Geometric tensors via spectral functionals

Ludwik Dąbrowski

SISSA, Trieste (I)

Given a Laplace operator we use the noncommutative residue to define certain functionals of vector fields which yield metric and Einstein tensors. Alternatively, given a Dirac operator we define dual metric and Einstein functionals of differential forms. and also Ricci and torsion functionals. We generalise these concepts in non-commutative geometry and show e.g. that for the conformally rescaled noncommutative 2-torus the Einstein and the torsion functionals vanish. Also the Hodge-de Rham, Einstein-Yang-Mills and quantum SU(2) group spectral triples are torsion free, while the quantum 2-sheeted space has torsion. [Adv.Math. 427, 1091286, 2023; Commun.Math.Phys. 130, 2024] and DOI 10.4171/JNCG/573 (2024) with A. Sitarz and P. Zalecki].

ESI, Wien, 24 July 2024

Spectral Geometry:

Can one hear the shape of a drum?

Spectral Geometry:

Can one hear the shape of a drum?

An eminent spectral scheme that generates geometric objects on Riemannian manifolds (volume, scalar curvature . . .) is $t \searrow 0$ asymptotic expansion of the trace of heat kernel

$$\operatorname{Tr} e^{-t\Delta} \approx \sum_{\ell=0}^{\infty} t^{\frac{\ell-n}{2}} a_{\ell}.$$

Here the scalar laplacian
$$\Delta$$
 for metric $g=\{g_{jk}\}$ reads
$$\Delta=-\frac{1}{\sqrt{\det(g)}}\partial_j\big(\sqrt{\det(g)}g^{jk}\partial_k\big). \tag{1}$$

Spectral Geometry:

Can one hear the shape of a drum?

An eminent spectral scheme that generates geometric objects on Riemannian manifolds (volume, scalar curvature \dots) is $t \searrow 0$ asymptotic expansion of the trace of heat kernel

$$\operatorname{Tr} e^{-t\Delta} \approx \sum_{\ell=0}^{\infty} t^{\frac{\ell-n}{2}} a_{\ell}.$$

Here the scalar laplacian Δ for metric $g = \{g_{jk}\}$ reads

$$\Delta = -\frac{1}{\sqrt{\det(g)}} \partial_j \left(\sqrt{\det(g)} g^{jk} \partial_k \right). \tag{1}$$

The coefficients a_ℓ can be transmuted into some values or residues of the zeta function of Δ , and in turn expressed using the noncommutative (Wodzicki) residue \mathcal{W}

$$\mathcal{W}(P) := \frac{1}{vol(S^{n-1})} \int_{M} \left(\int_{|\xi|=1} tr \, \sigma_{-n}(P)(x,\xi) \, \mathcal{V}_{\xi} \right) \, d^{n}x. \quad (2)$$

→ residue

Geometry from residues:

Then, on closed oriented M of even dimension n=2m

$$\mathcal{W}(\Delta^{-m}) = vol(M),$$

and in the $\mathit{localized}$ form (as a functional of $f \in C^\infty(M)$)

$$\mathcal{V}(f) := \mathcal{W}(f\Delta^{-m}) = \int_{M} f \ vol_g.$$

Geometry from residues:

Then, on closed oriented M of even dimension n=2m

$$\mathcal{W}(\Delta^{-m}) = vol(M),$$

and in the localized form (as a functional of $f \in C^{\infty}(M)$)

$$\mathcal{V}(f) := \mathcal{W}(f\Delta^{-m}) = \int_M f \ vol_g.$$

A. Connes divulged in 90s a startling result, confirmed by Kastler and by Kalau-Walze:

$$\mathcal{W}(\Delta^{-m+1}) = \frac{n-2}{12} \int_M R \ vol_g,$$
 which is \propto the Einstein-Hilbert action functional (of g)

for the Riemannian general relativity (in vacuum). Here R is the scalar curvature

$$R = R(g) = g^{jk}R_{jk} = g^{jk}R_{\ell j\ell k}.$$

A localised form of (3) is the *scalar curvature* functional on $C^{\infty}(M)$ $\mathcal{R}(f) := \mathcal{W}(f\Delta^{-m+1}) = \frac{n-2}{12} \int_{\mathbb{R}^{n}} fR \, vol_{g}. \tag{4}$

(3)

 \hookrightarrow This is related to the asymptotic growth of eigenvalues of Δ ; clear e.g. from the Connes "trace thm." that $\mathcal{W}=\mathsf{Tr}^+$. \hookleftarrow

- \hookrightarrow This is related to the asymptotic growth of eigenvalues of Δ ; clear e.g. from the Connes "trace thm." that $W = Tr^+$. \leftrightarrow
- \hookrightarrow We have uncovered few new spectral 'localised' functionals, by placing some differential operators in place of f. Let's start e.g. with a pair of vector fields V and W on M, viewed as derivations of $C^\infty(M)$:

New functionals

Def/Thm: Metric functional

The functional

$$g^{\Delta}(V,W):=\mathcal{W}\big(VW\Delta^{-m-1}\big)$$

is a bilinear, symmetric map, whose density is proportional to the metric g evaluated on V,W

$$\mathsf{g}^\Delta(V,W) = -\frac{1}{n} \int_M g(V,W) \, vol_g.$$

New functionals

Def/Thm: Metric functional

The functional

$$g^{\Delta}(V,W) := \mathcal{W}\big(VW\Delta^{-m-1}\big)$$

is a bilinear, symmetric map, whose density is proportional to the metric g evaluated on V,W

$$g^{\Delta}(V, W) = -\frac{1}{n} \int_{M} g(V, W) \, vol_g.$$

Def/Thm: Einstein functional

The functional

$$G^{\Delta}(V, W) := \mathcal{W}(VW\Delta^{-m}),$$
 (5)

is a bilinear, symmetric map, whose density is proportional to the Einstein tensor $G := Ric - \frac{1}{2}Rg$ evaluated on V, W

$$\mathcal{G}^{\Delta}(V,W) = \frac{1}{6} \int_{M} G(V,W) \, vol_{g}.$$

6/19

"Proof"

Algebra of symbols of pseudodifferential operators:

$$\sigma(PQ)(x,\xi) = \sum_{\beta} \frac{(-i)^{|\beta|}}{|\beta|!} \frac{\partial}{\partial \xi^{\beta}} \sigma(P)(x,\xi) \frac{\partial}{\partial x^{\beta}} \sigma(Q)(x,\xi). \quad (6)$$

"Proof"

Algebra of symbols of pseudodifferential operators:

$$\sigma(PQ)(x,\xi) = \sum_{\beta} \frac{(-i)^{|\beta|}}{|\beta|!} \frac{\partial}{\partial \xi^{\beta}} \sigma(P)(x,\xi) \frac{\partial}{\partial x^{\beta}} \sigma(Q)(x,\xi).$$
 (6)

Taylor expansion in normal coordinates x:

metric

$$g_{ab} = \delta_{ab} - \frac{1}{3} R_{acbd} x^c x^d + o(|x|^2), \tag{7}$$

volume element

$$\sqrt{\det(g)} = 1 - \frac{1}{6}R_{ab}x^a x^b + o(|x|^2),\tag{8}$$

and Levi-Civita symbol
$$\Gamma^a_{bc}(x) = -\frac{1}{3}(R_{abcd} + R_{acbd})x^d + o(|x|^2). \tag{9}$$

where R_{acbd} and R_{ab} are the values at x = 0.

"Proof" 2

Consequently, $\sigma(\Delta) = \mathfrak{a}_2 + \mathfrak{a}_1$, where

$$\mathfrak{a}_{2} = \left(\delta_{ab} + \frac{1}{3}R_{acbd}x^{c}x^{d}\right)\xi_{a}\xi_{b} + o(|x|^{2}),$$

$$\mathfrak{a}_{1} = \frac{2i}{3}R_{ab}x^{a}\xi_{b} + o(|x|^{2}).$$
(10)

Next we compute the first three leading symbols of Δ^{-1} , and then of Δ^{-k} , k>0, up to order resp. $o(|x|^2), o(|x|), o(1)$:

$$\sigma(\Delta^{-k}) = \mathfrak{c}_{2k} + \mathfrak{c}_{2k+1} + \mathfrak{c}_{2k+2} + \dots,$$

$$\mathfrak{c}_{2k} = ||\xi||^{-2k-2} \left(\delta_{ab} - \frac{k}{3} R_{acbd} x^c x^d \right) \xi_a \xi_b + o(|x|^2),$$

$$\mathfrak{c}_{2k+1} = \frac{-2ki}{3||\xi||^{2k+2}} R_{ab} x^b \xi_a + o(|x|),$$

$$\mathfrak{c}_{2k+2} = \frac{k(k+1)}{3||\xi||^{2k+4}} R_{ab} \xi_a \xi_b + o(1).$$
(11)

Now the composition with $\sigma(VW)$ shows the statements. \square

Laplace-type, Spin Laplacian, squared Dirac

More generally, we've treated Laplace-type operators

$$\Delta_{T,E} = -g^{ab}(\nabla_a \nabla_b - \Gamma_{ab}^c \nabla_c) + E$$

on a vector bundle Ξ with connection ∇ and $E \in End \Xi$.

Laplace-type, Spin Laplacian, squared Dirac

More generally, we've treated Laplace-type operators

$$\Delta_{T,E} = -g^{ab}(\nabla_a \nabla_b - \Gamma_{ab}^c \nabla_c) + E$$

on a vector bundle Ξ with connection ∇ and $E \in End \Xi$.

A particular interesting case is a $spin_c$ manifold M with Ξ a spinor bundle Σ of rank 2^m and the spin Laplacian

$$\Delta^{(s)} := \nabla^{(s)*} \nabla^{(s)} = -\nabla^{(s)}_{e_i} \nabla^{(s)}_{e_i} + \nabla^{(s)}_{\nabla_{e_i} e_i}, \tag{12}$$

where $\nabla^{(s)}$ is the spin connection and e_j is ON frame:

Proposition

$$g^{\Delta^{(s)}}(V,W) := \mathcal{W}\left(\nabla_V^{(s)} \nabla_W^{(s)} (\Delta^{(s)})^{-m-1}\right) = 2^m g^{\Delta}(V,W),$$

$$G^{\Delta^{(s)}}(V,W) := \mathcal{W}\left(\nabla_V^{(s)} \nabla_W^{(s)} (\Delta^{(s)})^{-m}\right) = 2^m G^{\Delta}(V,W) + 0.$$
(13)

Laplace-type, Spin Laplacian, squared Dirac

More generally, we've treated Laplace-type operators $\Delta_{TE} = -g^{ab}(\nabla_a \nabla_b - \Gamma^c_{ab} \nabla_c) + E$

on a vector bundle
$$\Xi$$
 with connection ∇ and $E \in End \Xi$.

A particular interesting case is a $spin_c$ manifold M with Ξ

a spinor bundle
$$\Sigma$$
 of rank 2^m and the spin Laplacian
$$\Delta^{(s)} := \nabla^{(s)*}\nabla^{(s)} = -\nabla^{(s)}_{e_i}\nabla^{(s)}_{e_i} + \nabla^{(s)}_{\nabla_{e_i}e_i}, \tag{12}$$

where $\nabla^{(s)}$ is the spin connection and e_i is ON frame:

Proposition

 $g^{\Delta^{(s)}}(V,W) := \mathcal{W}(\nabla_V^{(s)} \nabla_W^{(s)} (\Delta^{(s)})^{-m-1}) = 2^m g^{\Delta}(V,W),$ $G^{\Delta^{(s)}}(V,W) := \mathcal{W}(\nabla_V^{(s)} \nabla_W^{(s)} (\Delta^{(s)})^{-m}) = 2^m G^{\Delta}(V,W) + 0.$

or squared Dirac (coupled do U(1)-gauge 1-form A):

$$\begin{split} & \text{Proposition} \\ & \text{g}^{D_A^2}(V, W) := \mathcal{W}(\nabla_V^{(s)} \nabla_W^{(s)} |D_A|^{-n-2}) = 2^m \text{g}^{\Delta}(V, W), \\ & \text{G}^{D_A^2}(V, W) := \mathcal{W}(\nabla_V^{(s)} \nabla_W^{(s)} |D_A|^{-n}) \\ & = 2^m \Big(\text{G}^{\Delta}(V, W) + 2^{-3} \int_M \!\!\! R \, g(V, W) vol_g \Big). \end{split}$$

Go quantum (= noncommutative)

Noncommutative tori are prominent examples of quantum spaces. Their smooth algebra $A = C^{\infty}(\mathbb{T}^n)$ generated by n unitaries U:

Their smooth algebra
$$A=C^{\infty}(\mathbb{T}^n_{\theta})$$
, generated by n unitaries U_j , $U_jU_k=\delta_{jk}e^{i\theta}U_kU_j$,

has a faithful state τ invariant under derivations δ_j , $\delta_j U_k = \delta_{jk} U_k$, which are interpreted as noncommutative vector fields.

One regards $\Delta = \sum_j \delta_j^2$ on $H = L^2(\mathbb{T}^2_\theta, \tau)$ as 'flat' Laplace operator, $D = \sum_j \gamma^j \delta_j$ on $H = L^2(\mathbb{T}^2_\theta, \tau) \otimes \mathbb{C}^{2^m}$ as 'flat' Dirac operator and the A-bimodule $\Omega_D(A)$ generated by [D,A], as 1-forms. They generalise to the (non-flat) conformally rescaled geometry:

Go quantum (= noncommutative)

Noncommutative tori are prominent examples of quantum spaces. Their smooth algebra $A = C^{\infty}(\mathbb{T}_{\theta}^n)$, generated by n unitaries U_j ,

$$U_j U_k = \delta_{jk} e^{i\theta} U_k U_j,$$

has a faithful state au invariant under derivations δ_j , $\delta_j U_k = \delta_{jk} U_k$, which are interpreted as noncommutative vector fields.

One regards $\Delta = \sum_j \delta_j^2$ on $H = L^2(\mathbb{T}^2_\theta, \tau)$ as 'flat' Laplace operator, $D = \sum_j \gamma^j \delta_j$ on $H = L^2(\mathbb{T}^2_\theta, \tau) \otimes \mathbb{C}^{2^m}$ as 'flat' Dirac operator and the A-bimodule $\Omega_D(A)$ generated by [D,A], as 1-forms. They generalise to the (non-flat) conformally rescaled geometry:

For simplicity consider the *strictly irrational* \mathbb{T}^n_{θ} (i.e., $\mathcal{Z}(A) = \mathbb{C}$) with τ extended to $\hat{A} := A \otimes A^o$ as $\tau(a \otimes b^o) = \tau(a)\tau(b^o)$, where A^o is a copy of A in the commutant A' of A in B(H). Such τ is still invariant under the extended derivations. We use it to define the tracial state \mathcal{W} on \hat{A} -valued symbols $\sigma(\xi)$ (where $\delta_a \mapsto \xi_a$ much the same as for M).

Rescaled NC 2-torus: vector fields

Given $0 < h \in C^{\infty}(\mathbb{T}^2_{\theta})$, by a conformally rescaled Δ on \mathbb{T}^2_{θ} we mean the selfadjoint operator on $H = L^2(\mathbb{T}^2_{\theta}, \tau)$:

4

$$\Delta_h = h^{-1} \Delta h^{-1}.$$

Accordingly, as vector fields we take

$$V_h = \sum_{a=1,2} V^a h \delta_a h^{-1}, \quad V^a \in \mathbb{C}.$$

Proposition

$$g^{\Delta_h}(V_h, W_h) = \mathcal{W}(V_h W_h \Delta_h^{-2}) = \pi \tau(h^4) V^a W^a,$$

whereas

$$G^{\Delta_h}(V_h, W_h) = \mathcal{W}(V_h W_h \Delta_h^{-1}) = \mathbf{0}.$$

Rescaled NC 2-torus: vector fields

Given $0 < h \in C^{\infty}(\mathbb{T}^2_{\theta})$, by a conformally rescaled Δ on \mathbb{T}^2_{θ} we mean the selfadjoint operator on $H = L^2(\mathbb{T}^2_{\theta}, \tau)$:

٠

$$\Delta_h = h^{-1} \Delta h^{-1}.$$

Accordingly, as vector fields we take

$$V_h = \sum_{a=1,2} V^a h \delta_a h^{-1}, \quad V^a \in \mathbb{C}.$$

Proposition

$$g^{\Delta_h}(V_h, W_h) = \mathcal{W}(V_h W_h \Delta_h^{-2}) = \pi \tau(h^4) V^a W^a,$$

whereas

$$G^{\Delta_h}(V_h, W_h) = \mathcal{W}(V_h W_h \Delta_h^{-1}) = \mathbf{0}$$
.

We have also computed \mathbb{T}^4_{θ} .

Can do also θ -deformed spaces, or NC spaces with derivations.

Alternatively ...

12/19

Spectral functionals on 1-forms

Now use D on spinors in a two-fold way to get (in terms of \mathcal{W}) certain "dual functionals" which are bilinear on <u>1-forms</u> (co-vectors) and yield <u>contravariant</u> tensors (with "raised indices").

Spectral functionals on 1-forms

Now use D on spinors in a two-fold way to get (in terms of \mathcal{W}) certain "dual functionals" which are bilinear on <u>1-forms</u> (co-vectors) and yield <u>contravariant</u> tensors (with "raised indices").

For that need to represent 1-forms v as differential operators. On a spin $_c$ c manifold M use the Clifford representation of v as 0-order differential operators $\hat{\nu} \in \operatorname{End}(\Sigma)$.

As known they form a $C^\infty\!(M)$ -bimodule $\Omega^1_D \simeq \Omega^1(M)$ generated by commutators of D with functions.

Thus the spinorial Dirac operator is <u>self-sufficient</u> for our purposes (and NCG-ready when assembled to a spectral triple of A. Connes), so comes now in its grandeur

Metric and Einstein functionals on 1-forms

Thm

The spectral functionals of one-forms on M

$$g_{D}(v, w) := \mathcal{W}(\hat{v}\hat{w}D^{-n}),$$

$$G_{D}(v, w) := \mathcal{W}(\hat{v}(\underline{D}\hat{w} + \hat{w}\underline{D})D^{-n+1})$$

$$= \mathcal{W}((D\hat{v} + \hat{v}D)\hat{w}D^{-n+1}),$$
(14)

read

$$g_D(v, w) = 2^m \int_M g(v, w) \ vol_g,$$

$$G_D(v, w) = \frac{2^m}{6} \int_M G(v, w) \ vol_g,$$
(15)

where $G = Ric - \frac{1}{2}Rg$ is the contravariant Einstein tensor.

They perfectly (dually) match g^{Δ} and G^{Δ} up to 2^m .

Metric and Einstein functionals on 1-forms

Thm

The spectral functionals of one-forms on M

$$g_D(v,w) := \mathcal{W}(\hat{v}\hat{w}D^{-n}),$$

$$G_D(v, w) := \mathcal{W}(\hat{v}(\underline{D}\hat{w} + \hat{w}\underline{D})D^{-n+1})$$

$$= \mathcal{W}((D\hat{v} + \hat{v}D)\hat{w}D^{-n+1}),$$
(14)

read

$$g_D(v, w) = 2^m \int_M g(v, w) \ vol_g,$$

$$G_D(v, w) = \frac{2^m}{6} \int_M G(v, w) \ vol_g,$$

where $G = Ric - \frac{1}{2}Rg$ is the contravariant Einstein tensor.

They perfectly (dually) match g^{Δ} and G^{Δ} up to 2^m .

Actually,

$$\operatorname{Ric}_{D}(v,w) := \mathcal{W}\left(\hat{v}(D\hat{w} + \frac{n-4}{n-2}\hat{w}D)D^{-n+1}\right) = \frac{2^{m}}{6} \int_{M} \operatorname{Ric}(v,w) \ vol_{g}.$$

(15)

Rescaled noncommutative 2-torus: 1-forms

The above functionals extend to NC spaces: As the conformal rescaling of D on \mathbb{T}^n_θ we take on H

$$D_k = kDk,$$

following Connes-Moscovici, however with $0 < k \in A^o \subset A'$, which assures that (A,D_k,H) is a spectral triple and $\exists \ \Omega^1_{D_k}(A)$. lackIn effect, $\Omega^1_{D_k}(A)$ is freely generated by $k^2\gamma^j$.

Rescaled noncommutative 2-torus: 1-forms

The above functionals extend to NC spaces: As the conformal rescaling of D on \mathbb{T}^n_θ we take on H

$$D_k = kDk,$$

following Connes-Moscovici, however with $0 < k \in A^o \subset A'$, which assures that (A,D_k,H) is a spectral triple and $\exists \ \Omega^1_{D_k}(A)$. \blacktriangle In effect, $\Omega^1_{D_k}(A)$ is freely generated by $k^2\gamma^j$.

For n=2, $\gamma^j=\sigma^j$, and for \mathbb{T}^2_{θ} we have

Proposition

For
$$v=k^2v^j\sigma^j$$
 and $w=k^2w^j\sigma^j$, $v^j,w^j\in A$,
$$\mathbf{g}_{D_k}(v,w)=\tau(v^jw^j),$$

whereas

$$G_{D_k}(v,w) = 0$$
.

Rescaled noncommutative 2-torus: 1-forms

The above functionals extend to NC spaces: As the conformal rescaling of D on \mathbb{T}^n_θ we take on H

$$D_k = kDk$$
,

following Connes-Moscovici, however with $0 < k \in A^o \subset A'$, which assures that (A,D_k,H) is a spectral triple and $\exists \ \Omega^1_{D_k}(A)$. \spadesuit In effect, $\Omega^1_{D_k}(A)$ is freely generated by $k^2\gamma^j$.

For n=2, $\gamma^j=\sigma^j$, and for \mathbb{T}^2_θ we have

Proposition

For
$$v=k^2v^j\sigma^j$$
 and $w=k^2w^j\sigma^j$, $v^j,w^j\in A$,
$$\mathbf{g}_{D_k}(v,w)=\tau(v^jw^j),$$

whereas

$$G_{D_k}(v,w) = 0$$
.

We have also computed \mathbb{T}^4_{θ} .

Spectral Torsion

In principle *connections* not needed for abstract Δ or D.

Thanks to our $g_{\it D}$ we can now 'control' the *metricity* condition.

Instead what about the *zero-torsion* condition?

Not clear if any (enigmatic & complicated) minimization procedure could be employed for that.

But the contribution of torsion can contaminate our g & G (!).

Spectral Torsion

In principle *connections* not needed for abstract Δ or D.

Thanks to our g_D we can now 'control' the *metricity* condition.

Instead what about the zero-torsion condition?

Not clear if any (enigmatic & complicated) minimization procedure could be employed for that.

But the contribution of torsion can contaminate our g & G (!). Fortunately, for a <u>n-summable regular</u> $(\mathcal{A}, D, \mathcal{H})$, using \mathcal{W} coming from the ΨDO calculus and tracial state by Connes-Moscovici'95, we found:

Def/Thm: Torsion functional

Torsion functional is a trilinear functional of $u,v,w\in\Omega^1_D(\mathcal{A})$,

$$\mathcal{T}_D(u, v, w) := \mathcal{W}(uvwD|D|^{-n}).$$

We say that D is torsion-free if $\mathcal{T}_D \equiv 0$. For the Dirac operator D_T with torsion T on a closed spin manifold of dimension n

$$\mathcal{T}_{D_T}(u, v, w) = -2^{\left[\frac{n}{2}\right]} i \int_{M} u_a v_b w_c T_{abc} vol_g. \tag{16}$$

Examples

$$|\mathcal{T}=0|$$
 for:

- Hodge-de Rham: $\left(C^{\infty}(M), L^2(\Omega_M^{\bullet}), d+d^*\right)$.
- Einstein-Yang-Mills: $\left(C^{\infty}(M)\otimes M_N(\mathbb{C}), L^2(\Sigma)\otimes M_N(\mathbb{C})\right), \widetilde{D}$, where $\widetilde{D}=D\otimes \mathrm{id}_N+A+JAJ^{-1}$ with $A=A^*\in\Omega^1_{\widetilde{D}}$ and $J=C\otimes *$, with C being the charge conjugation on spinors in Σ .
- conformally rescaled noncommutative tori.
- ullet quantum SU(2): $\left(\mathcal{A}(SU_q(2)),\mathcal{H},D\right)$, where \mathcal{H} and D are isomorphic to the classical case q=1.

Examples

$$|\mathcal{T}=0|$$
 for:

- Hodge-de Rham: $(C^{\infty}(M), L^2(\Omega_M^{\bullet}), d+d^*)$.
- Einstein-Yang-Mills: $(C^{\infty}(M) \otimes M_N(\mathbb{C}), L^2(\Sigma) \otimes M_N(\mathbb{C})), \widetilde{D}),$ where $\widetilde{D}=D\otimes \operatorname{id}_N+A+JAJ^{-1}$ with $A=A^*\in\Omega^1_{\widetilde{D}}$ and $J=C\otimes *$, with C being the charge conjugation on spinors in Σ .
- conformally rescaled noncommutative tori.
- quantum SU(2): $(A(SU_q(2)), \mathcal{H}, D)$, where \mathcal{H} and D are isomorphic to the classical case q=1.

$$\mathcal{T} \neq 0$$
 for:

• almost commutative $M \times \mathbb{Z}_2$: $(C^{\infty}(M) \otimes \mathbb{C}^2, L^2(\Sigma) \otimes \mathbb{C}^2, \mathcal{D})$, where $\mathcal{D}=\left(\begin{array}{cc} D & \chi\phi \\ \chi\phi^* & D \end{array} \right),$ with D on Σ graded by χ , and $\phi\in\mathbb{C}.$

where
$$\mathcal{D} = \begin{pmatrix} \mathcal{L} & \chi \gamma \\ \chi \phi^* & D \end{pmatrix}$$
, with D on Σ graded by χ , and $\phi \in \mathbb{C}$.

Now,
$$\Omega^1_{\mathcal{D}} \ni \omega = \begin{pmatrix} w^+ & \phi \chi f^+ \\ \phi^* \chi f^- & w^- \end{pmatrix}$$
 for $w^\pm \in \Omega^1(M)$, $f^\pm \in C^\infty(M)$. Then, $\mathcal{W} (\omega_1^o \omega_2^o \omega_3^o \mathcal{D} \mathcal{D}^{-2m}) = \mathcal{W} (|\phi|^4 (f_1^+ f_2^- f_3^+ + f_1^- f_2^+ f_3^-) \mathcal{D}^{-2m})$

 $= |\phi|^4 \int_M (f_1^+ f_2^- f_3^+ + f_1^- f_2^+ f_3^-) vol_q.$

 \bullet The spectral formulation of geometric objects g,~G,~Ric~&~T should be beneficial for global study on the analytic/operator level of manifolds as well as generalized geometries, like NCG.

- The spectral formulation of geometric objects g, G, Ric & T should be beneficial for global study on the analytic/operator level of manifolds as well as generalized geometries, like NCG.
- Recently Yong Wang et. al. extended our functionals to manifolds with boundaries.

- The spectral formulation of geometric objects g, G, Ric & T should be beneficial for global study on the analytic/operator level of manifolds as well as generalized geometries, like NCG.
- Recently Yong Wang et. al. extended our functionals to manifolds with boundaries.
- Further 'quantum' directions to study:
- metric spaces, orbifolds and manifolds with singularities
- flat manifolds
- Einstein manifolds (\leftrightarrow spectral triples) for which $\mathrm{G}_D \propto \mathrm{g}_D$

- \bullet The spectral formulation of geometric objects $g,\,G,\,Ric\ \&\ T$ should be beneficial for global study on the analytic/operator level of manifolds as well as generalized geometries, like NCG.
- Recently Yong Wang et. al. extended our functionals to manifolds with boundaries.
- Further 'quantum' directions to study:
- metric spaces, orbifolds and manifolds with singularities
- flat manifolds
- Einstein manifolds (\leftrightarrow spectral triples) for which $G_D \propto g_D$

Conjecture: For a 2-dimensional regular spectral triple $G_D = 0$.

- The spectral formulation of geometric objects g, G, Ric & T should be beneficial for global study on the analytic/operator level of manifolds as well as generalized geometries, like NCG.
- Recently Yong Wang et. al. extended our functionals to manifolds with boundaries.
- Further 'quantum' directions to study:
- metric spaces, orbifolds and manifolds with singularities
- flat manifolds
- Einstein manifolds (\leftrightarrow spectral triples) for which $G_D \propto g_D$

Conjecture: For a 2-dimensional regular spectral triple $G_D = 0$.

- relation of \mathcal{T}_D to other settings (algebraic, differential) for T and quantum analogues of Levi-Civita connection in the literature
- relation to W. Ugalde differential forms & conformal gometry

THANK YOU!