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Implicit dynamics

Definition

An implicit first-order ordinary differential equation (implicit
dynamics) on a manifold N is a submanifold (subset) D of the
tangent bundle TN .

We say that a smooth curve γ : R → N is a solution of D) if its
tangent prolongation tγ = (γ, γ̇) : R → TN takes values in D.

A curve γ̃ in TN we call admissible, if it is the tangent
prolongation of its projection γ̃N on N , γ̃ = tγ̃N .
Solutions of an implicit dynamics D ⊂ TN are projections γ̃N of
admissible curves γ̃ lying in D.

Example

An explicit differential equation is the range D = X(N) ⊂ TN
of a vector field X : N → TN on N . Solutions in this case are
called trajectories of X.
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Integrability conditions

Indeed, if X = f i(x)∂xi , then

X(N) =
{(

xi, ẋj = f j(x)
)
: x ∈ N

}
⊂ TN

and γ̃(t) ∈ X(N) means γ̇j(t) = f j
(
γ(t)

)
.

Note, however, that different implicit differential equations may
have the same set of solutions.
First of all, if D is supported on a subset N0, τN (D) = N0, only
vectors from D ∩ TN0 do matter if solutions are concerned.
Hence, the first integrability extract

D1 = D ∩ TN0

has the same solutions as D, and D ⊂ TN0 is the first
integrability condition. Explicit differential equations are
automatically integrable.
Of course, replacing D with D1, then D1 by D2, etc., may turn
out to be an infinite procedure, but this will not happen in
examples considered during this talk.
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Lagrangian submanifolds

Any 2-form ω on N induces a VB-morphism

ω♭ : TN → T∗N, ω♭(X) = iXω.

ω is called symplectic if it is closed and ω♭ is an isomorphism.
T∗Q possess a canonical symplectic form (Darboux coordinates)

ωQ = dqk ∧ dpk.

A Lagrangian submanifold L of a symplectic manifold (N,ω) of
dimension 2n is a submanifold of dimension n on which the
symplectic form vanishes, ω

∣∣
L = 0. For (N,ω) = (T∗Q,ωQ):

Proposition

The range L = η(Q) of a 1-form η : Q → T∗Q is a Lagrangian
submanifold in T∗Q if and only if η is a closed form.

For η = df , L = {(qk, pj = ∂f/∂qj)},

ωQ

∣∣
L = dqk ∧ d

( ∂f

∂qk

)
=

( ∂2f

∂qk∂qj

)
dqk ∧ dqj = 0.
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Tangent lifts and Hamiltonian vector fields

Hamiltonian Mechanics: phase space N is a symplectic
manifold (N,ω) and the dynamics D is determined by a
Hamiltonian function H on N ,

D = XH(N) ⊂ TN, ω♭(XH) = dH.

(Locally) Hamiltonian vector fields correspond, via ω♭ to
(closed) exact one-forms. Any symplectic form ω on N lifts
canonically to a symplectic form dTω on TN .
In Darboux coordinates, the tangent lift takes the form

dT
(
dqk ∧ dpk

)
= dq̇k ∧ dpk + dqk ∧ dṗk.

Proposition

A vector field X : N → TN is locally Hamiltonian if and only if
its image X(N) is a Lagrangian submanifold of (TN, dTω).

Generalized Hamiltonian systems on (N,ω) can be defined as
Lagrangian submanifolds of (TN, dTω).
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Relativistic particle

The dynamics of a relativistic particle is an example of such a
system.

Example

The (implicit) phase-space dynamics of a free relativistic
massless particle in a space-time Q is described by equations

0 = gκλpκpλ

q̇κ = v · gκλpλ
ṗκ = −v

2 · gµνκ pµpν ,

where gκλ is the Minkowski metric and v > 0. The equations
describe a Lagrangian submanifold D in TT∗Q which is not the
range of any vector field on T∗Q due to the constraint
gκλpκpλ = 0. However, following Tulczyjew, it is possible to
obtain the above dynamics from a constrained Lagrangian.
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The Tulczyjew triple

βM = (ωM )♭ : TT∗M → T∗T∗M ,

composed with RTM : T∗T∗M → T∗TM , yields an isomorphism

αM : TT∗M → T∗TM .

In the adapted coordinates, αM (x, p, ẋ, ṗ) = (x, ẋ, ṗ, p). Hence,
we have the commutative diagram of double vector bundle
isomorphisms being simultaneously symplectomorphisms:

T∗T∗M

��

!!

TT∗M
αM //βMoo

��

��

T∗TM

��

��
TM

��

TM

��

TM

��

T∗M

""

T∗M

!!

T∗M

!!
M M M

. (1)
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Geometric Mechanics on one picture

Starting with a Lagrangian L : TM → R or a Hamiltonian
H : T∗M → R, we get the diagram for the phase dynamics D.

dH(T∗M)
� _

��

D� _
��

dL(TM)
� _

��
T∗T∗M

""

��

TT∗M
αM //

��

��

βMoo T∗TM

!!

��

TM

��

TM //

��

oo TM

����

dLhh

T∗M

##

dH

99

T∗M //

  

oo T∗M

""
M M //oo M

• The right-hand side is Lagrangian, D = α−1
M

(
dL(TM)

)
,

• the left-hand side is Hamiltonian, D = β−1
M

(
dH(T∗M)

)
.

• In both cases, D is a Lagrangian submanifold in TT∗M .

Both sides give the same D only for regular Lagrangians.
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Classical mechanical systems

Consider the standard mechanical system with the Lagrangian

L(x, ẋ) =
m

2

∑
i

(ẋi)2 −W (x).

It generates the Lagrangian submanifold dL(TM) in T∗TM
which in adapted coordinates reads{(

xi, ẋj ,−∂W/∂xk ,mẋl
)}

,

and induces the implicit dynamics D = α−1
M

(
dL(TM)

)
,

D =
{(

xi,mẋj , ẋk,−∂W/∂xl

)}
⊂ TT∗M.

The corresponding implicit differential equation is

mẍi +
∂W

∂xi
(x) = 0.

The dynamics D can also be obtained from the Hamiltonian

H(x, p) =
1

2m

∑
i

p2i +W (x).
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Constrained dynamics

Starting with a constrained Lagrangian L : TM ⊃ D → R, we
get D� _��

S(L)oo
� _��

TT∗M
%%

��

αM // T∗TM
''

��
TM

��

TM ⊃ D

~~
TM∗

%%
TM∗

%%
M M where

S(L) =
{
θe ∈ T∗

eTM : e ∈ D and ⟨θe, ve⟩ = dL(ve) for ve ∈ TeD
}
.

The constrained phase dynamics is just D = α−1
M

(
S(L)

)
.

Analogously for a constrained Hamiltonian H : T∗M ⊃ D → R.

The implicit dynamics D of a free relativistic particle is of this
form for the trivial Hamiltonian H = 0 defined on the constraint
D ⊂ T∗Q being the ‘future part’ of the cone gκλpκpλ = 0.
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Hilbert spaces - notation

H - a separable Hilbert space equipped with a Hermitian
inner product ⟨·, ·⟩ (anti-linear in the second argument) and
the corresponding norm

∥x∥ :=
√
⟨x, x⟩ .

gl(H) - the C∗-algebra of all continuous complex linear
maps A : H → H, with the operator norm

∥A∥ = sup{∥Ax∥ : x ∈ H , ∥x∥ ≤ 1}
and the ∗-operation being the Hermitian conjugation,
A 7→ A†, where ⟨A†x, y⟩ = ⟨x,Ay⟩; operators satisfying
A† = A we call Hermitian; those with A† = −A
anti-Hermitian.
The operator A† makes sense even for a densely defined
operator A : H ⊃ D → H. The domain of A† is

D† =
{
x ∈ H

∣∣ y 7→ ⟨x,Ay⟩ ∈ C is continuous
}

and defines A† on this domain. If D = D† and A = A†

(A = −A†) on D, we call A selfadjoint (anti-selfadjoint).
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Unitary group

u(H) denotes the (real) Banach subspace of gl(H) of
anti-Hermitian operators;
GL(H) - the group of invertible elements in gl(H);
U(H) - the unitary group, the subgroup in GL(H) of
elements UU † = Id;

The group GL(H) is a (complex) Banach-Lie group modelled on
gl(H), and U(H) is its (real) Lie subgroup corresponding to the
(real) Lie subalgebra u(H) of the Banach-Lie algebra gl(H)
with the commutator bracket.
The unitary group carries also the strong topology,

lim
k→+∞

Uk = U ⇔ ∀x ∈ H [ lim
k→+∞

Uk(x) = U(x) ] ,

in which it is also a topological group.
Strong one-parameter subgroups are generated by (generally
unbounded) anti-selfadjoint operators, i.e., operators −iA,
where A is selfadjoint (Stone theorem),

R ∋ t → e−itA ∈ U(H).
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Hilbert space is a Kähler manifold

The Hilbert space H is an infinite-dimensional Kähler manifold
with the standard complex structure J , and the Riemannian
and symplectic structures gH and ωH,

J(x) = i · x, gH(x, y) + i · ωH(x, y) = ⟨x, y⟩ .
The group U(H) acts by isometric symplectomorphisms.

We will view the (real) symplectic manifold (H, ωH) as
T∗H = H ⊕H∗, where H is a real part of H, H = H ⊕R iH.

We can span the real vector space H by an orthonormal basis
(ek) in H and real coefficients (coordinates) q = (qk), making H
into a real Hilbert space with the scalar product (metric)

gH =

∞∑
k=1

dqk ⊗ dqk.

On H we have the coordinates (q, p), so that x ∈ H reads

x =

∞∑
k=1

(qk + i · pk)ek,
∞∑
k=1

(
|qk|2 + |pk|2

)
< +∞.
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Quantum Tulczyjew triple

In these coordinates,

gH =

∞∑
k=1

(
dpk ⊗ dpk + dqk ⊗ dqk

)
, ωH =

∞∑
k=1

dqk ∧ dpk .

Having chosen H as the configuration manifold, we can write
the corresponding Tulczyjew triple:

T∗T∗H

��

##
TT∗H

αH //βHoo

��

""
T∗TH

��

""
TH

��

TH

��

TH

��
T∗H

$$
T∗H

##
T∗H

##
H H H

.

Isomorphisms αH and βH identify coordinates:

(q, p, q̇, ṗ) on (H ⊕H∗)⊕ (H ⊕H∗) = TT∗H ,

(q, q̇, ṗ, p) on (H ⊕H)⊕ (H∗ ⊕H∗) = T∗TH ,

(q, p, ṗ,−q̇) on (H ⊕H∗)⊕ (H∗ ⊕H) = T∗T∗H .
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Canonical symplectic forms

Note that H and iH are real Hilbert spaces with the real scalar
products induced from gH, and that one can view iH via ωH as
the dual space H∗ of H. We have a canonical isomorphism
H ≃ H∗ = iH, associated with the metric on H, and the
identification H = H ⊕ iH = H ⊕H∗ = T∗H,
so ωH coincides with ωT∗H . Identifying TT∗H with H⊕C H via

(q, p, q̇, ṗ) 7→ (x, ẋ) = (q + i · p, q̇ + i · ṗ) ,
we can write the canonical symplectic form ω0 on TT∗H as

ω0 = ωTT∗H = dq̇k ∧ dpk + dqk ∧ dṗk.

It is the imaginary part of the lifted pseudo-Hermitian form

⟨(x, ẋ), (y, ẏ)⟩0 = ⟨ẋ, y⟩+ ⟨x, ẏ⟩ .
The canonical symplectic forms ωT∗TH and ωT∗T∗H read as
above if we use the indicated identification of coordinates,
corresponding to canonical Tulczyjew isomorphisms

T∗T∗H ≃ TT∗H ≃ T∗TH.
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Quantum dynamics

In the Tulczyjew approach, an implicit dynamics is a
Lagrangian submanifold in TT∗M .

In the quantum case, we will consider only complex linear
Lagrangian submanifolds, i.e., those complex linear subspaces
V ⊂ TT∗H = H⊕C H which are maximally isotropic for the
symplectic form ω0,

ω0(v, v
′) = 0 for all v, v′ ∈ V.

From the maximality condition, V must be closed.

In particular, if A : H ⊃ D → H is a complex linear operator in
the domain D, its graph,

G(A) = {(x,Ax), x ∈ D},
is a linear relation in H⊕C H ≃ H×H. The operator A is
called closed if G(A) is closed in H×H.

Complex linear Lagrangian submanifolds in H⊕C H we will call
anti-selfadjoint relations.
Of course, there is an analogous selfadjoint picture.
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Anti-selfadjoint operators

Theorem

The graph G(A) of a complex linear operator A : H ⊃ D → H is
an isotropic submanifold for the symplectic structure ω0 if and
only if the operator is anti-symmetric:

⟨Ax, y⟩+ ⟨x,Ay⟩ = 0 for x, y ∈ D .

Moreover, G(A) is a Lagrangian submanifold if and only if D is
dense in H and A is anti-selfadjoint, A† = −A.

In our framework, anti-selfadjoint relations play the rôle of
implicit quantum dynamics.

For a complex linear relation V ⊂ H⊕C H, its domain and
kernel are

D(V ) = {x ∈ H : (x, y) ∈ V for some y} ,

ker(V ) = {x ∈ H : (x, 0) ∈ V } .

The inverse relation is defined as

V −1 = {(y, x) ∈ H ⊕C H : (x, y) ∈ V } .
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A characterization of anti-selfadjoint relations

Theorem

If a complex linear relation V is anti-selfadjoint, then

D(V )⊥ = ker(V −1)
and VA =

{
(x,Ax+ v) |x ∈ D , v ∈ D⊥} ,

where A : H ⊃ D → H is an anti-selfadjoint operator, densely
defined in the Hilbert space D ⊂ H.
In particular, V is a graph, V = G(A), if and only if V is
densely defined. In this case, A is anti-selfadjoint and A is a
bounded operator if and only if D(V ) = H.

Example

Consider H = L2(R) with H being the (real) subspace of real
functions. The natural domain of the momentum operator
A(f) = f ′ is D = W 1,2(R) and G(A) ⊂ H×H is an
anti-selfadjoint relation, due to (gf ′ + g′f) = (gf)′. Usually, the
quantum momentum operator is understood as p̂ = −iℏ∂t.
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Quadratic Lagrangians

Let g0 be the canonical scalar product on TH = H ⊕H,

g0(Q,Q′) = gH(q, q′) + gH(q̇, q̇′) ,

where we write Q for (q, q̇). Since we work only with linear
relations, we consider only Lagrangians L : D0 → R, quadratic
in Q = (q, q̇) in domains of differentiability D0 being real
subspaces of TH = H ⊕H.
More precisely, there is a (real) linear operator B : D0 → D0

such that B is g0-symmetric,

g0(Q
′, BQ) = g0(BQ′, Q) for all Q,Q′ ∈ D0,

and
L(Q) =

1

2
g0(Q,BQ) , Q ∈ D0 .

Hence, dL(Q)(Q′) = g0(BQ,Q′) for Q ∈ D0, Q
′ ∈ D0.

We regard D0 as a constraint and generate the Lagrangian
submanifold S(L) in T∗TH.
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Quantum dynamics in the Tulczyjew picture

Actually, S(L) is the closure of the linear subspace

S(L)0 =
{
(Q,P ) ∈ T∗TH : Q ∈ D0 , pr(P ) = dL(Q)

}
,

where pr : H∗ ⊕H∗ → D0
∗
is the canonical projection, dual to

the embedding D0 ↪→ H ⊕H.

Now, via the symplectomorphism αH , we view S(L) as a
Lagrangian submanifold V (L) in (TT∗H,ω0). If we assume that
V (L) is a complex relation (J-invariant), it is anti-selfadjoint
and represents the implicit quantum dynamics.

The first integrability extract,

V (L)1 = V (L)
⋂(

D ⊕D
)
,

is now the graph of an anti-selfadjoint operator −iA defined on
the domain D which is dense in the closed subspace D of H
representing the Hamiltonian constraint, V (L)1 = G(−iA).
The operator A is the Schrödinger operator in the Schrödinger
picture.
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Example

Consider the real Hilbert space H = L2R(R) and a quadratic
Lagrangian on TH,

L(x, ẋ) =
1

2

∫
R

(
ẋ2(t)/t− tx2(t)

)
dt.

The Lagrangian is densely defined and its domain of
differentiability is

D0 =
{
(x, ẋ) ∈ TH :

∫
R

(
ẋ(t)/t

)2
dt < ∞ ,

∫
R

(
x(t)t

)2
dt < ∞

}
.

The generated Lagrangian submanifold in T∗TH is

S(L) =
{(

x, ẋ,−tx, ẋ/t
)
: (x, ẋ) ∈ D0

}
,

so that the Lagrangian submanifold V (L) = α−1
H

(
S(L)

)
reads

V (L) =
{
(x, ẋ/t, ẋ,−tx) : (x, ẋ) ∈ D0

}
⊂ TT∗H ≃ H⊕H .

The Legendre map is ‘regular’,

TH ∋
(
x, ẋ

)
7→

(
x, p = ẋ/t

)
∈ T∗H.
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The quantum position operator

It is easy to see that V (L) is the graph of the complex linear
operator −iA, where

(Ay)(t) = ty(t) , y(t) = x(t) + ip(t)

is selfadjoint in the domain

D =
{
y ∈ H = L2(R) :

∫
R
|ty(t)|2dt < ∞

}
.

There is also a Hamiltonian description of −iA with the
Hamiltonian H : H → R,

H(y) =
1

2

∫
R
t|y(t)|2dt.

Traditionally, q̂(y) = ty is called the quantum position operator
and −iq̂ induces s 1-parametr group of unitary transformations
of H (quantum dynamics),

e−iq̂(y) = e−ity.

Final Message: Quantum position and momentum operators
have classical Lagrangian and Hamiltonian description.
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THANK YOU FOR YOUR ATTENTION!

(Sokolica- Polish Carpathians)
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