Duality Hierarchies

Olaf Hohm

- with Bergshoeff et. al. 0901.2054
- with Samtleben, 1805.03220, 1903.02821
- with Bonezzi, 1904.11036, 1910.10399
- closely related work by Strobl & friends

"Higher Structures and Field Theory", Erwin Schrödinger Institute, September 2020

Overview

Central Question:

Can physics be encoded in first order duality relations?

- Part I: Duality Relations & Tensor Hierarchy
- Part II: Duality Hierarchy & Differential Graded Lie Algebra
- Part III: Embedding Tensor of ExFT

Part I: Duality Relations & Tensor Hierarchy

First Order Duality Relations

Free scalar in D = 3:

$$\Box \phi = \partial_{\mu} \partial^{\mu} \phi = 0$$

integrability condition of duality relation defining dual vector

$$\partial^{\mu}\phi = \frac{1}{2}\varepsilon^{\mu\nu\rho}F_{\nu\rho} = \varepsilon^{\mu\nu\rho}\partial_{\nu}A_{\rho}$$

Linearized Gravity ($g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$):

$$G_{\mu\nu}^{(1)}(h) = \partial^{\rho} Y_{\rho\mu,\nu} = 0$$

where

$$Y_{\mu\nu,\rho} = -\partial_{[\mu}\bar{h}_{\nu]\rho} + \eta_{\rho[\mu}\partial^{\lambda}\bar{h}_{\nu]\lambda}, \qquad \bar{h}_{\mu\nu} = h_{\mu\nu} - \frac{1}{2}h\eta_{\mu\nu}$$

Duality relation for (D-3,1) dual graviton:

$$Y_{\mu\nu,\rho} = \varepsilon_{\mu\nu}{}^{\lambda_1...\lambda_{D-2}} \partial_{\lambda_1} D_{\lambda_2...\lambda_{D-2},\rho}$$

Obstacles to Duality Relations

In presence of scalar potential V,

$$\Box \phi = \frac{\partial V}{\partial \phi}$$

we can no longer "pull out a derivative" \Rightarrow no first order duality relation Similarly, for gravity with sources,

$$G_{\mu\nu}^{(1)}(h) = \kappa (T_{\mu\nu} - G_{\mu\nu}^{(2)}(h) + \cdots)$$

one cannot "pull out a derivative" on the RHS, because otherwise "improvement term" and hence trivial

[Bergshoeff, de Roo, Kerstan, Kleinschmidt, Riccioni (2008)]

Hierarchy of Duality Relations

In gauged supergravity and ExFT we encounter field strengths

$$\mathcal{F}_{\mu\nu} = 2\partial_{[\mu}A_{\nu]} + \dots + \mathfrak{D}B_{\mu\nu}$$

with Bianchi identity ("Tensor Hierarchy")

$$D_{[\mu}\mathcal{F}_{\nu\rho]} = \mathfrak{D}\mathcal{H}_{\mu\nu\rho}, \qquad \mathcal{H}_{\mu\nu\rho} = \partial_{[\mu}B_{\nu\rho]} + \cdots$$

→ integrability condition of *two duality relations*

$$D^{\mu}\phi = \varepsilon^{\mu\nu\rho}\mathcal{F}_{\nu\rho}$$
$$\varepsilon^{\mu\nu\rho}\mathcal{H}_{\mu\nu\rho} = f(\phi)$$

where $\mathfrak{D}f(\phi) = V'(\phi)$ then

$$D_{\mu}D^{\mu}\phi = \varepsilon^{\mu\nu\rho}D_{\mu}\mathcal{F}_{\nu\rho} = \varepsilon^{\mu\nu\rho}\mathfrak{D}\mathcal{H}_{\mu\nu\rho} = \mathfrak{D}f(\phi) = V'(\phi)$$

→ non-linear scalar equation of gauged supergravity
 (Note: in Gauged Sugra/ExFT gauging and scalar potential correlated)

Leibniz Algebras

Gauge algebra of gauged sugra/DFT/ExFT governed by Leibniz algebra, a vector space X_0 with bilinear map \circ obeying

[Strobl (2013), Kotov & Strobl (2018)]

$$V \circ (W \circ U) = (V \circ W) \circ U + W \circ (V \circ U)$$

Minimal structure needed to have consistent infinitesimal variations

$$\delta_V W \equiv \mathcal{L}_V W \equiv V \circ W$$

Closure implied by Leibniz relation: $[\mathcal{L}_V, \mathcal{L}_W]U = \mathcal{L}_{V \circ W}U$. Symmetric part

$$\{V, W\} \equiv \frac{1}{2}(V \circ W + W \circ V) \equiv \frac{1}{2}\mathfrak{D}(V \bullet W)$$

Differential \mathfrak{D} and $\bullet: X_0 \otimes X_0 \to X_1$. If trivial Leibniz reduces to Lie. In general, higher algebra on chain complex (in particular L_{∞} algebra)

$$\cdots \to X_1 \xrightarrow{\mathfrak{D}} X_0$$

Embedding Tensor

Derive Leibniz algebra from *Lie* algebra $\mathfrak g$ and embedding tensor map. Given Lie brackets $[\cdot,\cdot]$ we have *adjoint* and *coadjoint* reps

$$\delta_\zeta a \equiv \operatorname{ad}_\zeta a \equiv [\zeta, a] \;, \qquad \delta_\zeta \mathcal{A} \equiv \operatorname{ad}_\zeta^* \mathcal{A}$$

leaving pairing $\mathcal{A}(a) \in \mathbb{R}$ invariant. Given representation R, $\delta_{\zeta}V = \rho_{\zeta}V$, embedding tensor is map

$$\vartheta: R \to \mathfrak{g}$$

Transport Lie algebra to higher algebra on R:

$$V \circ W \equiv \rho_{\vartheta(V)} W$$

defines Leibniz algebra provided quadratic constraint obeyed

$$\vartheta(V \circ W) = [\vartheta(V), \vartheta(W)]$$

Equivalently, embedding tensor $\Theta: R \otimes \mathfrak{g}^* \to \mathbb{R}$ defined by pairing

$$\Theta(V, \mathcal{A}) \equiv -\mathcal{A}(\vartheta(V))$$

is Leibniz invariant.

Derived from differential graded Lie algebra

Upon suspension (overall shift of degree) and addition of vector spaces the graded symmetric \bullet can be interpreted as dgLa (bracket $[\,,\,]$ satisfying graded Jacobi and differential $\mathfrak D$ with $\mathfrak D^2$) on

$$\cdots \longrightarrow X_2 \xrightarrow{\mathfrak{D}} X_1 \xrightarrow{\mathfrak{D}=\vartheta} X_0 = \mathfrak{g} \xrightarrow{\mathfrak{D}} X_{-1} \longrightarrow \cdots$$

Leibniz algebra on X_1 then "derived" from dgLa bracket:

[Lavau & Palmkvist (2019), O.H. & Bonezzi (2019)]

$$x \circ y \equiv -\mathfrak{D}x \bullet y = \pm [\mathfrak{D}x, y]$$

Leibniz relations follow from dgLa axioms.

Entire chain complex forms representation space of g.

Gauge theory or tensor hierarchy

Given dgLa X take dgLa $Z \equiv X \otimes \Omega(M)$ of forms on M valued in X

dgLa structure w.r.t. diagonal grading $|Z_{\lceil p \rceil}^k| = k-p$ and differential

$$\partial \equiv d + \mathfrak{D}$$

Combing forms into formal sums, remembering only diagonal degree,

$$\cdots \longrightarrow Z_1 \xrightarrow{\partial} Z_0 \xrightarrow{\partial} Z_{-1} \longrightarrow \cdots ,$$

$$\wedge \qquad \mathcal{A} \qquad \mathcal{F}$$

where Λ gauge parameters, \mathcal{A} gauge fields, and \mathcal{F} field strengths.

Maurer-Cartan forms

$$\Omega \equiv e^{-\mathcal{A}} \, \partial \, e^{\mathcal{A}}$$

identically satisfy Maurer-Cartan equations

[Greitz, Howe & Palmkvist (2014)]

$$\partial\Omega + \frac{1}{2}[\Omega,\Omega] = 0$$

In terms of $\Omega = \mathcal{F} + \mathfrak{D}A_1$ yields *Bianchi identity* of tensor hierarchy

$$DF_p + \frac{1}{2} \sum_{k=2}^{p-1} [F_k, F_{p+1-k}] + \mathfrak{D}F_{p+1} = 0$$

Scalars and generalization of G/H

Include zero-forms (scalars) $\phi \in \mathfrak{g} = X_0$:

$$\Omega \equiv e^{-\phi} e^{-\mathcal{A}} \, \partial \left(e^{\mathcal{A}} e^{\phi} \right)$$

satisfies Maurer-Cartan $\Leftrightarrow \partial_{\Omega} = \partial + \Omega$ squares to zero: $\partial_{\Omega}^2 = 0$ in components:

$$\partial_{\Omega} = D_Q + P + T + \sum_{p=2}^{\infty} \mathcal{V}^{-1} F_p \mathcal{V} ,$$

"coset representative" $\mathcal{V} \equiv e^{\phi} \in G$, $\mathcal{V}^{-1}D\mathcal{V} = P + Q$, $Q \in \mathfrak{h} \subset \mathfrak{g}$ and embedding tensor $\Theta \in X_{-1}$ and T-tensor

$$\mathcal{V}^{-1}\mathfrak{D}\mathcal{V} = [\Theta, \phi] + \cdots \qquad T \equiv \mathcal{V}^{-1}\Theta\mathcal{V}$$

Duality Hierarchy & Dynamics

Goal: complete gauged supergravity/ExFT as tower of duality relations [Bergshoeff, Hartong, O. H., Huebscher & Ortin (2009)]

In n external dimensions following structures needed:

- G covariant isomorphisms $I_p: X_p^* \to X_{n-p-2}$
- H invariant metric $\Delta_p: X_p \to X_p^*$
- o 'generalized metric' $\mathcal{M}_1 \equiv \mathcal{V} \Delta_1 \mathcal{V}^\mathsf{T}$ extended to map \mathcal{M} on entire X

Duality relations:
$$\mathcal{F} = \star I \mathcal{M} \mathcal{F}$$

Integrability conditions imply non-linear equations, including scalars with

$$V = \frac{1}{2}(T, \Delta_{-1}T)$$

Part III: Embedding Tensor of ExFT

Underlying Lie Algebra

 \mathfrak{g}_0 Lie algebra of U-duality group (e.g. $\mathsf{E}_{7(7)}$),

$$[t_{\alpha}, t_{\beta}] = f_{\alpha\beta}{}^{\gamma} t_{\gamma}$$

Pick representation R_0 with matrices $(t_\alpha)_M{}^N$, $M,N=1,\ldots,\dim(R_0)$. Infinite-dimensional Lie algebra $\mathfrak G$ given by pairs of functions $\zeta\equiv(\lambda^M,\sigma^\alpha)$ of coordinates Y^M of $\mathbb R^{\dim(R_0)}$,

$$[\zeta_{1}, \zeta_{2}] = (2\lambda_{[1}^{N} \partial_{N} \lambda_{2]}^{M},$$
$$2\lambda_{[1}^{N} \partial_{N} \sigma_{2]}^{\alpha} + f_{\beta \gamma}^{\alpha} \sigma_{1}^{\beta} \sigma_{2}^{\gamma})$$

Coadjoint action on $\mathcal{A}=(A_{\alpha},B_{M})\in\mathfrak{G}^{*}$ so that invariant pairing with $a=(p^{M},q^{\alpha})\in\mathfrak{G}$ given by the integral:

$$\mathcal{A}(a) = \int \mathrm{d}Y \left(p^M B_M + q^\alpha A_\alpha \right)$$

Subtlety: eventually need to impose section constraint

- \Rightarrow non-vanishing vectors λ^M so that $\lambda^M \partial_M = 0$
- \Rightarrow subalgebra \Im defined as

$$\mathfrak{G}\supset\mathfrak{I}=\left\{\,\zeta=(\lambda^M,\mathtt{0})\in\mathfrak{G}ig|\lambda^M\partial_M=\mathtt{0}\,
ight\}$$

is generally non-empty, forming an abelian ideal of \mathfrak{G} .

The Lie algebra g is then

$$\mathfrak{g}=\mathfrak{G}/\mathfrak{I}$$

Its dual \mathfrak{g}^* consists of functions $\mathcal{A}=(A_\alpha,B_M)$ with a pairing for which the non-trivial denominator \mathfrak{I} requires the B_M to satisfy

$$\forall \lambda^M : \lambda^M \partial_M = 0 \implies \lambda^M B_M = 0$$

 \Rightarrow "covariantly constrained" objects B_M

Embedding Tensor

Representation R of \mathfrak{g} given by functions $V^M(Y)$:

$$\rho_{\zeta} V^{M} \equiv \lambda^{N} \partial_{N} V^{M} - \sigma^{\alpha} (t_{\alpha})_{N}^{M} V^{N}$$

Define embedding tensor map

$$\vartheta(V) = \left[\left(V^M, -\kappa(t^{\alpha})_M{}^N \partial_N V^M \right) \right] \in \mathfrak{g}$$

where [] indicates equivalence class.

Derived Leibniz structure defines generalized Lie derivative

$$(\Lambda \circ V)^{M} \equiv \mathcal{L}_{\Lambda} V^{M} \equiv \rho_{\vartheta(\Lambda)} V^{M}$$
$$= \Lambda^{N} \partial_{N} V^{M} + \kappa (t^{\alpha})_{N}{}^{M} (t_{\alpha})_{L}{}^{K} \partial_{K} \Lambda^{L} V^{N}$$

closure/quadratic constraint \Rightarrow strong section constraint on ∂_M .

O(d,d) or Double Field Theory

 $\mathfrak{g}_0 = \mathfrak{o}(d,d)$ with representation matrices and invariant metric

$$(t^{IJ})_M{}^N \ = \ 2\,\delta^{\left[I_M\,\eta^J
ight]N} \ , \qquad \eta_{MN} = \begin{pmatrix} \mathsf{0} & \mathsf{1} \ \mathsf{1} & \mathsf{0} \end{pmatrix}$$

 ∞ -dimensional Lie algebra $\mathfrak g$ consists of functions $\zeta=(\lambda^M,\sigma^{IJ})$, with embedding tensor map $\vartheta:R\to\mathfrak g$

$$\vartheta(V) = (V^M, -\kappa(t^{IJ})_M{}^N \partial_N V^M) = (V^M, 2 \partial^{[I} V^{J]})$$

Derived Leibniz algebra

$$(V \circ W)^M = V^N \partial_N W^M + \partial^M V_N W^N - \partial_N V^M W^N$$

The symmetric part obeys $\{V, W\} = \frac{1}{2}\mathfrak{D}(V \bullet W)$ for

$$\mathfrak{D}: X_1 \to X_0, \qquad (\mathfrak{D}f)^M \equiv \partial^M f$$

• :
$$X_0 \otimes X_0 \to X_1$$
, $V \bullet W \equiv \eta_{MN} V^M W^N$

 X_0 : O(d,d) vectors, X_1 : O(d,d) scalars \rightarrow Courant algebroid

$E_{7(7)}$ Exceptional Field Theory

Generators t_{α} , $\alpha=1,\ldots,133$, $\dim R_0=56$, $M,N=1,\ldots,56$, symplectic embedding $\mathsf{E}_{7(7)}\subset\mathsf{Sp}(56)\Rightarrow\mathsf{invariant}$ form Ω_{MN} Embedding tensor yields Leibniz algebra

$$(V \circ W)^{M} = V^{N} \partial_{N} W^{M} - W^{N} \partial_{N} V^{M} - \frac{1}{2} \partial^{M} V_{N} W^{N}$$
$$- 12 (t_{\alpha})^{MN} (t^{\alpha})_{KL} \partial_{N} V^{K} W^{L}$$

Symmetric part obeys $\{V,W\} = \frac{1}{2}\mathfrak{D}(V \bullet W)$ for $\bullet : X_0 \otimes X_0 \to X_1 \cong \mathfrak{g}^*$, $\mathcal{A} = (A_\alpha, B_M) \in \mathfrak{g}^*$. The bullet operation is defined by

$$V \bullet W \equiv \left((t_{\alpha})_{KL} V^{K} W^{L}, \frac{1}{2} \left(V_{N} \partial_{M} W^{N} + W_{N} \partial_{M} V^{N} \right) \right) \in \mathfrak{g}^{*}$$

and the differential $\mathfrak{D}:\mathfrak{g}^*\to R$ by

$$(\mathfrak{D}\mathcal{A})^{M} \equiv -12\Big((t^{\alpha})^{MN}\partial_{N}A_{\alpha} - \frac{1}{12}\Omega^{MN}B_{N}\Big) \in R$$

Quadratic constraints require

$$(t_{\alpha})^{MN} \partial_{M} f \partial_{N} g = 0, \quad \Omega^{MN} \partial_{M} f \partial_{N} g = 0$$

$E_{8(8)}$ Exceptional Field Theory

 $\mathfrak{e}_{8(8)}$ representation given by (co)adjoint

- $\rightarrow \infty$ -dimensional Lie algebra given by pairs $\zeta = (\lambda^M, \sigma_M), M = 1, \dots, 248$
- ightarrow co-adjoint vectors are pairs $\mathcal{A}=(A^M,B_M)$

Embedding tensor is map $\vartheta:\mathfrak{g}^*\to\mathfrak{g}$ for $\mathfrak{g}^*\ni\Upsilon=(\wedge^M,\Sigma_M)$ given by

$$\vartheta(\Upsilon) = \left(\Lambda^M, \ f_M{}^N{}_K \partial_N \Lambda^K + \Sigma_M \right) \equiv \left(\Lambda^M, R_M(\Lambda, \Sigma) \right)$$

Leibniz algebra defined on g*

$$\Upsilon_1 \circ \Upsilon_2 \equiv \left(\mathcal{L}_{\Upsilon_1}^{[1]} \Lambda_2^M, \mathcal{L}_{\Upsilon_1}^{[0]} \Sigma_{2M} + \Lambda_2^N \partial_M R_N(\Upsilon_1) \right)$$

→ tensor hierarchy of ExFT necessarily employs 'doubled' vectors

$$\mathcal{A}_{\mu} \equiv (A_{\mu}{}^{M}, B_{\mu M})$$

Bilinear form

$$\Theta(\mathcal{A}_1,\mathcal{A}_2) = -\int \mathrm{d}Y \left(2A_{(1}{}^MB_{2)M} - f^M{}_{NK}A_1{}^N\partial_MA_2{}^K\right)$$

gives invariant 3D Chern-Simons theory.

<u>Outlook</u>

- Inclusion of external metric $g_{\mu\nu}$ as part of tensor hierarchy or dgLa?
- Detailed formulation of ExFT in terms of these structures, e.g. ExFT potential as $V = \frac{1}{2}(T, \Delta_{-1}T)$?
- (Non-covariant) actions for duality relations? c.f. exotic D = 6 theories in Henning's talk
- Universal dgLa unifying all $E_{n(n)}$, $n=2,\ldots,9$, without split into internal/external?