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HISTORY

In 1973, Derek Capper and Michael J. Duff discovered that the invariance

under Weyl rescaling of the metric tensor

(@) = (@) gy ()

displayed by classical massless field systems in interaction with gravity no

longer survives in the quantum theory.

— Weyl (or conformal) anomaly
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CONFORMAL MASSLESS FIELDS COUPLED TO GRAVITY

Examples of spin-1, spin-1/2 and spin-0 field theories :

© S[Auaglt”} = _% /d4x\/ -9 Fqupogupgw
where F,, =V, A, — V, A, = 0,4, — 9,4,

o S, el]=—3 /d":v e(UY' V¥ — V, Uy T)

oS¢, gum]=—3 /\/—_g (9" 0.0 0,0 — £(n) Z ®%] d"x

1

with &(n) = 7 [(n —2)/(n —1)].

N. Boulanger (UMONS) Conformal Anomalies and Invariant 15 September 2021 5 / BT



NOTATION, DEFINITIONS, CONVENTIONS

@ Spacetime indices — Greek letters, e.g. Riemann tensor

RF, ;= 0pI'",, + ..., Christoffel symbols T'#, ), Ricci tensor

vp 9
Reop = R" auf and scalar curvature Z = g”‘ﬁﬁag ; Curvature two-form

Rt,=LRr, drPdx®.

=3 vpo

e Frame (tangent bundle) indices — Latin letters.

The frame fields are e, = e//0, in coordinates z*. e = det e, where
€,€q = 0y,

e For Dirac spinors : Clifford algebra {v,,v»} = 214s Where 7, denote
Dirac’s matrices and n =diag(—, +,+,+) ; Vo ¥ = e/ (9, — %waCEbc)\IJ,
where Sy = 4 [15,7c] and w, ¢ = w ¢(e) is the Levi-Civita
spin-connection.
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TRACE OF STRESS-TENSOR

@ These matter systems coupled to gravity are invariant under the local

Weyl rescalings

Guv  — Q%(x) Juv
e — e
v - Q0-m/2y
¢ — Q@2-n)/2 )

=

e This is reflected in the (on-shell) tracelessness of the corresponding

symmetric stress-tensor : (1) = g"*T},, = 0.
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LOCAL SYMMETRIES

By construction these actions are also invariant under diffeomorphisms.

To summarize, the local symmetries of these conformally invariant massless

systems coupled to gravity are

LOCAL SYMMETRIES :

e Diffeomorphism invariance

@ Local Weyl rescaling invariance
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BOTH SYMMETRIES CANNOT SURVIVE

It turns out that, after regularization and renormalization, both symmetries
cannot survive at the same time. One always chooses to maintain
diffeomorphism invariance (conservation of energy-momentum). This is done

at the price of a
Weyl anomaly
— A=g" <Tuy>mg #0

Note : Weyl anomalies are also called “Trace anomalies” or “Conformal

anomalies” for obvious reasons.
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SOME BITS OF QFT

e Generating functional of Green’s functions :
21 = /@(I)elﬁ [ d"z [2(9,09)+J(2)® ()]
o Generating functional of connected Green’s functions :
WI[J] = —ilnZ[J]

@ The generating functional of 1PI Green’s functions

r[e.] = W[J@]—/dnmq)(:(x)Jq)(x), ®,(x) = ?3/([;)]

The functional I' is also called quantum action or effective action.
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THE ANOMALIES CANNOT BE ANYTHING

1. AN ANOMALY IN QFT ...
Anomalies occur when quantization spoils symmetries of the classical action,
i.e. if I'[®] cannot be made invariant under infinitesimal transformations s by

a suitable choice of local counterterms.

2. ... IS AN INFINITESIMAL VARIATION
To lowest order in /4 the variation A = sT'[®] is local. It is an anomaly if it

cannot be written as A = s C for any local functional C'.
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CONSISTENCY CONDITIONS

Because an anomaly is a variation
A= sT[P]

it is not arbitrary but constrained to obey some consistency conditions. Similar
to integrability conditions V x F = 0 which a gradient F = 6(,0 has to satisfy.

= An anomaly must satisfy the

Wess-Zumino consistency conditions [1971]
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BRST-COHOMOLOGICAL REPHRASING

The analysis of WZ consistency conditions simplifies in the

Becchi-Rouet-Stora-Tyutin (BRST) formulation.

— one introduces a ghost for each gauge parameter ;

— one suitably defines the transformations of the ghosts so that

s2=0

LOoCAL COHOMOLOGY OF s
The WZ consistency conditions take the simple form

sA=0, A#sC

where A and C are local functionals A = [a’"([®],z), C = [b%"([®],z) and
s is the BRST differential. )
T e
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WESS-ZUMINO CONSISTENCY CONDITION

e Central equations for candidate anomalies in QFT : Wess-Zumino (WZ)
consistency conditions. By using these conditions, the general structure of
all the know anomalies (except the conformal one) had been determined
by purely algebraic methods featuring descent equations a la
Stora-Zumino.

— Book by R. Bertlmann (U. Wien) at Oxford U.P. (1996) on that topic.

@ Determining the general solution of the WZ consistency conditions is
tantamount to computing the cohomology of the corresponding
Becchi-Rouet-Stora-Tyutin (BRST) differential s in the space of local

functionals with ghost number one.
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STORA-ZUMINO DESCENT OF EQUATIONS

o Letting A= [a®™ , the WZ conditions get translated to

‘Sa,l’n 4 daQ,n—l _ 07 al,n ~ al,n 4 SCO,n 4 dcl,n—l ‘ (2>

o With the total exterior derivative d = dm“a% . One has
$2=0, =0, sd+ds=0.

e Acting on (2) with s and using the above relations :

algebraic Poincaré lemma
—=

d(s a2’"71) =0 sa®" P4 da> 2 =0].

Apply s again on this equations, ...
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A LADDER OF EQUATIONS

... one obtains the following descent equations

sa" +da*"t = 0 ,

SaQ,n—l T da3,n—2 — O )

sq?n—atl 4 da?tlm—a — )
5@ = 0 (0<qg<n)

If ¢ = 0, the descent is trivial : sa> = 0.

DuBOIS-VIOLETTE, TALON, VIALLET (1985)
e In order to find a*™ € H'"(s|d), find the a?T1"~9 € HIT1(s) that can be

lifted up to a top form.
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BONORA ET AL.

Cohomological consideration, although without any descent equation analysis
— pioneering works by Bonora, Cotta-Ramusino, Reina, Pasti and Bregola
[1983-1985]. Results up to dimension n = 6.

They conjectured :

(1) Euler term times the Weyl parameter

617" = V—guw (Rulul o R#mum) €M1V1~-Mml/m )
plus
(11) strictly Weyl-invariant scalar densities times Weyl parameter. In n = 4,
e.g.,
o't = w /=g g g W A WP e d

where W# ;. : conformally invariant Weyl tensor, traceless part of

Riemann curvature tensor R* 5 .
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e Using dimensional regularization, Deser and Schwimmer (1993) confirmed
the structure obtained by Bonora et al.
The Euler term from class (i) was called type-A Weyl anomaly, while the

terms of (ii) were called type-B anomalies.

e From the structure of the poles in the variation of the effective action,
they observed that the type-A anomaly appears in a similar way to the
non-Abelian chiral anomaly in Yang-Mills gauge theory.

— that the type-A anomaly should arise via some descent equations a la

Stora-Zumino was therefore conjectured.
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IN THE BRST FORMALISM

e Apart from g,,, the other fields of the problem are the Weyl ghost w and
the diffeomorphisms ghosts £*, gh(&") = gh(w) =1.

o The BRST transformations on the fields ®4 = {g,,,,w, "} read

SpGuv = fpapg;w + augpgpu + augpgup y S Guv = 2WGuy
SDEH :§p6p§u7 SDw=€p8pw, Swfﬂ :O:SWW )

where the BRST differentials s, and s, implement the Weyl

transformations and the diffeomorphisms transformations, respectively.
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WYZ CONDITIONS FOR WA

Upon quantization one always chooses to preserve diffeomorphism invariance.
With s = s, + s,,, decomposing sa+db=0,a~a+ sc+df wr.t. the Weyl
ghost degree gives the WZ consistency conditions for the Weyl anomalies in

terms of local forms :

SWal,n + db2,n—1 — 07 al,n 7& SWpO,n + dfl,n—l ;
(%)

sDal’" +de*m 1= 0, Vpo’" s.t. stO’" +dhtn=l =0.
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STORA’S TRICK

e Denoting and similarly for s,,, the problem (x) consists in

determining the §, -invariant (n + 1)-local total forms a(#") satisfying

Spa(#)=0, o(¥#)+#5,((H)+ constant, (3)

‘ totdeg = formdeg + gh ‘

where ((#') must be §,-invariant.

e Using very general results obtained in [Friedemann Brandt, CMP 1996], we

know that the solution of (3) will take the form

a#)=2wCN ... .CNan, N (T).
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ELIMINATION OF TRIVIAL PAIRS IN JET SPACE

LEMMA

Suppose there is a set of local jet coordinates
B=A{U"v"\W"}

such that the change of coordinates from ¢ = {[®4],z*, dz"} to & is local

and locally invertible and
sut = vt owe,
swh = @MW) YA.
Then, locally the %’s and ¥”’s can be eliminated from the §-cohomology, i.e.,

the latter reduces locally to the S-cohomology on total local forms depending

only on the #’s.

v
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IN THE CASE AT HAND

o Jet space # = {[gu], [w], [£#],2*,dx"} and 5§ =5, + 5, +d the
differential acting on ¢

o The {% , V" ,# }-decomposition of # corresponding to 5 :

(% = {2, s Dy piisa) » ¥ ireeotin Panyrpinio) » K € N},
{ry = {32°, {(wh}={7",C"},
{(r'y = {73u{C"},
(7Y = {9w> Dion - Das WPo5)e, k €NV,
{CN} = {2w, 8,0, @a},
£ =g +da”, CP = 0,6P + €T, , Do :=we—EPPyp.

av )
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o Assignment of degrees :

totdeg(TH) =0, totdeg(CN)=1, CN=CN4 N,
gh(CN) =1 = formdeg(ZN), gh(N)=0= formdeg(C"N),

@ covariant ghosts and connection 1-forms :

{ON} - {260, 51/7 CYVP = 6V§p + éarowpvwa = Wo — fﬂpua} y
{«"} = {0,datsl, datT ", —dz"Pua} .

o The differential § raises the total degree by 1 unit, so

sTt=CNANT?
dTt = dNANT?
{An} = {AY,2,,A) T}

3 7'=CNANT' &
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The W-tensors, by iteration :
Wa, = ZaWay_s = (Vay + Psa, T)Wao,_, .
They transform as
Sy Wa, = wo I *Wo,
—only the first derivative w, = Jyw of the Weyl parameter appears and

TWo, = [T%]q " Wa,_, -

The [T“]ij ~’s are built iteratively starting with [TQ]Q(:" =0 Vj<0.

The operators acting on the space .7 of tensors and connections :
{AN} = {AZI ) -@V ) ApV 71’\0&} ’
Dy =0, =T, PA," + P,oT®,

Ag’” counts the number of metric tensors appearing in a given expression.
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(GAUGE COVARIANT ALGEBRA

With A#, the generators of GL(n)-transformations of world indices acting on
a type-(1,1) tensor T2 as A, T2 = 6*T8 — §°TF | the gauge covariant
algebra & generated by {An} = {AF", 2, , A", , T*} reads

[AMW Fa} = _531—‘“ ) [ANW @a} = 55911 >
[AP,,A%,] = 0°A7, — 5ZA”V, [I‘D‘,I‘ﬁ] =0,
[25,T%) = PLAF, - 53AZ,
Dp, Ds] = —WHE A, = Copy T2,

where Cop = 2 V[, Py is the Cotton tensor and
Ppe = (—=9""gpu + 040 + 650;,) . The operator Ag® commutes with all the

other generators.
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o With {An} = {AJ", 2, ,A", T}, the action of 5, on the tensor fields

{77} and generalized connections {CN} can be written as
§5,7'=CNANT?, §,CN=1CLC¥7..N(T),

W -2

where Z ;N () denote the structure functions of the gauge covariant
algebra ¥ :

o The relation 3, CN =

the Russian formula.
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JACOBI IDENTITIES FOR GAUGE COVARIANT ALGEBRA

e From 32CN =0, get the following set of Bianchi identities

Fw=0 = Clupe =0
§C,Y =0 = Vi, Wsdas — Cars9es + Colragea = 0
ap
=0 = Pl =0
W¥0po) = 0

I'*Cs,e + W%, =0
52(:)& -0 = Bp + Bp
218Cpola =0
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RELATION WITH CONFORMAL ALGEBRA

Introducing the new set of generators { P, , K,,, M, , D} via

{A,u,l/7 I‘av D} = {g,upApu, gaﬂrﬁa 6{jAyu _Agw}v
{le Ky, Muu}:{%@u’ 2T, _2A[/u/]}a

one gets
[Poy M) = 29auPy, [Kay My =2ga1.K,,
[D,P,] = P,, [D,K,)]=-K,,
[May, Mpy] = 2gaigMy) — 29u86Myja
[Pu, K] = 2(guwD+Muw), [Ku,K)]=0,
[P.,P] = —% W, My — % Cop K°

which is isomorphic to the conformal algebra so(2,n) when g,, = 7, -
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Lemma : Let ¥y, p,, be the local total form

)

O 0¥l coo@ = = 128 V.
Vuyopiny = € "ottty iz P -+ Wa, dx¥t ... dx"

'

p = , m=n/2, 0<r<m

and let W#” denote the tensor-valued two-form W#” = WH g then the

local total forms <I>7[~n7T] (0<r<m)

(I)[n—r] — (_1);0 m!

: — Whikz |y H2p-1izp
r 2p T'p' H1---H2p

obey a descent equations so that the following relations hold :
Gya=0=25,0
with

m
o= Z @[r"_r] , B:i= @gl] .

=1l
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THEOREM (A)

The top form-degree component a*™ of a satisfies the WZ consistency
conditions for the Weyl anomalies. The WZ conditions for a>™ give rise to a
non-trivial descent and a®™ is the unique anomaly with such a property, up to

the addition of trivial terms and anomalies satisfying a trivial descent.

THEOREM (B)

The top form-degree component e*™ of (a + ) is proportional to the Euler
density of the manifold A, :

e = (_1)771 \/__ (R;nl/l Rumum)
1 = 2—m g w 5;1‘1111.“/14me .

The anomaly 8 = @gl] — a contraction of a product of Weyl tensors —

satisfies a trivial descent. It is a type-B anomaly.
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EXAMPLE FOR n = 6

e From the definitions above, one gets for n = 6

= <1>§” _ —?w =G Eprpg WHIF2 TV HaBa T oM
o = %" =G €% . s Do da¥ WHIHZ Y HsHs
<I>[24} = % —g aaﬁwpa Wawg dztdz” WP,
¥ = wy=g e 1y p Bapiy dodz” da’ .

e Extracting from a = q)[f} 4F <I>[24} IF (I>£3] its top form-degree component

amounts to selecting everywhere the contribution 7, of @, = w, + &7, .
As a consequence, the top form-degree component of (« + ) reproduces
the expression €§ = —% \/=g e, i R**#2 RF31 Ri5H6 making use of
R¥ =W — 2 oflhdz”l and o/t = —g" P, ,dx? .
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A REGULARIZATION-FREE UNDERSTANDING

e Universal structure of Weyl anomalies established in a purely algebraic
manner, independently of any regularization scheme and in arbitrary
dimensions n . In particular, we do not resort to dimensional analysis.
That the anomalies exist in even dimension n = 2, only is not an
assumption but arises in the cohomological analysis. The type-A Weyl
anomaly is the unique (up to trivial terms) Weyl anomaly satisfying a

non-trivial descent of equations.

e the Weyl anomalies satisfying a trivial descent equations are all (integral)
of product of the Weyl parameter times a strictly Weyl-invariant scalar

density. They are called type-B Weyl anomalies.
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FROM ANOMALIES TO INVARIANTS

o Conformal anomalies are related to global conformal invariant. The
Deser-Schwimmer paper triggered the interest of some conformal
geometers.

e Global conformal invariants are given by the integral over a n-dimensional
(pseudo) Riemannian manifold .#,(g) of linear combinations of strictly
Weyl-invariant scalar densities and scalar densities that are invariant
under Weyl rescalings only up to a total derivative.

e What is the general structure of the latter ?

— relevant for (quasi-)Weyl-invariant Lagrangians densities.
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e By the assumption of locality, a global invariant is a ghost-zero scalar

density whose Hodge dual a®™ obeys the cocycle equation
sa®" +dbt" "t =0

@ The local conformal invariants are (the integral of) scalar densities that
are strictly Weyl invariant. They can be built using various techniques, be

them algebraic or geometric [tractor calculus].

@ The global invariants are scalar densities that are Weyl invariant only up

to a total derivative = Produce a non-trivial descent equations.
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o Non-trivial descent equations :

sa®" +dat"™1 =0
salm—l + da2,n—2 =0
saP~Ln—prtl L gapn—P —
sal"™P =0

It stops either because p = n or because one encounters an s-cocycle

aPnp,
e Decomposing the first equation wrt Weyl-ghost degree :

SDCLO’n + dfl,n—l = 0 ,

aO,n 74 dbO,n—l .
Swao,n e dgl,n—l — O ,
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e The classification of global conformal invariants is also given by the
cohomology of the associated BRST differential in top form degree n, but
this time, at ghost number zero, i.e., H%"(s|d). The two cohomological
groups H"(s|d) (anomalies) and H%"(s|d) present some similarities but

also important differences. The latter group is the larger!

@ The conjecture of Deser and Schwimmer on the structure of Weyl
anomalies led the geometer Spyros Alexakis to study the problem of the
classification of global conformal invariants.

— Gave rise to several publications culminating with the monograph
“The Decomposition of Global Conformal Invariants” in the Annals of

Mathematics Studies series at Princeton U. Press, 2012.
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PURSUING THE COHOMOLOGICAL ANALYSIS

e From
SD(IO’" + dfl,n—l = 0 )
1n—1 _
n = O,

aO,n ;é dbO,nfl ,
sy a’" +dg

— Find the cocycles of the differential s, modulo d, in the cohomology
of the diffeomorphism-invariant local n-forms.

@ The latter cohomology class already been worked out in
[Brandt-Dragon-Kreuzer89] and [Barnich-Brandt-Henneaux95].

o Denote by fx := Tr(R™5)) K € {1,...,r = [n/2]}, the invariant
polynomials of the Lorentz algebra so(1,n — 1) and ¢9% the corresponding
Chern-Simons (2m(K) — 1)-forms obeying d¢% = fx . The general

solution of the first equation above decomposes into two main classes :
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e Two main classes :

FL(VRgd"x+Z Z q%’%Pm(fla---vfr)'

m K:m(K)=m

class I

class I

@ The second class only contributes for spacetimes of dimensions
n=4p—1, p € N*. Taking n = 7 as a definite example, the second class

gives two structures

Tr(Ddl + 2T%)Tr(R?) = L} g Tr(R?) and Lig = Tr(I7) ,
I; =T(dl')® 4 8(dI")’T? + 2T (Ddl')® + 21°dT" + 217,
where I' denotes the matrix-valued 1-form dz# I'“g, whose components

I'*g, are the Christoffel symbols and Tr(-) denotes the matrix trace.
TrR? = R*3RP, for R*s = % da'*dz” Ry, the curvature 2-form.

N. Boulanger (UMONS) Conformal Anomalies and Invariant 15 September 2021 43 / 57



© CONFORMAL INVARIANTS

@ Type-A invariants

N. Boulanger

(UMONS)

o

=

Conformal Anomalies and Invariant

15 September 2021

Q >

44 ) 57



N. Boulanger (UMONS) Conformal Anomalies and Invariant

LEMMA 1
Let 9y,...4,, be the local total form

1.0

Yuropzy = = € V1. vppn . popWon

p = m—r, m=n/2, re{0,....,m}.

Then, the local total forms

(=1)? m!
20 rlpl

[n—r] _ K12 H2p—1fi2
Y = gz W ... Wha2p—L1h2p

satisfy non-trivial descent equations and give solutions

Sya = 0 = 35,8 for
a = Z(I)L”_T] and BZCDB"].

r=1

WDa,, dz" ...

12
dx’,
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[LEMMA 2 INVARIANTS OF CLASS ]

The top form-degree component a®™ of a in Lemma 1 satisfies the cocycle
condition for the conformal invariants. It gives rise to a non-trivial descent in
H(sw|d) . The invariant g = @5”] satisfies a trivial descent and is obtained by
taking contractions of products of Weyl tensors (m of them in dimension

n = 2m). The top form-degree component €™ of a + 3 is proportional to the

Euler density of the manifold ., :

O = (_zlrzm \/__gEalﬂl..‘amﬁm (Ralﬁl Nooo N Ramﬂm)

It is the only conformal invariant of the class I that satisfies a non-trivial

descent in H(sw|d) .
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LEMMA 3 [INVARIANTS OF CLASS II]

4p—1
Let A1)

1-form T", defined by

be the total (4p — 1)-form of degree 2m — 1 in the connection

4p—1

A1) = _Wl—l Tr ([wdac — R]2p*mf2m*1) , m=1,2,...2p,

aﬁﬁ*l = 2w(dw)® 1,

where [wdz — R] stands for the matrix-valued total 2-form with components
wdzg — R“s and I' denotes the matrix-valued 1-form with I'“s for

components. Then, the total form

AAp—1 . A1 4p—1
avhi= a4 Y ey
obeys the equation

Swatr~! = TrR?P .

N. Boulanger (UMONS) Conformal Anomalies and Invariant 15 September 2021 a7 / BT



By decomposing the equation 3, a*?~! = TrR?? with respect to the form

degree, we obtain, in dimension n = 4p — 1, the descent equations

e/ = Gl
sy L +dab™ 1 =0,

1,n—1 2n—2 __
Sy @ + da =0,

Swa2p—1,2p 4 da2p,2p—l =0 ,

— = 4p—1
Swa2p,2p 1_ 0 , a2p,2p 1 = a[(ﬁ
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e Finally, descent equations associated with a product of the type

4p ! fr, - fr,, will be exactly the same as the descent associated with
L?S ! where each element a?™4 is obtained from the corresponding one
in the descent for Lg’g ! upon taking the wedge product with fg, ... fk,, .
In other words, the products of the type fx, ... fk,, are completely
spectators in a descent of sy modulo d. That the fx’s are sy -closed is
trivial once one realizes the identity Tr(R™)) = Tr(W™)) that is
obtained from the relation R* = W2 4 2¢l* P where e® are the vielbein

1-forms and P? is the Schouten 1-form.
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© CONFORMAL INVARIANTS

@ Type-B invariants
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TYPE B GLOBAL CONFORMAL INVARIANTS

e The W-tensors {Wq, }ien are the building blocks for the construction of
Weyl invariants. They had been constructed earlier by Gerlach, Giinther
and Wiinsch circa 1985 [R. Gerlach and V. Winsch (1999)]. The Bach tensor

is the double trace of Wg, :

By = V*Clva — P*Wopus = 52y 952 2D WP s -

@ In n = 6, the invariant found in [T. Parker and S. Rosenberg, J. Diff.

Geometry 25 (1987) 199] writes as

Js == (WaﬁW%WWQW + L PWPH D W,

+§ P Wi T W)
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TYPE-B INVARIANTS IN 8D

The strictly Weyl-invariant scalar densities in 8D in 18-dimensional basis :

Ig

N. Boulanger

a1 Wipypno 9% Do 9P DgWPIH -

b1 DgWE 10 Dv D” DpW P + by Do Wy Dp PP DWHETY +

1 D% DPWoyappu Do DoWI'PH + c3 DY Doy W g 9° oW HP +

3 90 DsWurup D*DPW P + ¢4 Do Dy W, s D> DpWPHF +

dy 9P 9° Wﬁpor/ Wﬁaw Woanu + da 9P g Wuupa Wigya W, P +
d3 Do 9°W* AW S WS B + dy D7 Do WP W %Y Worypp +

ea WL DWW, DWW, + e W, DPW i DOWH, 7Y +

€3 Wapyu Do WP Q' Wk, |+ ea W F DPW, V0, 9°WF, . +
5 Wagyu2°W,,* P DOW, Y1 + e6 W 1y s Do W ypo DPWHYPT 4

er WS B9 WAoo, D WH G .
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[Classification of Weyl-invariant scalar densities in 8D] [N.B. and J.
Erdmenger, 2004] Besides the seven Weyl invariants of the type /—g W W W W

given in [Fulling et al.], there are

Ii=v—gL;, j=1,...,5.

The first one starts with the quadratic term [, = W“”p”DQWWpU + .-

whereas the other four are at least cubic in the Riemann tensor.

— The coefficients in the 18-dimensional basis given above :

I, = (1,48/25,2,42/125,9/10,3/5,96/125,74/25,208/5,
—8,16/5, —144/25, —104/5,0,0, —88,/25,0,0) ,

I. = (0,0,0,0,0,0,0,1,0,0,5,0,0,5,0,12/5,0,0) ,

Is = (0,0,0,0,0,0,0,1,0,—20,0,—48/5,0,0,0,0,0,—20)

I. = (0,0,0,0,0,0,0,1,12,—5/6,—5/24,4/5,—28/5,—13/8, —12/5, —63/50, —1,1/2) ,
Is = (0,0,0,0,0,0,0,1,8,—2/3,5/6,24/25, —16/5,0,—16/5, —12/25,0,0) .
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© CONFORMAL INVARIANTS

@ Action and field equations for pure Lorentz-Chern-Simons theories
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ACTION AND FIELD EQUATIONS FOR Lcg

e Given a pseudo-Riemannian spacetime .#4,_; of dimension n =4p — 1
with an orientation, consider the functional
1 4p—1
Hgw] = 5 / Les -
1224 2p My (oF)
@ The Euler-Lagrange derivative (wrt the metric) of the functional is

o O _ 1

= g = 7T

where
plv . _pvavs..vap_1 v
o N =€ » [R,jgy:; Ce Rl/4p_21/4p_1} A o

and [Ry,u, ... Ry, yu,, 1]”x denotes the (2p — 1)-fold product of the

2-form valued matrix [Ry,.,]%3 = R gusus -
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e Weyl and diffeomorphism invariances of the action I[g,, | get translated

into the Noether identites
guwé* = 0, and V&t = 0.
o For the second identity, one must use
eVt Y1 Tr(R,,,, ... R By ] =105

. V4ip—3Vap—2

(Schouten identity and cyclicity of the trace)

e Finally, one has the strict invariance under Weyl transformations :
sy = 2w & syéH, =0.
that can be seen by expressing

plv - pwvovs..vap—1 v
o AN=E& © [Wy2y3 Ce Wu4p_2u4p_1] A o
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CONCLUSIONS

@ As a consequence of our decomposition, global conformal invariants are
not in one-to-one correspondence with the conformal anomalies. Indeed,
multiplying the Lorentz Chern-Simons densities by the Weyl parameter

o(x) does not produce any consistent conformal anomaly.

@ Our work generalises the analyses devoted to the three-dimensional case
p =1 [Deser-Jackiw-Templeton, van Nieuwenhuizen] and completes the

classification of Alexakis.
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