Remarks on Infinite dimensional symplectic and Poisson geometry

Peter W. Michor

University of Vienna, Austria www.mat.univie.ac.at/~michor

ESI program Jan 13 - Feb 10, 2025 Talk given on Jan 29, 2025

Based on:

[KM97] Andreas Kriegl, Peter W. Michor: The Convenient Setting of Global Analysis. Mathematical Surveys and Monographs, Volume: 53, Amer. Math. Soc., 1997.

See also:

Wikipedia [https://en.wikipedia.org/wiki/Convenient_vector_space]

[BIM24] Martin Bauer, Sadashige Ishida, Peter W. Michor. Symplectic structures on the space of space curves. arXiv:2407.19908.

Review

For a finite dimensional symplectic manifold (M, ω) we have the following exact sequence of Lie algebras:

$$0 \to H^0(M) \to C^\infty(M,\mathbb{R}) \xrightarrow{\mathsf{grad}^\omega} \mathfrak{X}(M,\omega) \to H^1(M) \to 0.$$

 $H^*(M)$ De Rham cohomology of M with 0 bracket. $C^\infty(M,\mathbb{R})$ is equipped with the Poisson bracket $\{\ ,\ \}$, $\mathfrak{X}(M,\omega)$ all vector fields ξ with $\mathcal{L}_\xi\omega=0$ with usual Lie bracket.

Furthermore, grad^{ω} f is the Hamiltonian vector field for $f \in C^{\infty}(M, \mathbb{R})$ given by $i(\operatorname{grad}^{\omega} f)\omega = df$ and $\gamma(\xi) = [i_{\xi}\omega]$.

Consider a symplectic right action $r: M \times G \to M$ of a connected Lie group G on M; we use the notation $r(x,g)=r^g(x)=r_x(g)=x.g$. By $\zeta_X(x)=T_e(r_x)X$ we get a mapping $\zeta:\mathfrak{g}\to\mathfrak{X}(M,\omega)$ which sends each element X of the Lie algebra \mathfrak{g} of G to the fundamental vector field ζ_X . This is a Lie algebra homomorphism (for right actions!).

$$H^0(M) \xrightarrow{i} C^{\infty}(M, \mathbb{R}) \xrightarrow{\operatorname{grad}^{\omega}} \mathfrak{X}(M, \omega) \xrightarrow{\gamma} H^1(M)$$

A linear lift $j:\mathfrak{g}\to C^\infty(M,\mathbb{R})$ of ζ with $\mathrm{grad}^\omega\circ j=\zeta$ exists if and only if $\gamma\circ\zeta=0$ in $H^1(M)$. This lift j may be changed to a Lie algebra homomorphism if and only if the 2-cocycle $\bar{\jmath}:\mathfrak{g}\times\mathfrak{g}\to H^0(M)$, given by $(i\circ\bar{\jmath})(X,Y)=\{j(X),j(Y)\}-j([X,Y])$, vanishes in the Lie algebra cohomology $H^2(\mathfrak{g},H^0(M))$, for if $\bar{\jmath}=\delta\alpha$ then $j-i\circ\alpha$ is a Lie algebra homomorphism.

If $j:\mathfrak{g}\to C^\infty(M,\mathbb{R})$ is a Lie algebra homomorphism, we may associate the *momentum mapping* $J:M\to\mathfrak{g}'=L(\mathfrak{g},\mathbb{R})$ to it, which is given by $J(x)(X)=\chi(X)(x)$ for $x\in M$ and $X\in\mathfrak{g}$. It is G-equivariant for a suitably chosen (in general affine) action of G on \mathfrak{g}' .

Infinite dimensional weak symplectic manifolds

Let M be a manifold, in general is infinite dimensional, Hausdorff, in the sense of convenient calculus.

A 2-form $\omega \in \Omega^2(M)$ is called a *weak symplectic structure* on M if the following three conditions holds:

- 1. ω is closed, $d\omega = 0$.
- 2. The associated vector bundle homomorphism $\check{\omega}:TM\to T^*M$ is injective.
- 3. The gradient of ω with respect to itself exists and is smooth; this can be expressed most easily in charts, so let M be open in a convenient vector space E. Then for $x \in M$ and $X, Y, Z \in T_x M = E$ we have $d\omega(x)(X)(Y, Z) = \omega(\Omega_x(Y, Z), X) = \omega(\tilde{\Omega}_x(X, Y), Z)$ for smooth $\Omega, \tilde{\Omega}: M \times E \times E \to E$ which are bilinear in $E \times E$.

A 2-form $\omega \in \Omega^2(M)$ is called a *strong symplectic structure* on M if it is closed $(d\omega = 0)$ and if its associated vector bundle homomorphism $\check{\omega}: TM \to T^*M$ is invertible with smooth inverse.

In this case, the vector bundle TM has reflexive fibers T_xM : Let $i:T_xM\to (T_xM)''$ be the canonical mapping onto the bidual. Skew symmetry of ω is equivalent to the fact that the transposed $(\check{\omega})^t=(\check{\omega})^*\circ i:T_xM\to (T_xM)'$ satisfies $(\check{\omega})^t=-\check{\omega}$. Thus, $i=-((\check{\omega})^{-1})^*\circ\check{\omega}$ is an isomorphism.

Cotangent bundles

Every cotangent bundle T^*Q , viewed as a manifold, carries a canonical weak symplectic structure $\omega_Q \in \Omega^2(T^*Q)$, which is defined as follows. Let $\pi_Q^*: T^*Q \to Q$ be the projection. Then the Liouville form $\theta_O \in \Omega^1(T^*Q)$ is given by $\theta_{\mathcal{Q}}(X) = \langle \pi_{T^*\mathcal{Q}}(X), T(\pi_{\mathcal{Q}}^*)(X) \rangle$ for $X \in T(T^*\mathcal{Q})$, where $\langle \cdot, \cdot \rangle$ denotes the duality pairing $T^*Q \times_Q TQ \to \mathbb{R}$. Then the symplectic structure on T^*Q is given by $\omega_Q = -d\theta_Q$, which of course in a local chart looks like $\omega_E((v,v'),(w,w')) = \langle w',v\rangle_E - \langle v',w\rangle_E$. The associated mapping $\check{\omega}: T_{(0,0)}(E \times E') = E \times E' \to E' \times E''$ is given by $(v, v') \mapsto (-v', i_F(v))$, where $i_F : E \to E''$ is the embedding into the bidual. So the canonical symplectic structure on T^*Q is strong if and only if all model spaces of the manifold Q are reflexive.

Towards the Hamiltonian mapping

Let M be a weak symplectic manifold. The first thing to note is that the Hamiltonian mapping $\operatorname{grad}^\omega: C^\infty(M,\mathbb{R}) \to \mathfrak{X}(M,\omega)$ does not make sense in general, since $\check{\omega}: TM \to T^*M$ is not invertible. Namely, $\operatorname{grad}^\omega f = (\check{\omega})^{-1} \circ df$ is defined only for those $f \in C^\infty(M,\mathbb{R})$ with df(x) in the image of $\check{\omega}$ for all $x \in M$. A similar difficulty arises for the definition of the Poisson bracket on $C^\infty(M,\mathbb{R})$.

For a weak symplectic manifold (M,ω) let $T_x^\omega M$ denote the real linear subspace $T_x^\omega M=\check\omega_x(T_xM)\subset T_x^*M=L(T_xM,\mathbb{R})$, and let us call it the ω -smooth cotangent space with respect to ω of M at x. The convenient structure on $T_x^\omega M$ is the one from T_xM . All $T_x^\omega M$ together form a subbundle of T^*M isomorphic to TM via $\check\omega:TM\to T^\omega M\subseteq T^*M$. It is in general not a splitting subbundle.

Note that only for strong symplectic structures the mapping $\check{\omega}_X: T_XM \to T_X^*M$ is a diffeomorphism onto $T_X^\omega M$ with the structure induces from T_X^*M .

Definition of $C^{\infty}_{\omega}(E,\mathbb{R}) \subset C^{\infty}(E,\mathbb{R})$.

For a weak symplectic vector space (E,ω) we consider linear subspace $C^{\infty}_{\omega}(E,\mathbb{R}) \subset C^{\infty}(E,\mathbb{R})$ consisting of all smooth functions $f: E \to \mathbb{R}$ such that

▶ each iterated derivative $d^k f(x) \in L^k_{\operatorname{sym}}(E; \mathbb{R})$ has the property that

$$d^k f(x)(y_2,\ldots,y_k) \in E^{\omega}$$

is actually in the smooth dual $E^{\omega} \subset E'$ for all $x, y_2, \dots, y_k \in E$,

▶ and that the mapping $\prod^k E \to E$

$$(x, y_2, \ldots, y_k) \mapsto (\check{\omega})^{-1}(df(x)(y_2, \ldots, y_k))$$

is smooth. By the symmetry of higher derivatives, this is then true for all entries of $d^k f(x)$, for all x.

This makes sense even if (E,ω) is a weak symplectic manifold which happens to be a convenient vector space since

$$T^{\omega}E \cong TE = E \times E =: E \times E^{\omega} \subset T^*E = E \times E' \longrightarrow \mathbb{R}$$

Lemma. [KM97, 48.6] For $f \in C^{\infty}(E, \mathbb{R})$ the following assertions are equivalent:

- 1. $df: E \to E'$ factors to a smooth mapping $E \to E^{\omega}$.
- 2. f has a smooth ω -gradient $\operatorname{grad}^{\omega} f \in \mathfrak{X}(E) = C^{\infty}(E, E)$ which satisfies $df(x)y = \omega(\operatorname{grad}^{\omega} f(x), y)$.
- 3. $f \in C^{\infty}_{\omega}(E,\mathbb{R})$.

Definition of $C^{\infty}_{\omega}(M,\mathbb{R}) \subset C^{\infty}(M,\mathbb{R})$:

For a weak symplectic manifold (M,ω) the space $C^{\infty}_{\omega}(M,\mathbb{R})$ is the linear subspace consisting of all smooth functions $f:M\to\mathbb{R}$ such that the differential $df:M\to T^*M$ factors to a smooth mapping $M\to T^{\omega}M$. It follows that these are exactly those smooth functions on M which admit a smooth ω -gradient $\operatorname{grad}^{\omega} f\in\mathfrak{X}(M)$.

Let (M,ω) be a weak symplectic manifold. The Hamiltonian mapping $\operatorname{grad}^{\omega}: C_{\omega}^{\infty}(M,\mathbb{R}) \to \mathfrak{X}(M,\omega)$, which is given by

$$i_{\mathsf{grad}^\omega} f \omega = df$$
 or $\mathsf{grad}^\omega f := (\check{\omega})^{-1} \circ df$

is well defined. Also the Poisson bracket

$$\{ \quad , \quad \} : C^{\infty}_{\omega}(M,\mathbb{R}) \times C^{\infty}_{\omega}(M,\mathbb{R}) \to C^{\infty}_{\omega}(M,\mathbb{R})$$

$$\{ f,g \} := i_{\mathsf{grad}^{\omega} f} i_{\mathsf{grad}^{\omega} g} \omega = \omega(\mathsf{grad}^{\omega} g, \mathsf{grad}^{\omega} f) =$$

$$= dg(\mathsf{grad}^{\omega} f) = (\mathsf{grad}^{\omega} f)(g)$$

is well defined and gives a Lie algebra structure to the space $C^{\infty}_{\omega}(M,\mathbb{R})$, which also fulfills

$${f,gh} = {f,g}h + g{f,h}.$$

Theorem, continued.

We equip $C^{\infty}_{\omega}(M,\mathbb{R})$ with the initial structure with respect to the the two following mappings:

$$C^{\infty}_{\omega}(M,\mathbb{R}) \stackrel{\subset}{\longrightarrow} C^{\infty}(M,\mathbb{R}), \qquad C^{\infty}_{\omega}(M,\mathbb{R}) \stackrel{\mathsf{grad}^{\omega}}{\longrightarrow} \mathfrak{X}(M).$$

Then the Poisson bracket is bounded bilinear on $C^{\infty}_{\omega}(M,\mathbb{R})$.

We have the following long exact sequence of Lie algebras and Lie algebra homomorphisms:

$$0 \to H^0(M) \to C^\infty_\omega(M,\mathbb{R}) \xrightarrow{\mathsf{grad}^\omega} \mathfrak{X}(M,\omega) \xrightarrow{\gamma} H^1_\omega(M) \to 0,$$

where $H^0(M)$ is the space of locally constant functions, and

$$H^{1}_{\omega}(M) = \frac{\{\varphi \in C^{\infty}(M \leftarrow T^{\omega}M) : d\varphi = 0\}}{\{df : f \in C^{\infty}_{\omega}(M, \mathbb{R})\}}$$

is the first symplectic cohomology space of (M, ω) , a linear subspace of the De Rham cohomology space $H^1(M)$.

The Diez-Rudolph topology

In [DR24, 5.3: T.Diez, G.Rudolph: Symplectic Reduction in Infinite Dimensions, arXiv:2409.05829], for a weak symplectic vector space (E,ω) , a locally convex topology τ on E is called compatible with ω if the dual $(E,\tau)'=\check{\omega}(E)=E^\omega\subset E'$.

Proposition. [DR24,5.4] For a convenient weak symplectic vector space the bornological topology on E is compatible with ω

- in the Bastiani setting: iff E is a reflexive Banach space and ω is strong.
- here: iff E is reflexive and ω is strong.

Note that $L^p \times L^{p'}$ is symplectic, Banach, but i,g, not Hilbert. Namely: If we take $E' \times E \to \mathbb{R}$ is given by $(x',x) \mapsto \omega(\check{\omega}^{-1}(x'),x)$ as duality reflexivity follows.

How does this notion fit into the convenient framework?

Example: Let $E = \ell^2 \times \ell^2$ with the weak symplectic structure $\omega((x,y),(x',y')) = \sum_n c_n(x_ny'_n - y_nx'_n)$ for a sequence $0 < c_n \searrow 0$ sufficiently fast.

Then any l.c. topology on E compatible with ω is NOT convenient: Namely, let $0 < b_n \nearrow \infty$ with $b_n c_n \searrow 0$. Then for suitable $x \in \ell^2$ the sequence $X_k := (b_n x_n)_{n=1}^k \in \ell^2$ is a Mackey-Cauchy sequence for the weak $\sigma(E, E^\omega)$ -topology but its limit $X = (b_n x_n)$ is i.g. not in ℓ^2 .

Smooth Curves into (E,τ) . [KM97, Section 1] Since (E,τ) is not Mackey complete in general, we define $c:\mathbb{R}\to(E,\tau)$ to be smooth if $\lambda\circ c:\mathbb{R}\to\mathbb{R}$ is smooth **and** each iterated derivative $c^{(n)}(t)$ lies in E (a priori only in the c^{∞} -completion of E). We denote this space by $C^{\infty}(\mathbb{R},(E,\tau))$, and by $c^{\infty}(\tau)$ we denote the final topology on E with respect to $C^{\infty}(\mathbb{R},(E,\tau))$.

Question. Let (E,ω) be a convenient weak symplectic vector space and let τ be any l.c. topology compatible with ω . Under which conditions do we have $C^{\infty}(\mathbb{R},(E,\tau))=C^{\infty}(\mathbb{R},E)$?

Proposition. Let (E,ω) be a convenient weak symplectic vector space and let τ be any l.c. topology compatible with ω . Suppose that the bornology of E has a basis of $\sigma(E,\check{\omega}(E))$ -closed sets (i.e., each bounded set is contained in a $\sigma(E,\omega(E))$ -closed bounded set). This is he case if (E,ω) is a convenient weak symplectic vector space which is a dual space E=F' such that $\check{\omega}(E) \subseteq F \subseteq E' = E''$.

Then we have $C^{\infty}(\mathbb{R},(E,\tau))=C^{\infty}(\mathbb{R},E)$.

This includes the the $\ell^2 \times \ell^2$ example from above.

In the convenient spirit, under this condition we then have $C^{\infty}_{\omega}(E,\mathbb{R})=C^{\infty}((E,\tau),\mathbb{R})$, although (E,τ) is NOT a convenient space.

Proof. This is a special case of the following theorem.

Theorem[KF88, Theorem 4.1.19] Let $c : \mathbb{R} \to E$ be a curve in a convenient vector space E. Let $\mathcal{F} \subseteq E'$ be a subset of bounded linear functionals such that the bornology of E has a basis of $\sigma(E,\mathcal{F})$ -closed sets. Then the following are equivalent:

- 1. c is smooth
- 2. There exist locally bounded curves $c^k : \mathbb{R} \to E$ such that $\lambda \circ c$ is smooth $\mathbb{R} \to \mathbb{R}$ with $(\lambda \circ c)^{(k)} = \lambda \circ c^k$, for each $\lambda \in \mathcal{F}$ and each k.

If E = F' is the dual of a convenient vector space F, then for any point separating subset $\mathcal{F} \subseteq F$ the bornology of E has a basis of $\sigma(E,\mathcal{F})$ -closed subsets, by $[FK88 \ 4.1.22]$.

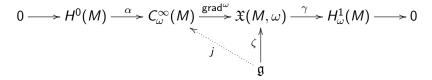
[FK88] Frölicher, A.; Kriegl, A., Linear spaces and differentiation theory, Pure Appl. Math., J. Wiley, Chichester, 1988.

Weakly symplectic group actions.

An infinite dimensional regular Lie group G with Lie algebra $\mathfrak g$ acts from the right on a weak symplectic manifold (M,ω) by $r:M\times G\to M$ (notation $r(x,g)=r^g(x)=r_x(g)$), so that each r^g is a symplectomorphism. Some immediate consequences:

- (1) The space $C_{\omega}^{\infty}(M)^G$ of G-invariant smooth functions with ω -gradients is a Lie subalgebra for the Poisson bracket, since for each $g \in G$ and $f, h \in C^{\infty}(M)^G$ we have $(r^g)^*\{f, h\} = \{(r^g)^*f, (r^g)^*h\} = \{f, h\}.$
- (2) For $x \in M$ the pullback of ω to the orbit x.G is a 2-form, invariant under the action of G on the orbit. In finite dimensions the orbit is an initial submanifold. Here this has to be checked directly in each example. There is a tangent bundle $T_x(x.G) = T(r_x)\mathfrak{g}$. If $i: x.G \to M$ is the embedding of the orbit then $r^g \circ i = i \circ r^g$, so that $i^*\omega = i^*(r^g)^*\omega = (r^g)^*i^*\omega$ holds for each $g \in G$ and thus $i^*\omega$ is invariant.

(3) The infinitesimal action $\zeta:\mathfrak{g}\to\mathfrak{X}(M,\omega)$, given by $\zeta_X(x)=T_e(r_x)X$ for $X\in\mathfrak{g}$ and $x\in M$, is a homomorphism of Lie algebras (for a left action we get an anti homomorphism of Lie algebras). We have the exact sequence of Lie algebra homomorphisms



- (4) If $H^1_{\omega}(M) = 0$ then any symplectic action on (M, ω) is a Hamiltonian action.
- (5) If the Lie algebra $\mathfrak g$ is equal to its commutator subalgebra $[\mathfrak g,\mathfrak g]$, the linear span of all [X,Y] for $X,Y\in\mathfrak g$ (true for all full diffeomorphism groups), then any infinitesimal symplectic action $\zeta:\mathfrak g\to\mathfrak X(M,\omega)$ is a Hamiltonian action, since then any $Z\in\mathfrak g$ can be written as $Z=\sum_i [X_i,Y_i]$ so that $\zeta_Z=\sum_i [\zeta_{X_i},\zeta_{Y_i}]\in \operatorname{im}(\operatorname{grad}^\omega)$ since $\gamma:\mathfrak X(M,\omega)\to H^1_\omega(M)$ is a homominto the zero Lie bracket.

(6) If $j:\mathfrak{g}\to (C^\infty_\omega(M),\{\quad,\quad\})$ happens to be not a homomorphism of Lie algebras then $c(X,Y)=\{j(X),j(Y)\}-j([X,Y])$ lies in $H^0(M)$, and indeed $c:\mathfrak{g}\times\mathfrak{g}\to H^0(M)$ is a cocycle for the Lie algebra cohomology: c([X,Y],Z)+c([Y,Z],X)+c([Z,X],Y)=0. If c is a coboundary, i.e., c(X,Y)=-b([X,Y]), then $j+\alpha\circ b$ is a Lie algebra homomorphism. If the cocycle c is non-trivial we can use the central extension $H^0(M)\times_c\mathfrak{g}$ with bracket [(a,X),(b,Y)]=(c(X,Y),[X,Y]) in the diagram

$$0 \longrightarrow H^{0}(M) \xrightarrow{\alpha} C_{\omega}^{\infty}(M) \xrightarrow{\operatorname{grad}^{\omega}} \mathfrak{X}(M, \omega) \xrightarrow{\gamma} H_{\omega}^{1}(M) \longrightarrow 0$$

$$\downarrow \int_{\zeta} \downarrow \qquad \qquad \downarrow \zeta \downarrow \qquad \qquad \downarrow M^{1}(M) \times_{c} \mathfrak{g} \xrightarrow{\operatorname{pr}_{2}} \mathfrak{g}$$

where $\bar{\jmath}(a,X) = j(X) + \alpha(a)$. Then $\bar{\jmath}$ is a homomorphism of Lie algebras.

Momentum mapping

For an infinitesimal symplectic action $\zeta: \mathfrak{g} \to \mathfrak{X}(M,\omega)$ we can find a linear lift $j: \mathfrak{g} \to C^{\infty}_{\omega}(M,\mathbb{R})$ iff there exists $J \in C^{\infty}_{\omega}(M,\mathfrak{g}^*) := \{f \in C^{\infty}(M,\mathfrak{g}^*) : \langle f(-), X \rangle \in C^{\infty}_{\omega}(M) \text{ for all } X \in \mathfrak{g} \}$ such that

$$\operatorname{grad}^{\omega}(\langle J,X\rangle)=\zeta_X \quad \text{ for all } X\in\mathfrak{g}.$$

 $J \in C^{\infty}_{\omega}(M, \mathfrak{g}^*)$ is called the *momentum mapping* for the infinitesimal action $\zeta : \mathfrak{g} \to \mathfrak{X}(M, \omega)$.

Basic properties of the momentum mapping

(1) For $x \in M$, the transposed mapping of the linear mapping $dJ(x): T_xM \to \mathfrak{g}^*$ is

$$dJ(x)^{\top}: \mathfrak{g} \to T_x^*M, \qquad dJ(x)^{\top} = \check{\omega}_x \circ \zeta$$

(2) The closure of the image $dJ(T_xM)$ of $dJ(x): T_xM \to \mathfrak{g}*$ is the annihilator \mathfrak{g}_x° of the isotropy Lie algeba $\mathfrak{g}_x:=\{X\in\mathfrak{g}:\zeta_X(x)=0\}$ in \mathfrak{g}^* , since the annihilator of the image is the kernel of the transposed mapping,

(3) The kernel of dJ(x) is the symplectic orthogonal

$$(T(r_{x})\mathfrak{g})^{\perp,\omega}=(T_{x}(x.G))^{\perp,\omega}\subseteq T_{x}M.$$

- (4) If G is connected, $x \in M$ is a fixed point for the G-action if and only if x is a critical point of J, i.e. dJ(x) = 0.
- (5) (Emmy Noether's theorem) Let $h \in C^{\infty}_{\omega}(M)$ be a Hamiltonian function which is invariant under the Hamiltonian G action. Then $dJ(\operatorname{grad}^{\omega}(h)) = 0$. Thus the momentum mapping $J: M \to \mathfrak{g}^*$ is constant on each trajectory (if it exists) of the Hamiltonian vector field $\operatorname{grad}^{\omega}(h)$.

Predualed convenient vector spaces and manifolds

A predualed convenient vector space E is a convenient vector space with a convenient predual E^p so that E is the dual (of bounded linear functionals) of E^p . Any reflexive convenient vector space is predualed.

A smooth mapping

$$E \underset{c^{\infty}-\text{open}}{\longleftrightarrow} U \xrightarrow{f} F$$

between between predualed convenient vector spaces is called predual preserving if $df(x)^*: F^* \to E^*$ maps the canonically embedded predual $F^p \subseteq F^*$ to $E^p \subseteq E^*$ for each $x \in U$, and that $df: U \to L(F^p, E^p)$ is smooth.

Note that a function $f:U\to\mathbb{R}$ is predual preserving if and only if $df(x):E\to\mathbb{R}$ is given by an element of E^p and that $df:U\to E^p$ is smooth.

Lemma For a predual preserving mapping $E \supset U \xrightarrow{f} F$ between predualed convenient vector spaces the following properties are equivalent:

- 1. For each $\alpha \in F'$ (equivalently, in a subset $\mathcal{V} \subset E'$ which recognizes bounded subsets in E) $d(\alpha \circ f)(x)$ lies in E^p for all $x \in U$, i.e., $\alpha \circ f$ is predual preserving.
- 2. For every $\alpha \in F'$ (equivalently, in $\mathcal{V} \subset E'$) and each $k \geq 1$ the mapping $d^k(\alpha \circ f)(x)(\cdot,y_2,\ldots,y_k)$ is in E^p for all $x \in U$, and all $y_2,\ldots,y_k \in E$. By symmetry of df(x) this is then true for any entry.

Proof. Clearly (2) implies (1). Conversely, if (1) holds, then $d(\alpha \circ f)(x) \in E^p$ for all $x \in U$ so $d(\alpha \circ f)() : U \to E^p$ is smooth thus

$$d^{k}(\alpha \circ f)(x)(y_{2},...,y_{k}) = d^{k-1}(d(\alpha \circ f)(y_{1},...,y_{k}) \in E^{p}.$$

A predualed smooth manifold

M is a smooth manifold modelled on a predualed convenient vector space E with an atlas $M \supset U_{\alpha} \stackrel{u_{\alpha}}{\longrightarrow} u_{\alpha}(U\alpha) \subset E$ such that all chart changings $u_{\alpha\beta}: u_{\beta}(U_{\alpha} \cap U_{\beta}) \to u_{\alpha}(U_{\alpha} \cap U_{\beta})$ are predual preserving. Then there exists the predual bundle $T^pM \subset T^*M$ with the property that $T^p_yM^*=T_yM$.

Summable predual differential forms on predualed manifolds Let M be a predualed smooth manifold. A summable predual differential form ω in M is a smooth section sections of the bundle of skew symmetric tensors

 $\bigwedge_{\operatorname{sum},\beta}^k T^p M \subset \bar{\otimes}_\beta^k T^p M = T^p M \bar{\otimes}_\beta T^p M \bar{\otimes}_\beta \dots \bar{\otimes}_\beta T^p M \to M.$ Let us denote by $\Omega_{\operatorname{pred},\operatorname{sum}}^k(M)$ the space of all summable predualed differential forms. Note that exterior derivative $d: \Omega^k(M) \to \Omega^{k+1}(M)$ does not map $\Omega_{\operatorname{pred},\operatorname{sum}}^k(M)$ into $\Omega_{\operatorname{pred},\operatorname{sum}}^{k+1}(M)$; both summability of a form and preduality are destroyed by the exterior derivative.

Skew multi vector fields

For any predualed smooth manifold M, a skew multi vector field P of degree k is a smooth section of the bundle $L^k_{\text{skew}}(T^pM;\mathbb{R}) \to M$. Let us denote by $\text{SM}^k(M)$ the space of all skew multi vector fields of degree k. If we denote by $TM\bar{\otimes}_\varepsilon TM$ the closure of the fiberwise algebraic tensor product in $L^2(T^pM;\mathbb{R})$ (also called the ε -tensor product), then the space of smooth sections of the bundle $\bigwedge_{\text{sum},\varepsilon}^k TM \subset \bar{\otimes}_\varepsilon^k TM = TM\bar{\otimes}_\varepsilon TM\bar{\otimes}_\varepsilon \ldots \bar{\otimes}_\varepsilon TM \to M$ is a closed linear subspace of $\text{SM}^k(M)$; we shall call it the space of

For predualed 1-forms α_1,\ldots,α_k and a skew multi vector field P we get a function $P(\alpha_1,\ldots,\alpha_k)\in C^\infty(M,\mathbb{R})$. Since our model spaces are not smoothly normal in general, we cannot assert that any skew k-linear operator $(\alpha_1,\ldots,\alpha_k)\mapsto P(\alpha_1,\ldots,\alpha_k)$ which is bounded $\Omega^1_{\mathrm{pre}}(M)^k\to C^\infty(M,\mathbb{R})$ and which $C^\infty(M,\mathbb{R})$ -multilinear, is a skew multi vector field. We will have to rely on coordinate formulas for this. Moreover, and this is the operation that we will use most often, $P(\alpha_1,\ldots,\alpha_{k-1})\in\mathfrak{X}(M)$ is a vector field on M.

Easy Theorem.

Schouten-Nijenhuis bracket for summable multi vector fields. Let M be a smooth manifold. We consider the space $\Gamma(\bigwedge_{sum,\varepsilon}TM)$ of multivector fields on M. This space carries a graded Lie bracket for the grading $\Gamma(\bigwedge_{sum,\varepsilon}^{*+1}TM), *=-1,0,1,2,\ldots$, called the Schouten-Nijenhuis bracket, which is given by

$$[X_1 \wedge \cdots \wedge X_p, Y_1 \wedge \cdots \wedge Y_q]$$

$$= \sum_{i,j} (-1)^{i+j} [X_i, Y_j] \wedge X_1 \wedge \cdots \widehat{X}_i \cdots \wedge X_p \wedge Y_1 \wedge \cdots \widehat{Y}_j \cdots \wedge Y_q,$$

$$[f, U] = -\overline{\imath} (df) U,$$

where $\bar{\imath}(df)$ is the insertion operator $\bigwedge_{sum,\varepsilon}^k TM \to \bigwedge_{sum,\varepsilon}^{k-1} TM$, the adjoint of $df \land (): \bigwedge_{sum,\varepsilon}^l T^*M \to \bigwedge_{sum,\varepsilon}^{l+1} T^*M$.

Easy Theorem continued

Let $U \in \Gamma(\bigwedge_{sum,\varepsilon}^u TM)$, $V \in \Gamma(\bigwedge_{sum,\varepsilon}^v TM)$, $W \in \Gamma(\bigwedge_{sum,\varepsilon}^w TM)$, and $f \in C^{\infty}(M,\mathbb{R})$. Then we have:

$$[U, V] = -(-1)^{(u-1)(v-1)}[V, U].$$

$$[U, [V, W]] = [[U, V], W] + (-1)^{(u-1)(v-1)}[V, [U, W]].$$

$$[U, V \wedge W] = [U, V] \wedge W + (-1)^{(u-1)v}V \wedge [U, W].$$

$$[X, U] = \mathcal{L}_X U.$$

Let $P \in \Gamma(\bigwedge_{sum,\varepsilon}^2 TM)$. Then the product $\{f,g\} := \frac{1}{2} \langle df \wedge dg, P \rangle$ on $C^{\infty}(M)$ satisfies the Jacobi identity if and only if [P,P] = 0.

Maybe wrong first try. Schouten-Nijenhuis bracket for multi vector fields.

Let M be a predualed smooth manifold. We consider the space

$$\mathsf{SN}^\circ(M) = \Gamma(L^\circ_{\mathit{skew}}(\mathit{TM};\mathbb{R})) := \bigoplus_{k \geq 0} \Gamma(L^k_{\mathit{skew}}(\mathit{TM};\mathbb{R}))$$

of bounded multivector fields on M. This space carries a graded Lie bracket for the grading $SN^{\circ+1}(M)$, $\circ = -1, 0, 1, 2, \ldots$, called the Schouten-Nijenhuis bracket, which is given for $P \in SN^{p+1}(M)$ and $Q \in SN^{q+1}(M)$ and for predualed 1-forms $\alpha_i \in \Omega^1_{pre}(M)$ by

$$[P, Q](\alpha_{1}, \dots, \alpha_{p+q})$$

$$= \frac{1}{p! \ q!} \sum_{\sigma} \sigma \left[P(\alpha_{\sigma 1}, \dots, \alpha_{\sigma p}), Q(\alpha_{\sigma(p+1)}, \dots, \alpha_{\sigma(p+q)}) \right]$$

$$+ \frac{-1}{p! \ (q-1)!} \sum_{\sigma} \sigma \left[Q(\mathcal{L}_{P(\alpha_{\sigma 1}, \dots, \alpha_{\sigma p})} \alpha_{\sigma(p+1)}, \alpha_{\sigma(p+2)}, \dots) \right]$$

$$+ \frac{(-1)^{pq}}{(p-1)! \ q!} \sum_{\sigma} \sigma \left[P(\mathcal{L}_{Q(\alpha_{\sigma 1}, \dots, \alpha_{\sigma q})} \alpha_{\sigma(q+1)}, \alpha_{\sigma(q+2)}, \dots) \right]$$

$$+ \dots$$

Thank you for listening.