} , \widetilde{C} :

The planar model captures the larger lattice that McCammond and Sulway defined. (Allow dangling annular blocks.)

Type \widetilde{D} :

To understand the McCammond-Sulway lattice, you also need a small amount of algebraic information.

Marked surface (**S**, **M**):

- \bullet a compact surface \boldsymbol{S} with boundary and
- a nonempty finite set of marked points on its boundary.

Marked surface (**S**, **M**):

- \bullet a compact surface \boldsymbol{S} with boundary and
- a nonempty finite set of marked points on its boundary.

In cluster algebras language: a marked surface without punctures.

Marked surface (**S**, **M**):

- \bullet a compact surface \boldsymbol{S} with boundary and
- a nonempty finite set of marked points on its boundary.

Marked surface (**S**, **M**):

- \bullet a compact surface \boldsymbol{S} with boundary and
- a nonempty finite set of marked points on its boundary.

Noncrossing partitions of a marked surface generalize planar models for A and \widetilde{A} .

Noncrossing partitions of a marked surface

Marked surface (**S**, **M**):

- \bullet a compact surface \boldsymbol{S} with boundary and
- a nonempty finite set of marked points on its boundary.

Noncrossing partitions of a marked surface generalize planar models for A and \widetilde{A} .

An embedded block in (S, M): A closed subset E of S such that $(E, E \cap M)$ is a marked surface (+ some conditions).

A noncrossing partition of (S, M): A collection of disjoint embedded blocks such that every point in M is contained in some block (+ some conditions). (Consider these up to ambient isotopy.) Marked surface (**S**, **M**):

- \bullet a compact surface \boldsymbol{S} with boundary and
- a nonempty finite set of marked points on its boundary.

Noncrossing partitions of a marked surface generalize planar models for A and \widetilde{A} .

An embedded block in (S, M): A closed subset E of S such that $(E, E \cap M)$ is a marked surface (+ some conditions).

A noncrossing partition of (S, M): A collection of disjoint embedded blocks such that every point in M is contained in some block (+ some conditions). (Consider these up to ambient isotopy.)

Theorem. NC(S, M) is a graded lattice with rank function

$$\operatorname{rank}(\mathcal{P}) = |\mathbf{M}| + b_1(\mathcal{P}) - b_0(\mathcal{P}).$$

(Betti numbers)

 $D{\pm}{:}$ Double points in the interior of a surface \boldsymbol{S} (two "copies" of each point in $\boldsymbol{D})$

- S^{\pm} : The surface with these points
- **B**: Marked points on the boundary

 φ : An involutory symmetry of **S** with finite fixed-point set containing **D**. Acts on **S**[±] by also swapping double points.

 $D{\pm}{:}$ Double points in the interior of a surface \boldsymbol{S} (two "copies" of each point in $\boldsymbol{D})$

- \mathbf{S}^{\pm} : The surface with these points
- **B**: Marked points on the boundary

 φ : An involutory symmetry of **S** with finite fixed-point set containing **D**. Acts on **S**^{\pm} by also swapping double points.

Cluster algebra intuition: We should "mod out" by φ and turn double points into "punctures". But that loses information about noncrossing partitions.

 $D{\pm}{:}$ Double points in the interior of a surface \boldsymbol{S} (two "copies" of each point in $\boldsymbol{D})$

- S^{\pm} : The surface with these points
- **B**: Marked points on the boundary

 φ : An involutory symmetry of **S** with finite fixed-point set containing **D**. Acts on **S**[±] by also swapping double points.

 $D{\pm}{:}$ Double points in the interior of a surface \boldsymbol{S} (two "copies" of each point in $\boldsymbol{D})$

- \mathbf{S}^{\pm} : The surface with these points
- **B**: Marked points on the boundary

 φ : An involutory symmetry of **S** with finite fixed-point set containing **D**. Acts on **S**[±] by also swapping double points.

A symmetric noncrossing partition of $(S^{\pm}, B, D^{\pm}, \varphi)$: A collection of disjoint embedded blocks, such that the action of φ permutes the blocks of \mathcal{P} , every point in **M** is contained in some block of \mathcal{P} (+ conditions).

 $D{\pm}{:}$ Double points in the interior of a surface \boldsymbol{S} (two "copies" of each point in $\boldsymbol{D})$

- \mathbf{S}^{\pm} : The surface with these points
- **B**: Marked points on the boundary

 φ : An involutory symmetry of **S** with finite fixed-point set containing **D**. Acts on **S**[±] by also swapping double points.

A symmetric noncrossing partition of $(S^{\pm}, B, D^{\pm}, \varphi)$: A collection of disjoint^{*} embedded blocks, such that the action of φ permutes the blocks of \mathcal{P} , every point in **M** is contained in some block of \mathcal{P} (+ conditions). *The two double points are different points.

 $D{\pm}{:}$ Double points in the interior of a surface \boldsymbol{S} (two "copies" of each point in $\boldsymbol{D})$

- \mathbf{S}^{\pm} : The surface with these points
- **B**: Marked points on the boundary

 φ : An involutory symmetry of **S** with finite fixed-point set containing **D**. Acts on **S**[±] by also swapping double points.

A symmetric noncrossing partition of $(S^{\pm}, B, D^{\pm}, \varphi)$: A collection of disjoint^{*} embedded blocks, such that the action of φ permutes the blocks of \mathcal{P} , every point in **M** is contained in some block of \mathcal{P} (+ conditions). *The two double points are different points.

Theorem. $\mathsf{NC}(S,M)$ is a graded lattice poset with rank function

$$\mathsf{rank}(\mathcal{P}) = rac{1}{2}|\mathbf{B}| + |\mathbf{D}| + b_1^{arphi}(\mathcal{P}) - b_0^{arphi}(\mathcal{P}).$$

(something like Betti numbers)

 $D{\pm}{:}$ Double points in the interior of a surface \boldsymbol{S} (two "copies" of each point in $\boldsymbol{D})$

- \mathbf{S}^{\pm} : The surface with these points
- **B**: Marked points on the boundary

 φ : An involutory symmetry of **S** with finite fixed-point set containing **D**. Acts on **S**[±] by also swapping double points.

A symmetric noncrossing partition of $(S^{\pm}, B, D^{\pm}, \varphi)$: A collection of disjoint^{*} embedded blocks, such that the action of φ permutes the blocks of \mathcal{P} , every point in **M** is contained in some block of \mathcal{P} (+ conditions). *The two double points are different points.

Theorem. NC(S, M) is a graded poset with rank function

$$\mathsf{rank}(\mathcal{P}) = rac{1}{2}|\mathbf{B}| + |\mathbf{D}| + b_1^{arphi}(\mathcal{P}) - b_0^{arphi}(\mathcal{P}).$$

(something like Betti numbers)

Factored translations and the McCammond-Sulway lattice

McCammond and Sulway build the larger interval (in their larger group) by factoring the translations in $[1, c]_T$.

Let F be the set of all factors that arise.

The set T of reflections and the set F together generate a group larger than the Coxeter group W.

 $[1, c]_{T \cup F}$: The interval (analogous to the noncrossing partition poset) in this larger group.

Theorem (McCammond-Sulway). $[1, c]_{T \cup F}$ is a lattice (and furthermore a Garside structure).

Corollary (McCammond-Sulway). ...long-conjectured facts about the corresponding Euclidean Artin groups...

Factored translations and dangling annular blocks

Recall in type \widetilde{A} : $[1, c]_T \cong \widetilde{NC}_c^{A, \circ}$ (n.c. partitions, with no dangling annular blocks). Translations in $[1, c]_T$ are $(\cdots i \ i + n \cdots) (\cdots j \ j - n \cdots)$ for i outer and j inner \longleftrightarrow

Noncrossing partitions with only one nontrivial block an annulus with one numbered point on each boundary component. The obvious factorization is $\ell_{i} = \ell_{i}^{-1}$

The obvious factorization is $\ell_i \cdot \ell_j^{-1}$.

 $\ell_i \longleftrightarrow$ the dangling annular block containing only *i*. $\ell_j^{-1} \longleftrightarrow$ the dangling annular block containing only *j*.

Factored translations and dangling annular blocks

Recall in type \widetilde{A} : $[1, c]_T \cong \widetilde{NC}_c^{A, \circ}$ (n.c. partitions, with no dangling annular blocks). Translations in $[1, c]_T$ are $(\cdots i \ i + n \cdots) (\cdots j \ j - n \cdots)$ for i outer and j inner \longleftrightarrow

Noncrossing partitions with only one nontrivial block an annulus with one numbered point on each boundary component. The obvious factorization is $\ell_i \cdot \ell_i^{-1}$.

 $\ell_i \longleftrightarrow$ the dangling annular block containing only *i*. $\ell_j^{-1} \longleftrightarrow$ the dangling annular block containing only *j*.

(There are similar ideas in other classical types.)

Connections with representation theory

A combinatorial abstraction for factored translations

(with Eric Hanson and guided by representation theory)

Let c be a Coxeter element

 U^c : A hyperplane in the root space such that a root γ has finite c-orbit iff $\gamma \in U_c$. (For rep theorists: "roots in the tubes".) Roots in U^c form a "sub root system" Υ^c .

Formal symbols:

- f_{β} for every simple root in the subsystem (factored translations).
- r_γ for every positive root γ ∉ Υ^c and every positive root γ ∈ Υ^c with non-full support. (reflections in [1, c]_T).

The roots in Υ^c with non-full support will be $r_{\beta,k} = r_{\beta_{(k)}}$.

$$\beta_{(k)} = \beta + c(\beta) + \cdots + c^{k-1}(\beta)$$

with β simple (+ conditions).

Connections with representation theory

Results of Hubery-Krause and Igusa-Schiffler amount to a characterization of sequences of formal symbols r_{γ} that correspond to maximal chains in the noncrossing partition poset $[1, c]_{T}$.

We characterize combinatorially the sequences of formal symbols r_{γ} and f_{β} that correspond to maximal chains in the McCammond-Sulway lattice $[1, c]_{T \cup F}$.

Some consequences.:

- Maximal chains in the McCammond-Sulway lattice are in bijection with something like exceptional sequences (entries in the sequences are any non-homogeneous bricks).
- The McCammond-Sulway lattice ≅ a poset of certain wide subcategories.
- A representation-theory proof of the lattice property.

Thanks for listening!

- L. Brestensky and N. Reading, Noncrossing partitions of an annulus.
- E. Hanson and N. Reading **Title TBD** (in preparation).
- J. McCammond and R. Sulway, Artin groups of Euclidean type.
- N. Reading. Noncrossing partitions of a marked surface.
- N. Reading, Symmetric noncrossing partitions of an annulus with double points.