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Review

For a finite dimensional symplectic manifold (M, w) we have the
following exact sequence of Lie algebras:

0 — HO(M) — C¥(M,R) £2%% 2(M,w) — H{(M) — 0.
H*(M) De Rham cohomology of M with 0 bracket.

C>*®(M,R) is equipped with the Poisson bracket { , 1},
X(M,w) all vector fields & with L¢w = 0 with usual Lie bracket.

Furthermore, grad® f is the Hamiltonian vector field for
f € C>°(M,R) given by i(grad® f)w = df and y(§) = [icw].

Consider a symplectic right action r: M x G — M of a connected
Lie group G on M; we use the notation

r(x,g) = ré(x) = r«(g) = x.g. By (x(x) = Te(r)X we get a
mapping ¢ : g — X(M,w) which sends each element X of the Lie
algebra g of G to the fundamental vector field (x. This is a Lie
algebra homomorphism (for right actions!).



A linear lift j : g — C*°(M,R) of ¢ with grad® oj = ( exists if and
only if v o ¢ =0 in HY(M). This lift j may be changed to a Lie
algebra homomorphism if and only if the 2-cocycle

7:9x g — H°(M), given by

(i o DX, Y) = {(X),J(Y)} —J([X, Y]), vanishes in the Lie
algebra cohomology H?(g, H°(M)), for if 7= da then j — i o ais
a Lie algebra homomorphism.

If j: g — C>°(M,R) is a Lie algebra homomorphism, we may
associate the momentum mapping J : M — ¢’ = L(g,R) to it,
which is given by J(x)(X) = x(X)(x) for x € M and X € g. It is
G-equivariant for a suitably chosen (in general affine) action of G
ong.



Infinite dimensional weak symplectic manifolds

Let M be a manifold, in general is infinite dimensional, Hausdorff,
in the sense of convenient calculus.

A 2-form w € Q?(M) is called a weak symplectic structure on M if
the following three conditions holds:

1. wis closed, dw = 0.

2. The associated vector bundle homomorphism & : TM — T*M
is injective.

3. The gradient of w with respect to itself exists and is smooth;
this can be expressed most easily in charts, so let M be open
in a convenient vector space E. Then for x € M and
X, Y, Ze TyM = E we have
dw(x)(X)(Y,2Z) = w(Q(Y,Z),X) = w(ﬁX(X, Y), Z) for
smooth Q,Q : M x E x E — E which are bilinear in E x E.



A 2-form w € Q?(M) is called a strong symplectic structure on M
if it is closed (dw = 0) and if its associated vector bundle
homomorphism & : TM — T*M is invertible with smooth inverse.

In this case, the vector bundle TM has reflexive fibers T, M: Let
i: TxM — (T,M)" be the canonical mapping onto the bidual.
Skew symmetry of w is equivalent to the fact that the transposed
(D) = (0)* o i: TxyM — (TxM)' satisfies ()t = —@. Thus,
i=—((@)"1)* o @ is an isomorphism.



Cotangent bundles

Every cotangent bundle T*Q, viewed as a manifold, carries a
canonical weak symplectic structure wg € Q?(T*Q), which is
defined as follows. Let w5, : T*Q — @ be the projection. Then the
Liouville form 0 € Q(T*Q) is given by

0o(X) = (r1+@(X), T(mg)(X)) for X € T(T*Q), where ( , )
denotes the duality pairing T*Q xo TQ — R. Then the
symplectic structure on T*Q is given by wg = —dfg, which of
course in a local chart looks like

we((v, V'), (w,w')) = (W, v)g — (V/,w)g. The associated
mapping & : Tgo)(E x E') = E x E' — E’ x E" is given by
(v,v') = (—=V',ig(v)), where ig : E — E” is the embedding into
the bidual. So the canonical symplectic structure on T*Q is strong
if and only if all model spaces of the manifold Q are reflexive.



Towards the Hamiltonian mapping

Let M be a weak symplectic manifold. The first thing to note is
that the Hamiltonian mapping grad®” : C*°(M,R) — X(M,w) does
not make sense in general, since & : TM — T*M is not invertible.
Namely, grad® f = (&)~ o df is defined only for those

f € C°(M,R) with df(x) in the image of & for all x € M. A
similar difficulty arises for the definition of the Poisson bracket on
C>*(M,R).

For a weak symplectic manifold (M,w) let T¥M denote the real
linear subspace TYM = &y (T,M) C TiM = L(T M,R), and let
us call it the w-smooth cotangent space with respect to w of M at
x. The convenient structure on TYM is the one from T, M. All
T¢ M together form a subbundle of T*M isomorphic to TM via
&: TM — TYM C T*M. It is in general not a splitting subbundle.

Note that only for strong symplectic structures the mapping
Wx 1 TxM — T M is a diffeomorphism onto T¥M with the
structure induces from T; M.



Definition of C3°(E,R) C C>*(E,R).

For a weak symplectic vector space (E,w) we consider linear
subspace CS°(E,R) C C*°(E,R) consisting of all smooth
functions f : E — R such that

> each iterated derivative d*f(x) € L&, (E;R) has the property
that
d*F(x)( Lyos...,yk) € E¥
is actually in the smooth dual E¥ C E’ for all
X, Y2,...,yk € E,
» and that the mapping Hk E—E
(X, ¥25 - yi) — () 7HAFC L yas oo yk)

is smooth. By the symmetry of higher derivatives, this is then
true for all entries of d*f(x), for all x.

This makes sense even if (E,w) is a weak symplectic manifold
which happens to be a convenient vector space since
TYEXTE=EXE=EXEYCT'E=EXE.



Lemma. [KM97, 48.6] For f € C*°(E,R) the following assertions
are equivalent:

1. df : E — E’ factors to a smooth mapping E — E“.

2. f has a smooth w-gradient grad“ f € X(E) = C>(E,E)
which satisfies df (x)y = w(grad® f(x), y).

3. f € C(E,R).

Definition of C°(M,R) C C*(M,R):

For a weak symplectic manifold (M, w) the space C°(M,R) is the
linear subspace consisting of all smooth functions f : M — R such
that the differential df : M — T*M factors to a smooth mapping
M — T“M. It follows that these are exactly those smooth
functions on M which admit a smooth w-gradient grad” f € X(M).



Theorem [KM97, Thm 48.8] with gap closed in [BIM24, appendix]
Let (M,w) be a weak symplectic manifold. The Hamiltonian
mapping grad” : CS°(M,R) — X(M,w), which is given by

igrade fw = df  or  grad” f := ()" o df
is well defined. Also the Poisson bracket

{ , }:C®(M,R)x CX(MR) = C(M,R)
{f, g} = igrad“’ figrad‘*’ gW = w(grad“ g, grad‘*’ f) =
= dg(grad” f) = (grad” f)(g)

is well defined and gives a Lie algebra structure to the space
CX(M,R), which also fulfills

{f.gh} = {f,gth+g{f, h}.



Theorem, continued.

We equip C°(M,R) with the initial structure with respect to the
the two following mappings:

C®(M,R) -5 C®(M,R),  C(M,R) 2 x(m).

Then the Poisson bracket is bounded bilinear on C5°(M,R).

We have the following long exact sequence of Lie algebras and Lie
algebra homomorphisms:

grad®

0 — H'(M) = C=(M,R) X(M,w) L5 HY(M) = 0,

where H°(M) is the space of locally constant functions, and

~ {p e C®(M  T“M) : dp = 0}
- {df - f € C*(M,R)}

HL(M)

is the first symplectic cohomology space of (M,w), a linear
subspace of the De Rham cohomology space H'(M).



The Diez-Rudolph topology

In [DR24, 5.3: T.Diez, G.Rudolph: Symplectic Reduction in
Infinite Dimensions, arXiv:2409.05829], for a weak symplectic
vector space (E,w), a locally convex topology T on E is called
compatible with w if the dual (E,7) = O(E) = E¥ C E'.

Proposition. [DR24,5.4] For a convenient weak symplectic vector
space the bornological topology on E is compatible with w

» in the Bastiani setting: iff E is a reflexive Banach space and w
is strong.

» here: iff E is reflexive and w is strong.

Note that LP x LP’ is symplectic, Banach, but i,g, not Hilbert.
Namely: If we take E/ x E — R is given by
(X', x) = w(@™H(xX'), x) as duality reflexivity follows.



How does this notion fit into the convenient framework?

Example: Let E = (2 x ¢? with the weak symplectic structure
(%, 9), (X, ¥')) = S CalXn — yaxb) for a sequence 0 < ¢, \, 0
sufficiently fast.

Then any l.c. topology on E compatible with w is NOT convenient:
Namely, let 0 < b, oo with b,c, N\ 0. Then for suitable x € 02
the sequence Xy := (b,,x,,)ﬁzl € £? is a Mackey-Cauchy sequence
for the weak o(E, E“)-topology but its limit X = (bpx,) is i.g. not
in 2.

Smooth Curves into (E, 7). [KM97, Section 1] Since (E, ) is
not Mackey complete in general, we define ¢ : R — (E, 7) to be
smooth if A o ¢: R — R is smooth and each iterated derivative
c(M(t) lies in E (a priori only in the c>-completion of E). We
denote this space by C*°(R, (E, 7)), and by c¢*°(7) we denote the
final topology on E with respect to C*(R, (E, 7)).



Question. Let (E,w) be a convenient weak symplectic vector
space and let 7 be any l.c. topology compatible with w. Under
which conditions do we have C*(R, (E, 7)) = C*(R, E)?

Proposition. Let (E,w) be a convenient weak symplectic vector
space and let T be any l.c. topology compatible with w. Suppose
that the bornology of E has a basis of o(E,%(E))-closed sets (i.e.,
each bounded set is contained in a o(E,w(E))-closed bounded
set). This is he case if (E,w) is a convenient weak symplectic
vector space which is a dual space E = F' such that
O(E)CFCE =E".

Then we have C*(R, (E, 7)) = C*(R, E).

This includes the the ¢? x 2 example from above.

In the convenient spirit, under this condition we then have
CX(E,R) = C>=((E,T),R), although (E,7) is NOT a convenient
space.

Proof. This is a special case of the following theorem.



Theorem[KF88, Theorem 4.1.19] Let c:R — E be a curve in a
convenient vector space E. Let F C E' be a subset of bounded
linear functionals such that the bornology of E has a basis of
o(E, F)-closed sets. Then the following are equivalent:

1. ¢ is smooth

2. There exist locally bounded curves c¥ : R — E such that
X o ¢ is smooth R — R with (A o ¢)(K) = X\ o c¥, for each
A € F and each k.

If E = F' is the dual of a convenient vector space F, then for any
point separating subset F C F the bornology of E has a basis of
o(E,F)-closed subsets, by [FK88 4.1.22].

[FK88] Frolicher, A.; Kriegl, A., Linear spaces and differentiation theory,
Pure Appl. Math., J. Wiley, Chichester, 1988.



Weakly symplectic group actions.

An infinite dimensional regular Lie group G with Lie algebra g acts
from the right on a weak symplectic manifold (M, w) by

r: M x G — M (notation r(x, g) = r8(x) = r(g)), so that each
ré€ is a symplectomorphism. Some immediate consequences:

(1) The space C*(M)C of G-invariant smooth functions with
w-gradients is a Lie subalgebra for the Poisson bracket, since for
each g € G and f, h € C®(M)® we have

(r&) {f, b}y = {(r&)"f, (r&)"h} = {f, h}.

(2) For x € M the pullback of w to the orbit x.G is a 2-form,
invariant under the action of G on the orbit. In finite dimensions
the orbit is an initial submanifold. Here this has to be checked
directly in each example. There is a tangent bundle

T(x.G) = T(r)g. If i : x.G — M is the embedding of the orbit
then r& o = o r8, so that i*w = i*(r8)*w = (r8)*i*w holds for
each g € G and thus i*w is invariant.



(3) The infinitesimal action ¢ : g — X(M,w), given by

Cx(x) = Te(re)X for X € g and x € M, is a homomorphism of Lie
algebras (for a left action we get an anti homomorphism of Lie
algebras). We have the exact sequence of Lie algebra
homomorphisms

0 —— HO(M) —> C3°(M) 2% %(M, w) "~ HL (M) —>0

<.
g

(4) If HEL(M) = 0 then any symplectic action on (M,w) is a
Hamiltonian action.

(5) If the Lie algebra g is equal to its commutator subalgebra

[g, 9], the linear span of all [X, Y] for X, Y € g (true for all full
diffeomorphism groups), then any infinitesimal symplectic action

¢ :g— X(M,w) is a Hamiltonian action, since then any Z € g can
be written as Z = ) .[X;, Yi] so that (7 = ) [(x;,Cy,] € im(grad®)
since v : X(M,w) — HL(M) is a homom.into the zero Lie bracket.



(6) If j: g — (C(M),{ , }) happens to be not a
homomorphism of Lie algebras then

c(X,Y) = {i(X),j(Y)} —J([X, Y]) lies in H°(M), and indeed
c:gxg— H'(M)is a cocycle for the Lie algebra cohomology:
(X, Y], Z)+c([Y,Z], X)+c([Z,X],Y)=0. If cis a
coboundary, i.e., ¢(X,Y) = —b([X, Y]), then j+« o b is a Lie
algebra homomorphism. If the cocycle ¢ is non-trivial we can use
the central extension HO(M) x . g with bracket

[(a, X), (b, Y)] = (c(X,Y),[X, Y]) in the diagram

0— HO(M) —2 (M) —2T5 2(M, w) L= HL(M) — >0

7 @ﬁ
pra

Hl(M) Xeg——>0¢

where 7(a, X) = j(X) + a(a). Then 7 is a homomorphism of Lie
algebras.



Momentum mapping

For an infinitesimal symplectic action ¢ : g — X(M,w) we can find
a linear lift j : g — CS°(M,R) iff there exists J € C*(M, g*) :=
{f e C®(M,g*): (f( ),X) e C(M) for all X € g} such that

grad“((J, X)) =(x forall X € g.
J e CF(M,g*) is called the momentum mappingfor the
infinitesimal action ¢ : g — X(M,w).
Basic properties of the momentum mapping

(1) For x € M, the transposed mapping of the linear mapping
dJ(x): TxM — g* is

dI(x)" 1 g—=T:M,  dI(x)" =wx o

(2) The closure of the image dJ(T, M) of dJ(x): TuM — gx is
the annihilator g, of the isotropy Lie algeba

0x = {X € g:(x(x) =0} in g*, since the annihilator of the image
is the kernel of the transposed mapping,

—_



(3) The kernel of dJ(x) is the symplectic orthogonal

(T(r)g)™ = (Tu(x.G))* C TuM.

(4) If G is connected, x € M is a fixed point for the G-action if
and only if x is a critical point of J, i.e. dJ(x) = 0.

(5) (Emmy Noether's theorem) Let h € C°(M) be a Hamiltonian
function which is invariant under the Hamiltonian G action. Then
dJ(grad®(h)) = 0. Thus the momentum mapping J : M — g* is
constant on each trajectory (if it exists) of the Hamiltonian vector
field grad“(h).



Predualed convenient vector spaces and manifolds

A predualed convenient vector space E is a convenient vector
space with a convenient predual EP so that E is the dual (of
bounded linear functionals) of EP. Any reflexive convenient vector
space is predualed.

A smooth mapping
E< oU-f-F

c®°-open
between between predualed convenient vector spaces is called
predual preserving if df(x)* : F* — E* maps the canonically
embedded predual FP C F* to EP C E* for each x € U, and that
df : U — L(FP, EP) is smooth.

Note that a function f : U — R is predual preserving if and only if
df(x) : E — R is given by an element of EP and that df : U — EP
is smooth.



Lemma For a predual preserving mapping E D U "5 F between

predualed convenient vector spaces the following properties are
equivalent:

. For each « € F' (equivalently, in a subset V C E’ which recognizes
bounded subsets in E) d(a o f)(x) lies in EP for all x € U, i.e.,
« o f is predual preserving.

. For every a € F' (equivalently, in V C E’) and each k > 1 the
mapping d“(a o £)(x)(,y2,...,yk) is in EP for all x € U, and all
y2,..., ¥k € E. By symmetry of df (x) this is then true for any
entry.

Proof. Clearly (2) implies (1). Conversely, if (1) holds, then
d(a o f)(x) € EPforall x e Uso d(a o f)(): U— EPis
smooth thus

d (a0 F)(x)( sy, i) = d*Hd(a o (), ) € EP. L



A predualed smooth manifold

M is a smooth manifold modelled on a predualed convenient vector
space E with an atlas M D U, —2— u,(Ua) C E such that all

chart changings uag : ug(Ua N Ug) = ua(Us N Ug) are predual
preserving. Then there exists the predual bundle TPM C T*M
with the property that T)M* = T, M.

Summable predual differential forms on predualed manifolds
Let M be a predualed smooth manifold. A summable predual
differential form w in M is a smooth section sections of the bundle
of skew symmetric tensors

Nem s TPM C RETPM = TPME3TPM&gs ... &5 TPM — M. Let
us denote by Qgred'sum(l\/l) the space of all summable predualed
differential forms. Note that exterior derivative

d : QX(M) — Q¥T1(M) does not map Qf . ;um(M) into
Qﬁfej,sum("/’); both summability of a form and preduality are
destroyed by the exterior derivative.



Skew multi vector fields

For any predualed smooth manifold M, a skew multi vector field P
of degree k is a smooth section of the bundle L5 _ (TPM;R) — M.
Let us denote by SM*(M) the space of all skew multi vector fields
of degree k. If we denote by TM®. TM the closure of the fiberwise
algebraic tensor product in L2(TPM;R) (also called the e-tensor
product), then the space of smooth sections of the bundle
N TM C @ETM = TM&. TM&: ... &.TM — M is a closed

linear subspace of SMK(M); we shall call it the space of

For predualed 1-forms a4, ..., a, and a skew multi vector field P
we get a function P(aq,...,ak) € C*°(M,R). Since our model
spaces are not smoothly normal in general, we cannot assert that
any skew k-linear operator (aq,...,ax) — P(ai,...,ak) which is
bounded Qére(M)k — C*°(M,R) and which
C>®(M,R)-multilinear, is a skew multi vector field. We will have to
rely on coordinate formulas for this. Moreover, and this is the
operation that we will use most often, P(aq,...,ax_1) € X(M) is
a vector field on M.



Easy Theorem.

Schouten-Nijenhuis bracket for summable multi vector fields. Let
M be a smooth manifold. We consider the space I'(A\,,,. TM) of
multivector fields on M. This space carries a graded Lie bracket for
the grading I'(/\sjn%E TM),« = —1,0,1,2,..., called the

Schouten-Nijenhuis bracket, which is given by

[XIA - AXp, YA - A Y]
:Z(_ YHIX YiIAX A - Xio - AXg AYIA Yo A Yy,

[f, U] = —i(df)U,

TM — A1 TM, the

where 7(df) is the insertion operator /\sum . sum.e

adjoint of df A ()t Ny T"M — AL _T*M.

sum,e



Easy Theorem continued

Let UeT(AL,, .TM), Vel (AL, .TM), WeTl(AY _TM),

sum,e sum,e sum,e

and f € C*°(M,R). Then we have:

[U, V] = (=) DD, 0],
[U, [V, W]] = [[U, V], W] + (=1) DDV, (U, W),
[U,VAW]=[U,V]AW + (=1)EDYV AU, W.
[X,U] = LxU.

Let P e T(A2, . TM). Then the product {f,g} = 1(df A dg, P)

sum,e

on C*°(M) satisfies the Jacobi identity if and only if [P, P] = 0.



Maybe wrong first try. Schouten-Nijenhuis bracket for multi vector fields.

Let M be a predualed smooth manifold. We consider the space

SNO(M) r( skew TM R @r Lskew TM'R))
k>0

of bounded multivector fields on M. This space carries a graded
Lie bracket for the grading SN°™(M),0 = —1,0,1,2,..., called
the Schouten-Nijenhuis bracket, which is given for P € SNP1(M)
and Q € SN9"Y(M) and for predualed 1-forms oj € Q%,.(M) by

['D’ Q](alv s 7aP+Q)
— ﬁ Z o [P(as1,- - Qp)s Qo(pt1)s - - - s Ao (ptq))]

+ Why Z 0 Q(LP(agy,...00p) Yo (p+1) Vo (pt2)s - - -)

1)Pa
+ ([(J 1)l g! ZJ P ﬁQ(Oéoh 0oq)Po(q+1) Xo(g+2)) - - )

+...



Thank you for listening.



