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§1. Introduction

Purpose

Higher generalizations of the twisted Poisson structure

Generalization of AKSZ sigma models

To do

Compatibility with Lie algebroids and (pre)-multisymplectic

manifolds

Lie algebroid sigma models with WZ term
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Plan of Talk

Geometry of Lie algebroids with multisymplectic manifolds

Q-manifold descriptions

Higher dimensional sigma sigma models
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§2. Preliminary

Lie algebroids

Definition 1. A Lie algebroid (E, ρ, [−,−]) is a vector bundle E

over M with a bundle map ρ : E → TM called the anchor map, and

a Lie bracket [−,−] : Γ(E) × Γ(E) → Γ(E) satisfying the Leibniz

rule,

[e1, fe2] = f [e1, e2] + ρ(e1)f · e2,

where ei ∈ Γ(E) and f ∈ C∞(M).
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Example 1. [Lie algebra] Let a manifold M be one point M =

{pt}. Then it is a Lie algebra g.

Example 2. [Tangent Lie algebroid] E = TM and ρ = id,

[−,−] is a normal Lie bracket on the space of vector fields X(M).

Example 3. [Action Lie algebroid] Assume a smooth action of a

Lie group G, M ×G → M . The differential of the map induces an

infinitesimal action of the Lie algebra g of G on the manifold M .

It induces a bundle map ρ : M × g → TM . Consistency of a Lie

bracket requires that ρ is a Lie algebra morphism such that

[ρ(e1), ρ(e2)] = ρ([e1, e2]).
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Lie algebroid differentials

Γ(∧•E∗) is the space of E-differential forms.

Definition 2. A Lie algebroid differential Ed : Γ(∧mE∗) →
Γ(∧m+1E∗) such that (Ed)2 = 0 is defined by

Edα(e1, . . . , em+1) =
m+1∑
i=1

(−1)i−1ρ(ei)α(e1, . . . , ěi, . . . , em+1)

+
∑

1≤i<j≤m+1

(−1)i+jα([ei, ej], e1, . . . , ěi, . . . , ěj, . . . , em+1),

where α ∈ Γ(∧mE∗) and ei ∈ Γ(E).
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(Pre-)n-plectic structure

Definition 3. A closed (n + 1)-form ω ∈ Ωn+1(M) is called a

pre-n-plectic form. (M,ω) is called a pre-n-plectic manifold.

An 1-plectic structure is a symplectic structure.
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§3. Compatible E-n-form

Notation

ρ : E → TM is regarded as ρ ∈ Γ(TM ⊗ E∗).

ιkρω ∈ Ωn+1−k(M,∧kE∗) is defined by

ιkρω(vk+1, . . . , vn+1)(e1, . . . , ek)

= ιρ(e1) . . . ιρ(ek)ω(vk+1, . . . , vn+1)

= 〈⊗kρ, ω〉(ek, . . . , e1, vk+1, . . . , vn+1)

:= ω(ρ(ek), . . . , ρ(e1), vk+1, . . . , vn+1).

for e1, . . . , ek ∈ Γ(E) and vk+1, . . . , vn+1 ∈ X(M).
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Definition 4. Let E be a Lie algebroid on a pre-n-plectic manifold

(M,ω). If an E-n-form J ∈ Γ(∧nE∗) satisfies

EdJ = −ιn+1
ρ ω(= −〈⊗n+1ρ, ω〉), (1)

J is called compatible with the Lie algebroid structure and the

pre-n-plectic structure.

Since Ed
2
= 0, Ed(ιn+1

ρ ω) = 0 must be satisfied for consistency.

Proposition 1. Ed(ιn+1
ρ ω) = 0 is satisfied if dω = 0 and

[ρ(e1), ρ(e2)] = ρ([e1, e2]).

Lemma 1. (1) is consistent with a Lie algebroid.
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§4. Examples

Example 4. [Twisted Poisson structure] Klimcik-Strobl ’01, Park

’00, Ševera-Weinstein ’01

Let π ∈ Γ(∧2TM) and H ∈ Ω3(M) be a closed 3-form. If (π,H)

satisfies

1

2
[π, π]S = 〈⊗3π, H〉, (2)

it is called a twisted Poisson structure.

For given (π,H), T ∗M is a Lie algebroid. The anchor map is
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π♯ : T ∗M → TM and the Lie bracket is

[α, β]π,H = Lπ♯(α)β − Lπ♯(β)α− d(π(α, β)) + ιπ♯(α)ιπ♯(β)H.

(2) is equivalent to

Edπ = −〈⊗3π, H〉.

J = π with the pre-2-plectic form ω = H.
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Example 5. [twisted R-Poisson structure] Chatzistavrakidis ’21

Let π ∈ Γ(∧2TM) be a Poisson bivector field, H ∈ Ωn+1(M) be a

closed (n+ 1)-form, and R ∈ Γ(∧nTM).

Under the Lie algebroid structure on T ∗M induced from the Poisson

bivector field π, (π,H,R) is called a twisted R-Poisson structure if

[π,R]S = (−1)n〈⊗n+1π, H〉.

The equation is equivalent to EdR = (−1)n〈⊗n+1π, H〉. Thus,

R = J is a compatible E-n-form with the pre-n-plectic form ω =

(−1)n+1H.
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Example 6. [Momentum map] Let (M,ω) be a symplectic

manifold (n = 1) with an action of a Lie group G. The action

induces an action Lie algebroid structure on E = M × g with a Lie

algebra g of G with the action ρ : M × g → TM . We take ∇ = d.

µ0 ∈ Γ(M,M × g∗) is a momentum map if

dµ0(e) = −ιρ(e)ω, µ0([e1, e2]) = ρ(e1)µ0(e2).

for e, e1, e2 ∈ g. They are equivalent to

dµ0(e) = −ιρ(e)ω,
Edµ0(e1, e2) = −ι2ρω(e1, e2).
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Example 7. [Homotopy moment(um) map] Callies-Fregier-Rogers-

Zambon ’13 Let (M,ω) be an n-plectic manifold. Assume an action

of a Lie group G on M .

Let Let µ =
∑n−1

k=0 µk with µk ∈ Ωk(M,∧n−kg∗), where k =

0, . . . , n− 1.

µ is a homotopy momentum map if it satisfies

(d + dCE)µ = −
n−1∑
k=0

(ιρ)
kω.

Here dCE is the Chevalley-Eilenberg differential on ∧•g∗.
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The 0-form part of the equation is dCEµ0 = −(ιρ)
n+1ω. It is

equivalent to

Edµ0 = −(ιρ)
n+1ω,

if we use equations for higher order µk. J = −µ0 is a compatible

E-n-form.
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Example 8. [Momentum section] Blohmann-Weinstein ’18, Kotov-

Strobl ’16

(M,ω) is a pre-symplectic manifold and (E, ρ, [−,−]) is a Lie

algebroid over M . Assume a connection ∇ on E.

Definition 5. A section µ ∈ Γ(E∗) is called amomentum section

if µ ∈ Γ(E∗) satisfies the following two conditions,

∇µ = −ιρω,
Edµ = −(ιρ)

2ω.

The second condition is (1) for n = 1 with µ = J .
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Example 9. [Homotopy momentum section] Hirota-NI ’21

(M,ω) is a pre-n-plectic manifold and (E, ρ, [−,−]) is a Lie

algebroid over M . Let µk ∈ Ωk(M,∧n−kE∗), where k =

0, . . . , n− 1.

Definition 6. A sum µ =
∑n−1

k=0 µk is called a homotopy

momentum section if µ satisfies

(∇+ Ed∇)µ = −
n∑

k=0

ιn+1−k
ρ ω.

µ0 satisfies Edµ0 = −ιn+1
ρ ω. Thus, µ0 = J .
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§5. Higher Dirac structure

Graded manifold

A nonnegatively graded manifolds is called an N-manifold.

Definition 7. If an N-manifold M has a vector field Q of degree

+1 satisfying Q2 = 0, it is called a Q-manifold.
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Q-manifold description of Compatible E-n-form

We consider M = T ∗[n− 1]E[1].

We take local coordinates on T ∗[n−1]E[1], (xi, aa, zi, ya) of degree

(0, 1, n− 1, n− 2).

ρ(ea) := ρia(x)∂i J(ea1, · · · , ean) :=
1

n!
Ja1...an(x),

[ea, eb] := Cc
ab(x)ec, (ω :=)H =

1

n!
Hij1...jn(x)dx

j1 . . . dxjn,

for the basis ea of Γ(E),
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We define

Q = ρia(x)a
a ∂

∂xi
+

(−1)n

2
Ca

bc(x)a
bac

∂

∂aa

+
(
(−1)nρiazi + Cc

ab(x)a
byc + Jab2...bna

b2 . . . abn
) ∂

∂ya

+ (−1)n
(
∂iρ

j
azja

a − 1

2
∂iC

a
bc(x)a

bacya

+
1

n!
(∂iJa1...an − ρj1a1 . . . ρ

jn
anHij1...jn)a

a1 . . . aan
)

∂

∂zi
,

Proposition 2. Q2 = 0 is equivalent to the condition of the

compatible E-n-form under a Lie algebroid E.
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QP-manifold

Definition 8. If an N-manifold M has a graded symplectic form

ωgrad of degree n and a vector field Q of degree +1 satisfying

Q2 = 0 such that LQωgrad = 0, it is called a QP-manifold.

For any QP-manifold of degree n 6= 0, there exists a function

Θ ∈ C∞(M) such that Q = {Θ,−} satisfying

{Θ,Θ} = 0.

Note: QP-manifolds → AKSZ sigma models

Note: If H 6= 0, the previous Q is not QP since LQωgrad 6= 0.
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Higher Dirac structure

Hagiwara ’02, Wade ’02, NI-Uchino ’10, Zambon ’12, Bi-Sheng ’15, Bursztyn-

Martinez-Rubio ’16, Cueca ’19,,,

QP-manifold

Choose the canonical graded symplectic form of degree n on M =

T ∗[n− 1]E[1] as

ωgrad = δxi ∧ δzi + δaa ∧ δya,

where δ is the graded de Rham differential.
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Define

Θ = ρia(x)zia
a +

1

2
Ca

bc(x)a
bacya

+
1

(n+ 1)!
ρi1a1 . . . ρ

in+1
an+1Hi1...im+1(x)a

a1 . . . aan+1.

Θ gives a Lie n-algebroid structure on E ⊕ ∧n−1E∗.

E is a Lie algebroid and dH = 0 ⇒ {Θ,Θ} = 0.

Lie n-algebroid induced from QP-manifold

A Lie n-algebroid on E ⊕ ∧n−1E∗ is an algebroid with three

operations, ((−,−), ρ, [−,−]D).
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(−,−) : Γ(E ⊕ ∧n−1E∗) ⊗ Γ(E ⊕ ∧n−1E∗) → Γ(∧n−2E∗) is a

symmetric paring. The bundle map ρ : E ⊕ ∧n−1E∗ → TM is the

anchor map, and the bilinear bracket [−,−]D : Γ(E ⊕ ∧n−1E∗) ×
Γ(E ⊕∧n−1E∗) → Γ(E ⊕∧n−1E∗) is called the (higher) Dorfman

bracket.

A map j∗ : Γ(E⊕∧n−1E∗) → (C∞
0 ⊕C∞

1 )(T ∗[n−1]E[1]) is induced

from the map

j : E ⊕ ∧n−1E∗ ⊕ TM → T ∗[n− 1]E[1],

j : (xi, ea, ea, ∂i) 7→ (xi, aa, ya, zi), where ∂i, e
a and ea is basis of

TM , E∗ and E.
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Operations are given by derived brackets,

(e1, e2) = j∗{e1, e2},
ρ(e)f = j∗{{e,Θ}, f},

[e1, e2]D = j∗{{e1,Θ}, e2},

for e, e1, e2 ∈ Γ(E ⊕ ∧n−1E∗), e, e1, e2 ∈ C∞(T ∗[n − 1]E[1]) and

f ∈ C∞(M).
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Three operations of this Lie n-algebroid are as follows. Let u+α, v+

β ∈ Γ(E ⊕ ∧n−1E∗), where u, v ∈ Γ(E) and α, β ∈ Γ(∧n−1E∗).

(u+ α, v + β) = (u, β) + (α, v),

ρ(e)f = ρ(u)f,

[u+ α, v + β]D = [u, v] + Luβ − ιv
Edα+ ιuιv(ι

n+1
ρ H),

where the interior product ιv is the contraction with respect to E

and E∗, and the Lie derivative is Lu = ιu
Ed + Edιu.
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Higher Dirac structure

Definition 9. A Lagrangian Q-submanifold N is a sub graded

manifold satisfying the conditions, (e1, e2) = 0 for all e1, e2 ∈
C∞(N ), and [C∞(N ), C∞(N )]D ⊂ C∞(N ).

A higher Dirac structure is a subbundle L of E ⊕ ∧n−1E∗ induced

from a Lagrangian Q-submanifold.

Proposition 3. [NI] Let J ∈ Γ(∧nE∗). Define

Γ(LJ) = {u+ (J, u) ∈ Γ(E ⊕ ∧n−1E∗)|u ∈ Γ(E)}.

Then, EdJ = −(ιρ)
n+1H iff LJ is a higher Dirac structure.
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§6. Lie algebroid sigma model with WZ term

Action functional Chatzistavrakidis ’ 21, NI ’21

Let Ξ be an n+1 dimensional manifold with n dimensional boundary,

Σ = ∂Ξ. Choose a Lie algebroid E over a d-dimensional target

space M .

〈−, −〉: pairing of TM and T ∗M .

(−,−): pairing of E and E∗.

X : Ξ → M is a smooth map.

A ∈ Ω1(Σ, X∗E), Y ∈ Ωn−2(Σ, X∗E∗), Z ∈ Ωn(Σ, X∗T ∗M).
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The action functional is as follows,

S =

∫
Σ

[
〈Z, dX〉+ (Y, dA)− 〈Z, X∗ρ(A)〉+ 1

2
(Y,X∗[A,A])

+X∗J(A, . . . , A)] +

∫
Ξ

X∗H.

=

∫
Σ

[
Zi ∧ dXi + Ya ∧ dAa − ρia(X)Zi ∧Aa +

1

2
Cc

ab(X)Yc ∧Aa ∧Ab

+
1

n!
Ja1...an(X)Aa1 ∧ . . . ∧Aan

]
+

∫
Ξ

1

(n+ 1)!
Hi1...in+1(X)dXi1 ∧ . . . ∧ dXin+1.

Note: If H = 0, it is an AKSZ sigma model.
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Hamiltonian formalism

Take Σ = R× Tn.

Let H be a Hamiltonian such that H =
∫
Tn(pAq̇

A − L), where

q = (X,A, Y, Z).

The symplectic form is given by

ωcl =

∫
Tn

δqA ∧ δpA = ωAKSZ−BFV |0.

The space of constraints is E = {GI|I = 1, 2, . . . ,m}, which gives

a Lie algebroid structure as a Poisson algebra. The dynamics is
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consistent with constraints if

{H, E}PB ⊂ E ,
{E , E}PB ⊂ E .

Then GI are called first class constraints.

The Hamiltonian is proportional to constraints,

H =

∫
Tn

dn+1σ(Z0iG
i
X + Y0aG

a
A +Aa

0GY a).
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Here G’s are constraints without time derivatives,

Gi
X := (dXi − ρia(X)Aa)(s) ,

Ga
A := (dAa + 1

2C
a
bc(X)Ab ∧Ac)(s) ,

GY a :=
(
dYa + (−1)nρia(X)Zi + (−1)n−1Cc

ab(X)Yc ∧Ab

+
1

n!
Jab2...bn+1(X)Ab2 ∧ . . . ∧Abn+1

)(s)

,

which are spatial parts of equations of motion.
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Theorem 1. Suppose that E is a Lie algebroid and ω = H is a

pre-n-plectic form. Then, Gi
X, Ga

A and GY a are the first class

constraints, {H, E}PB ⊂ E and {E , E}PB ⊂ E if and only if J is a

compatible E-n-form (1).

BFV works! In fact, we obtain the following Poisson brackets,

{Gi
X(σ), Gj

X(σ′)}PB = {Gi
X(σ), Ga

A(σ
′)}PB = {Ga

A(σ), G
b
A(σ

′)}PB = 0,

{Gi
X(σ), GY a(σ

′)}PB = (−1)n−1∂jρ
i
aG

j
X(σ)δn(σ − σ′),

{Ga
A(σ), GY b(σ

′)}PB = (−1)n[∂iC
a
bcA

c ∧Gi
X(σ) + Ca

bcG
c
A(σ)]

(s)

× δn(σ − σ′),
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{GY a(σ), GY b(σ
′)}PB = [(∂iC

c
abYc

+
(−1)n−1

n!
∂iJabc3...cn+1A

c3 ∧ . . . ∧Acn+1

)
∧Gi

X

+(−1)n−1Cc
abGY c +

(−1)n−2

(n− 1)!
Jabce4...en+1A

e4 ∧ . . . ∧Aen+1 ∧Gc
A

+
(−1)n−1

(n+ 1)!

n∑
m=1

ρiaρ
j
bHijk1...kmkm+1...kndX

k1 ∧ . . . ∧ dXkm−1 ∧Gkm
X

∧ρkm+1
cm+1A

cm+1 ∧ . . . ∧ ρkncnA
cn
](s)

(σ)δn(σ − σ′),

Here all the fields are spatial components.
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§7. Lagrangian formalism

Consistency of gauge transformations

A gauge transformation of a field Φ is computed by

δΦ =
{∫

dσ′ϵI(σ′)GI(σ
′),Φ(σ)

}
PB

+ τ I(Φ(σ))GI(Φ(σ)). Gauge

transformations are consistent if

δS = 0, [δ1, δ2] ∼ δ3

We need three gauge parameters, ca ∈ Γ(Σ, X∗E), ta ∈
Γ(∧n−2T ∗Σ, X∗E∗), wi ∈ Γ(∧n−1T ∗Σ, X∗T ∗M).
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Gauge transformations of fundamental fields are given by

δXi = ρia(X)ca, δAa = dca + Ca
bc(X)Abcc,

δYa = dta + (−1)nρia(X)wi + Cc
ab(X)(−Ycc

b + (−1)ntc ∧Ab)

+ (−1)n

(n−1)!Jab2...bn+1(X)Ab2 ∧ . . . ∧Abncbn+1,

δZi = dwi + ∂iρ
j
a(−Zj ∧ ca + (−1)nwj ∧Aa)

+ 1
2∂iC

a
bc(2Ya ∧Abcc + (−1)nta ∧Ab ∧Ac)

+ 1
n!∂iJa1...an+1(X)Aa1 ∧ . . . ∧Aancan+1

− 1
(n+1)!Hij1...jnk

n∑
m=0

dXj1 ∧ . . . ∧ dXjm

∧ρjm+1
am+1A

am+1 ∧ . . . ∧ ρjnanA
anρkbc

b. 35



Theorem 2. Suppose that E is a Lie algebroid and ω = H is a

pre-n-plectic form. Then, the action functional is gauge invariant

and the gauge algebra is closed, δS = 0, [δ1, δ2] ∼ δ3 if and only if

J is a compatible E-n-form (1).

Covariant gauge transformations

Let ∇ be a connection on E.

Definition 10. An E-connection on TM with respect to the Lie

algebroid E is a map E∇ : Γ(TM) → Γ(TM ⊗ E∗) satisfying
E∇e(fv) = fE∇ev + (ρ(e)f)v, for e ∈ Γ(E), v ∈ Γ(TM) and

f ∈ C∞(M).
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If a normal connection ∇ on E is given, a (canonical) E-connection

on a tangent bundle, an E-connection is given by

E∇ev := Lρ(e)v + ρ(∇ve) = [ρ(e), v] + ρ(∇ve),

where e ∈ Γ(E) and v ∈ X(M). Additional to the ordinary

curvature, R(e, e′) := [∇e,∇e′] − ∇[e,e′], the E-torsion T and the

basic curvature S are defined as

T (e, e′) := E∇ee
′ − E∇e′e− [e, e′],

S(e, e′) := Le(∇e′)− Le′(∇e)−∇ρ(∇e)e
′ +∇ρ(∇e′)e−∇[e, e′]

= (∇T + 2Alt ιρR)(e, e′). (ER = ιρS.)
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Gauge transformations of fundamental fields are given by

δ∇Xi = δXi = ρi(c),

δ∇A = ∇c−X∗T (A, c),

δ∇Y = ∇t+ (−1)nιX∗ρw
∇ +X∗T (Y, c)−X∗T (A, t)

+X∗J(A, . . . , A, c),

δ∇Z = ∇w∇ − ιX∗∇ρ(c)Z + ιX∗∇ρ(A)w
∇ −X∗S(Y,A, c)

+ (−1)nX∗S(t, A,A) +X∗∇J(A, . . . , A, c)− ιX∗ρ(c)ι
n
X∗ρ(A)H

+

n∑
m=1

(n−m+ 1)(−1)nιX∗ρ(c)ιFX
ι
(n−m)
X∗ρ(A)H .
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§Conclusions
• We considered geometry compatible with a Lie algebroid and the

pre-multisymplectic structure.

• It has many examples.

• A topological sigma model with WZ term is constructed.

Consistency of the mechanics suggests that the BFV and BV work.

• The BV formalism has been concretely constructed for E =

T ∗M,n = 2 case. Chatzistavrakidis-NI-Šimunić, ’22
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Outlook

• AKSZ type construction of the BV formalism

• Multisymplectic reduction Blacker ’21, Blacker-Miti-Ryvkin ’22

• Quantization (a generalization of the deformation quantization)

• A generalization to general Lie n-algebroids
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Thank you for your attention!
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