Geometry of quantum dynamics in infinite dimensions

Janusz Grabowski

(Polish Academy of Sciences)

Infinite-dimensional Geometry: Theory and Applications (Vienna, January 24, 2025)

Implicit dynamics

Definition

An implicit first-order ordinary differential equation (implicit dynamics) on a manifold N is a submanifold (subset) \mathcal{D} of the tangent bundle $\mathsf{T}N$.

We say that a smooth curve $\gamma : \mathbb{R} \to N$ is a solution of \mathcal{D}) if its tangent prolongation $t\gamma = (\gamma, \dot{\gamma}) : \mathbb{R} \to \mathsf{T}N$ takes values in \mathcal{D} .

A curve $\tilde{\gamma}$ in $\mathsf{T}N$ we call admissible, if it is the tangent prolongation of its projection $\tilde{\gamma}_N$ on N, $\tilde{\gamma} = t\tilde{\gamma}_N$. Solutions of an implicit dynamics $\mathcal{D} \subset \mathsf{T}N$ are projections $\tilde{\gamma}_N$ of admissible curves $\tilde{\gamma}$ lying in \mathcal{D} .

Example

An explicit differential equation is the range $\mathcal{D} = X(N) \subset \mathsf{T}N$ of a vector field $X : N \to \mathsf{T}N$ on N. Solutions in this case are called trajectories of X.

Integrability conditions

Indeed, if $X = f^i(x)\partial_{x^i}$, then

 $X(N) = \left\{ \left(x^i, \dot{x}^j = f^j(x) \right) \, : \, x \in N \right\} \subset \mathsf{T} N$

and $\widetilde{\gamma}(t) \in X(N)$ means $\dot{\gamma}^j(t) = f^j(\gamma(t))$.

Note, however, that different implicit differential equations may have the same set of solutions.

First of all, if \mathcal{D} is supported on a subset N_0 , $\tau_N(\mathcal{D}) = N_0$, only vectors from $\mathcal{D} \cap \mathsf{T} N_0$ do matter if solutions are concerned. Hence, the first integrability extract

 $\mathcal{D}^1 = \mathcal{D} \cap \mathsf{T} N_0$

has the same solutions as \mathcal{D} , and $\mathcal{D} \subset \mathsf{T}N_0$ is the first integrability condition. Explicit differential equations are automatically integrable.

Of course, replacing \mathcal{D} with \mathcal{D}^1 , then \mathcal{D}^1 by \mathcal{D}^2 , etc., may turn out to be an infinite procedure, but this will not happen in examples considered during this talk.

Lagrangian submanifolds

Any 2-form ω on N induces a VB-morphism

 $\omega^{\flat}:\mathsf{T}N\to\mathsf{T}^*N,\quad\omega^{\flat}(X)=i_X\omega.$

 ω is called symplectic if it is closed and ω^{\flat} is an isomorphism. T^*Q possess a canonical symplectic form (Darboux coordinates) $\omega_Q = \mathrm{d}q^k \wedge \mathrm{d}p_k.$

A Lagrangian submanifold \mathcal{L} of a symplectic manifold (N, ω) of dimension 2n is a submanifold of dimension n on which the symplectic form vanishes, $\omega |_{\mathcal{L}} = 0$. For $(N, \omega) = (\mathsf{T}^*Q, \omega_Q)$:

Proposition

The range $\mathcal{L} = \eta(Q)$ of a 1-form $\eta : Q \to \mathsf{T}^*Q$ is a Lagrangian submanifold in T^*Q if and only if η is a closed form.

For $\eta = \mathrm{d}f$, $\mathcal{L} = \{(q^k, p_j = \partial f / \partial q^j)\},\$

$$\omega_Q \Big|_{\mathcal{L}} = \mathrm{d}q^k \wedge \mathrm{d}\Big(\frac{\partial f}{\partial q^k}\Big) = \Big(\frac{\partial^2 f}{\partial q^k \partial q^j}\Big) \mathrm{d}q^k \wedge \mathrm{d}q^j = 0.$$

Tangent lifts and Hamiltonian vector fields

Hamiltonian Mechanics: phase space N is a symplectic manifold (N, ω) and the dynamics \mathcal{D} is determined by a Hamiltonian function H on N,

 $\mathcal{D} = X_{\mathsf{H}}(N) \subset \mathsf{T}N, \quad \omega^{\flat}(X_{\mathsf{H}}) = \mathrm{d}\mathsf{H}.$

(Locally) Hamiltonian vector fields correspond, $via \ \omega^{\flat}$ to (closed) exact one-forms. Any symplectic form ω on N lifts canonically to a symplectic form $d_{\mathsf{T}}\omega$ on $\mathsf{T}N$. In Darboux coordinates, the tangent lift takes the form

 $\mathrm{d}_{\mathsf{T}}(\mathrm{d}q^k \wedge \mathrm{d}p_k) = \mathrm{d}\dot{q}^k \wedge \mathrm{d}p_k + \mathrm{d}q^k \wedge \mathrm{d}\dot{p}_k.$

Proposition

A vector field $X: N \to \mathsf{T}N$ is locally Hamiltonian if and only if its image X(N) is a Lagrangian submanifold of $(\mathsf{T}N, \mathrm{d}_{\mathsf{T}}\omega)$.

Generalized Hamiltonian systems on (N, ω) can be defined as Lagrangian submanifolds of $(\mathsf{T}N, \mathsf{d}_\mathsf{T}\omega)$.

Relativistic particle

The dynamics of a relativistic particle is an example of such a system.

Example

The (implicit) phase-space dynamics of a free relativistic massless particle in a space-time Q is described by equations

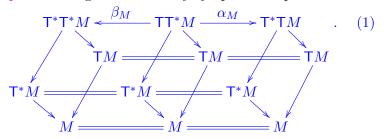
 $\begin{array}{ll} 0 & = g^{\kappa\lambda}p_{\kappa}p_{\lambda} \\ \dot{q}^{\kappa} & = v \cdot g^{\kappa\lambda}p_{\lambda} \\ \dot{p}_{\kappa} & = -\frac{v}{2} \cdot g^{\mu\nu}_{\kappa}p_{\mu}p_{\nu} \,, \end{array}$

where $g_{\kappa\lambda}$ is the Minkowski metric and v > 0. The equations describe a Lagrangian submanifold \mathcal{D} in TT^*Q which is not the range of any vector field on T^*Q due to the constraint $g^{\kappa\lambda}p_{\kappa}p_{\lambda} = 0$. However, following Tulczyjew, it is possible to obtain the above dynamics from a constrained Lagrangian. $\beta_M = (\omega_M)^{\flat} : \mathsf{T}\mathsf{T}^*M \to \mathsf{T}^*\mathsf{T}^*M \,,$

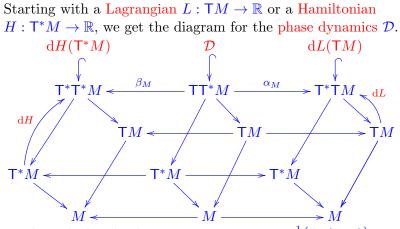
composed with $\mathcal{R}_{\mathsf{T}M} : \mathsf{T}^*\mathsf{T}^*M \to \mathsf{T}^*\mathsf{T}M$, yields an isomorphism

 $\alpha_M : \mathsf{T}\mathsf{T}^*M \to \mathsf{T}^*\mathsf{T}M$.

In the adapted coordinates, $\alpha_M(x, p, \dot{x}, \dot{p}) = (x, \dot{x}, \dot{p}, p)$. Hence, we have the commutative diagram of double vector bundle isomorphisms being simultaneously symplectomorphisms:



Geometric Mechanics on one picture



• The right-hand side is Lagrangian, $\mathcal{D} = \alpha_M^{-1}(dL(\mathsf{T}M))$,

- the left-hand side is Hamiltonian, $\mathcal{D} = \beta_M^{-1} (dH(\mathsf{T}^*M)).$
- In both cases, \mathcal{D} is a Lagrangian submanifold in TT^*M . Both sides give the same \mathcal{D} only for regular Lagrangians.

Classical mechanical systems

Consider the standard mechanical system with the Lagrangian

$$L(x, \dot{x}) = \frac{m}{2} \sum_{i} (\dot{x}^{i})^{2} - W(x).$$

It generates the Lagrangian submanifold dL(TM) in T^*TM which in adapted coordinates reads

 $\left\{\left(x^{i}, \dot{x}^{j}, -\partial W/\partial_{x^{k}}, m\dot{x}^{l}\right)\right\},\$

and induces the implicit dynamics $\mathcal{D} = \alpha_M^{-1} (dL(\mathsf{T}M)),$

 $\mathcal{D} = \left\{ \left(x^i, m \dot{x}^j, \dot{x}^k, -\partial W / \partial_{x^l} \right) \right\} \subset \mathsf{T}\mathsf{T}^* M.$

The corresponding implicit differential equation is

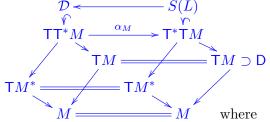
$$m\ddot{x}^i + \frac{\partial W}{\partial x^i}(x) = 0.$$

The dynamics \mathcal{D} can also be obtained from the Hamiltonian

$$H(x,p) = \frac{1}{2m} \sum_{i} p_i^2 + W(x).$$

Constrained dynamics

Starting with a constrained Lagrangian $L : \mathsf{T}M \supset \mathsf{D} \to \mathbb{R}$, we get $\mathcal{D} \subset \mathcal{S}(L)$



 $S(L) = \left\{ \theta_e \in \mathsf{T}_e^* \mathsf{T} M : e \in \mathsf{D} \text{ and } \langle \theta_e, v_e \rangle = \mathrm{d} L(v_e) \text{ for } v_e \in \mathsf{T}_e \mathsf{D} \right\}.$

The constrained phase dynamics is just $\mathcal{D} = \alpha_M^{-1}(S(L))$. Analogously for a constrained Hamiltonian $\mathsf{H} : \mathsf{T}^*M \supset \mathsf{D} \to \mathbb{R}$.

The implicit dynamics \mathcal{D} of a free relativistic particle is of this form for the trivial Hamiltonian $\mathsf{H} = 0$ defined on the constraint $\mathsf{D} \subset \mathsf{T}^* Q$ being the 'future part' of the cone $g^{\kappa\lambda}p_{\kappa}p_{\lambda} = 0$.

Hilbert spaces - notation

• \mathcal{H} - a separable Hilbert space equipped with a Hermitian inner product $\langle \cdot, \cdot \rangle$ (anti-linear in the second argument) and the corresponding norm

 $||x|| := \sqrt{\langle x, x \rangle} \,.$

 gl(*H*) - the C*-algebra of all continuous complex linear maps A : *H* → *H*, with the operator norm
||A|| = sup{||Ax|| : x ∈ *H*, ||x|| < 1}

and the *-operation being the Hermitian conjugation, $A \mapsto A^{\dagger}$, where $\langle A^{\dagger}x, y \rangle = \langle x, Ay \rangle$; operators satisfying $A^{\dagger} = A$ we call Hermitian; those with $A^{\dagger} = -A$ anti-Hermitian.

The operator A^{\dagger} makes sense even for a densely defined operator $A : \mathcal{H} \supset \mathsf{D} \rightarrow \mathcal{H}$. The domain of A^{\dagger} is

 $\mathsf{D}^{\dagger} = \{ x \in \mathcal{H} \mid y \mapsto \langle x, Ay \rangle \in \mathbb{C} \text{ is continuous} \}$ and defines A^{\dagger} on this domain. If $\mathsf{D} = \mathsf{D}^{\dagger}$ and $A = A^{\dagger}$ $(A = -A^{\dagger})$ on D , we call A selfadjoint (anti-selfadjoint).

Unitary group

- $u(\mathcal{H})$ denotes the (real) Banach subspace of $gl(\mathcal{H})$ of anti-Hermitian operators;
- $GL(\mathcal{H})$ the group of invertible elements in $gl(\mathcal{H})$;
- $U(\mathcal{H})$ the unitary group, the subgroup in $GL(\mathcal{H})$ of elements $UU^{\dagger} = Id$;

The group $\operatorname{GL}(\mathcal{H})$ is a (complex) Banach-Lie group modelled on $\operatorname{gl}(\mathcal{H})$, and $U(\mathcal{H})$ is its (real) Lie subgroup corresponding to the (real) Lie subalgebra $\operatorname{u}(\mathcal{H})$ of the Banach-Lie algebra $\operatorname{gl}(\mathcal{H})$ with the commutator bracket.

The unitary group carries also the strong topology,

 $\lim_{k \to +\infty} U_k = U \quad \Leftrightarrow \quad \forall \, x \in \mathcal{H} \left[\lim_{k \to +\infty} U_k(x) = U(x) \right],$

in which it is also a topological group.

Strong one-parameter subgroups are generated by (generally unbounded) anti-selfadjoint operators, i.e., operators -iA, where A is selfadjoint (Stone theorem), $\mathbb{R} \ni t \to e^{-itA} \in U(\mathcal{H}).$

Hilbert space is a Kähler manifold

The Hilbert space \mathcal{H} is an infinite-dimensional Kähler manifold with the standard complex structure J, and the Riemannian and symplectic structures $g_{\mathcal{H}}$ and $\omega_{\mathcal{H}}$,

 $J(x) = i \cdot x, \qquad g_{\mathcal{H}}(x, y) + i \cdot \omega_{\mathcal{H}}(x, y) = \langle x, y \rangle.$ The group U(\mathcal{H}) acts by isometric symplectomorphisms. We will view the (real) symplectic manifold ($\mathcal{H}, \omega_{\mathcal{H}}$) as $\mathsf{T}^*H = H \oplus H^*$, where H is a real part of $\mathcal{H}, \mathcal{H} = H \oplus_{\mathbb{R}} iH$.

We can span the real vector space H by an orthonormal basis (e_k) in \mathcal{H} and real coefficients (coordinates) $q = (q^k)$, making H into a real Hilbert space with the scalar product (metric)

$$g_H = \sum_{k=1} \mathrm{d}q^k \otimes \mathrm{d}q^k.$$

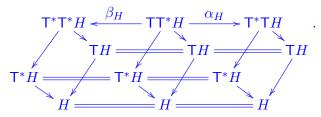
On \mathcal{H} we have the coordinates (q, p), so that $x \in \mathcal{H}$ reads $x = \sum_{k=1}^{\infty} (q^k + i \cdot p_k) e_k, \quad \sum_{k=1}^{\infty} (|q^k|^2 + |p_k|^2) < +\infty.$

Quantum Tulczyjew triple

In these coordinates,

$$g_{\mathcal{H}} = \sum_{k=1}^{\infty} \left(\mathrm{d}p_k \otimes \mathrm{d}p_k + \mathrm{d}q^k \otimes \mathrm{d}q^k \right), \quad \omega_{\mathcal{H}} = \sum_{k=1}^{\infty} \mathrm{d}q^k \wedge \mathrm{d}p_k.$$

Having chosen H as the configuration manifold, we can write the corresponding Tulczyjew triple:



Isomorphisms α_H and β_H identify coordinates:

 $\begin{array}{ll} (q,p,\dot{q},\dot{p}) & \text{ on } & (H\oplus H^*)\oplus (H\oplus H^*)=\mathsf{T}\mathsf{T}^*H\,,\\ (q,\dot{q},\dot{p},p) & \text{ on } & (H\oplus H)\oplus (H^*\oplus H^*)=\mathsf{T}^*\mathsf{T}H\,,\\ (q,p,\dot{p},-\dot{q}) & \text{ on } & (H\oplus H^*)\oplus (H^*\oplus H)=\mathsf{T}^*\mathsf{T}^*H\,. \end{array}$

Canonical symplectic forms

Note that H and iH are real Hilbert spaces with the real scalar products induced from $g_{\mathcal{H}}$, and that one can view iH via $\omega_{\mathcal{H}}$ as the dual space H^* of H. We have a canonical isomorphism $H \simeq H^* = iH$, associated with the metric on H, and the identification $\mathcal{H} = H \oplus iH = H \oplus H^* = \mathsf{T}^*H$, so $\omega_{\mathcal{H}}$ coincides with ω_{T^*H} . Identifying $\mathsf{T}\mathsf{T}^*H$ with $\mathcal{H} \oplus_{\mathbb{C}} \mathcal{H}$ via

 $(q,p,\dot{q},\dot{p})\mapsto (x,\dot{x})=\left(q+i\cdot p,\dot{q}+i\cdot\dot{p}\right),$

we can write the canonical symplectic form ω_0 on TT^*H as

 $\omega_0 = \omega_{\mathsf{T}\mathsf{T}^*H} = \mathrm{d}\dot{q}^k \wedge \mathrm{d}p_k + \mathrm{d}q^k \wedge \mathrm{d}\dot{p}_k.$

It is the imaginary part of the lifted pseudo-Hermitian form $\langle (x,\dot{x}),(y,\dot{y})\rangle_0 = \langle \dot{x},y\rangle + \langle x,\dot{y}\rangle \,.$

The canonical symplectic forms $\omega_{\mathsf{T}^*\mathsf{T}H}$ and $\omega_{\mathsf{T}^*\mathsf{T}^*H}$ read as above if we use the indicated identification of coordinates, corresponding to canonical Tulczyjew isomorphisms

 $\mathsf{T}^*\mathsf{T}^*H\simeq\mathsf{T}\mathsf{T}^*H\simeq\mathsf{T}^*\mathsf{T}H.$

Quantum dynamics

In the Tulczyjew approach, an implicit dynamics is a Lagrangian submanifold in TT^*M .

In the quantum case, we will consider only complex linear Lagrangian submanifolds, i.e., those complex linear subspaces $V \subset \mathsf{TT}^*H = \mathcal{H} \oplus_{\mathbb{C}} \mathcal{H}$ which are maximally isotropic for the symplectic form ω_0 ,

 $\omega_0(v, v') = 0$ for all $v, v' \in V$.

From the maximality condition, V must be closed.

In particular, if $A : \mathcal{H} \supset \mathsf{D} \rightarrow \mathcal{H}$ is a complex linear operator in the domain D , its graph,

 $\mathfrak{G}(A)=\{(x,Ax),x\in\mathsf{D}\},$

is a linear relation in $\mathcal{H} \oplus_{\mathbb{C}} \mathcal{H} \simeq \mathcal{H} \times \mathcal{H}$. The operator A is called closed if $\mathfrak{G}(A)$ is closed in $\mathcal{H} \times \mathcal{H}$.

Complex linear Lagrangian submanifolds in $\mathcal{H} \oplus_{\mathbb{C}} \mathcal{H}$ we will call anti-selfadjoint relations.

Of course, there is an analogous selfadjoint picture.

Anti-selfadjoint operators

Theorem

The graph $\mathfrak{G}(A)$ of a complex linear operator $A : \mathcal{H} \supset \mathsf{D} \rightarrow \mathcal{H}$ is an isotropic submanifold for the symplectic structure ω_0 if and only if the operator is anti-symmetric:

 $\langle Ax,y\rangle+\langle x,Ay\rangle=0\quad \textit{for}\quad x,y\in\mathsf{D}\,.$

Moreover, $\mathfrak{G}(A)$ is a Lagrangian submanifold if and only if D is dense in \mathcal{H} and A is anti-selfadjoint, $A^{\dagger} = -A$.

In our framework, anti-selfadjoint relations play the rôle of implicit quantum dynamics.

For a complex linear relation $V \subset \mathcal{H} \oplus_{\mathbb{C}} \mathcal{H}$, its domain and kernel are

 $\mathsf{D}(V) = \{ x \in \mathcal{H} : (x, y) \in V \text{ for some } y \} ,$

 $\ker(V) = \{x \in \mathcal{H} : (x,0) \in V\} .$

The inverse relation is defined as

 $V^{-1} = \{(y, x) \in \mathcal{H} \oplus_{\mathbb{C}} \mathcal{H} : (x, y) \in V\}.$

A characterization of anti-selfadjoint relations

Theorem

If a complex linear relation V is anti-selfadjoint, then

$$\mathsf{D}(V)^{\perp} = \ker(V^{-1})$$

and

 $V_A = \left\{ (x, Ax + v) \, | \, x \in \mathsf{D} \,, \quad v \in \mathsf{D}^\perp \right\},$

where $A : \mathcal{H} \supset \mathsf{D} \to \mathcal{H}$ is an anti-selfadjoint operator, densely defined in the Hilbert space $\overline{\mathsf{D}} \subset \mathcal{H}$. In particular, V is a graph, $V = \mathfrak{G}(A)$, if and only if V is densely defined. In this case, A is anti-selfadjoint and A is a bounded operator if and only if $\mathsf{D}(V) = \mathcal{H}$.

Example

Consider $\mathcal{H} = \mathsf{L}^2(\mathbb{R})$ with H being the (real) subspace of real functions. The natural domain of the momentum operator A(f) = f' is $\mathsf{D} = W^{1,2}(\mathbb{R})$ and $\mathfrak{G}(A) \subset \mathcal{H} \times \mathcal{H}$ is an anti-selfadjoint relation, due to (gf' + g'f) = (gf)'. Usually, the quantum momentum operator is understood as $\hat{\mathbf{p}} = -i\hbar\partial_t$.

Quadratic Lagrangians

Let g_0 be the canonical scalar product on $\mathsf{T}H = H \oplus H$,

 $g_0(Q,Q') = g_H(q,q') + g_H(\dot{q},\dot{q}'),$

where we write Q for (q, \dot{q}) . Since we work only with linear relations, we consider only Lagrangians $L : \mathsf{D}_0 \to \mathbb{R}$, quadratic in $Q = (q, \dot{q})$ in domains of differentiability D_0 being real subspaces of $\mathsf{T}H = H \oplus H$. More precisely, there is a (real) linear operator $B : \mathsf{D}_0 \to \overline{\mathsf{D}_0}$

such that B is g_0 -symmetric,

 $g_0(Q',BQ) = g_0(BQ',Q) \quad \text{for all} \quad Q,Q' \in \mathsf{D}_0,$

and

$$L(Q) = \frac{1}{2}g_0(Q, BQ), \quad Q \in \mathsf{D}_0.$$

Hence, $dL(Q)(Q') = g_0(BQ, Q')$ for $Q \in \mathsf{D}_0, Q' \in \overline{\mathsf{D}_0}$.

We regard D_0 as a constraint and generate the Lagrangian submanifold S(L) in T^*TH .

Quantum dynamics in the Tulczyjew picture

Actually, S(L) is the closure of the linear subspace

 $S(L)^0 = \{(Q, P) \in \mathsf{T}^*\mathsf{T}H : Q \in \mathsf{D}_0, \operatorname{pr}(P) = \mathrm{d}L(Q)\},\$

where $\operatorname{pr} : H^* \oplus H^* \to \overline{\mathsf{D}_0}^*$ is the canonical projection, dual to the embedding $\overline{\mathsf{D}_0} \hookrightarrow H \oplus H$.

Now, via the symplectomorphism α_H , we view S(L) as a Lagrangian submanifold V(L) in $(\mathsf{TT}^*H, \omega_0)$. If we assume that V(L) is a complex relation (*J*-invariant), it is anti-selfadjoint and represents the implicit quantum dynamics.

The first integrability extract,

 $V(L)^1 = V(L) \bigcap \left(\mathcal{D} \oplus \overline{\mathcal{D}} \right) \,,$

is now the graph of an anti-selfadjoint operator -iA defined on the domain \mathcal{D} which is dense in the closed subspace $\overline{\mathcal{D}}$ of \mathcal{H} representing the Hamiltonian constraint, $V(L)^1 = \mathfrak{G}(-iA)$. The operator A is the Schrödinger operator in the Schrödinger picture.

Example

Consider the real Hilbert space $H = L^2_{\mathbb{R}}(\mathbb{R})$ and a quadratic Lagrangian on $\mathsf{T}H$,

$$L(x,\dot{x}) = \frac{1}{2} \int_{\mathbb{R}} \left(\dot{x}^2(t)/t - tx^2(t) \right) \mathrm{d}t.$$

The Lagrangian is densely defined and its domain of differentiability is

$$\mathsf{D}_{0} = \left\{ (x, \dot{x}) \in \mathsf{T}H : \int_{\mathbb{R}} \left(\dot{x}(t)/t \right)^{2} \mathrm{d}t < \infty, \int_{\mathbb{R}} \left(x(t)t \right)^{2} \mathrm{d}t < \infty \right\}.$$

The generated Lagrangian submanifold in $\mathsf{T}^*\mathsf{T} H$ is

$$S(L) = \Big\{ \big(x, \dot{x}, -tx, \dot{x}/t\big) \ : (x, \dot{x}) \in \mathsf{D}_0 \Big\},$$

so that the Lagrangian submanifold $V(L) = \alpha_H^{-1}(S(L))$ reads

 $V(L) = \left\{ \left. (x, \dot{x}/t, \dot{x}, -tx) \, : \, (x, \dot{x}) \in \mathsf{D}_0 \right\} \subset \mathsf{TT}^*H \simeq \mathcal{H} \oplus \mathcal{H} \, .$

The Legendre map is 'regular',

$$\mathsf{T} H \ni \left(x, \dot{x} \right) \mapsto \left(x, p = \dot{x} / t \right) \in \mathsf{T}^* H.$$

The quantum position operator

It is easy to see that V(L) is the graph of the complex linear operator -iA, where

$$(Ay)(t)=ty(t)\,,\quad y(t)=x(t)+ip(t)$$

is selfadjoint in the domain

$$\mathsf{D} = \left\{ y \in \mathcal{H} = \mathsf{L}^2(\mathbb{R}) \, : \, \int_{\mathbb{R}} |ty(t)|^2 \mathrm{d}t < \infty \right\}.$$

There is also a Hamiltonian description of -iA with the Hamiltonian $\mathsf{H}: \mathcal{H} \to \mathbb{R}$,

$$\mathsf{H}(y) = \frac{1}{2} \int_{\mathbb{R}} t |y(t)|^2 \mathrm{d}t.$$

Traditionally, $\hat{\mathbf{q}}(y) = ty$ is called the quantum position operator and $-i\hat{\mathbf{q}}$ induces s 1-parametr group of unitary transformations of \mathcal{H} (quantum dynamics),

$$e^{-i\widehat{\mathbf{q}}}(y) = e^{-it}y.$$

Final Message: Quantum position and momentum operators have classical Lagrangian and Hamiltonian description.

THANK YOU FOR YOUR ATTENTION!

(Sokolica- Polish Carpathians)