A CATEGORIFICATION OF THE TUBE ALGEBRA

ALEX BULLIVANT UNIVERSITY OF LEEDS

- W. Delcamp > 2006.06536

+ up coming.

(Non-chiral) 2+1D Topological Phases of Matter

Unitary, sphenical fusion category

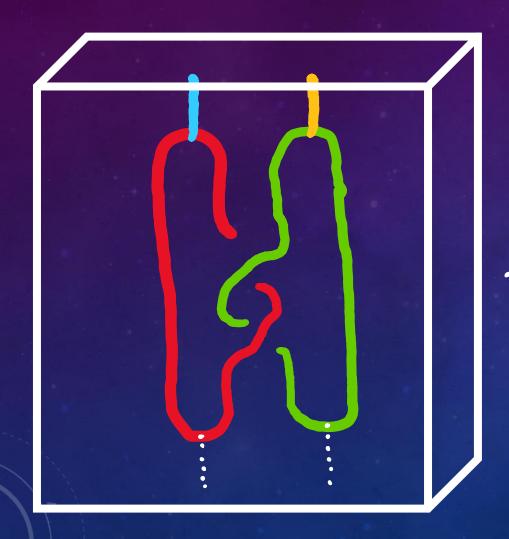
String-net

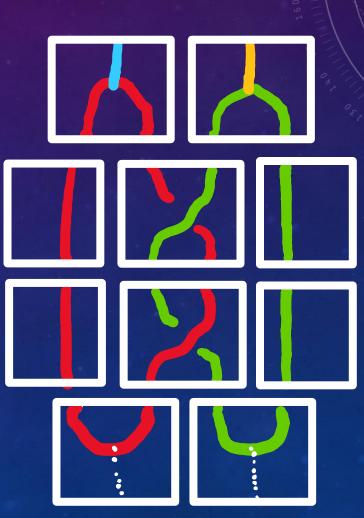
Topological lattice Hamiltonian

Topological excitations

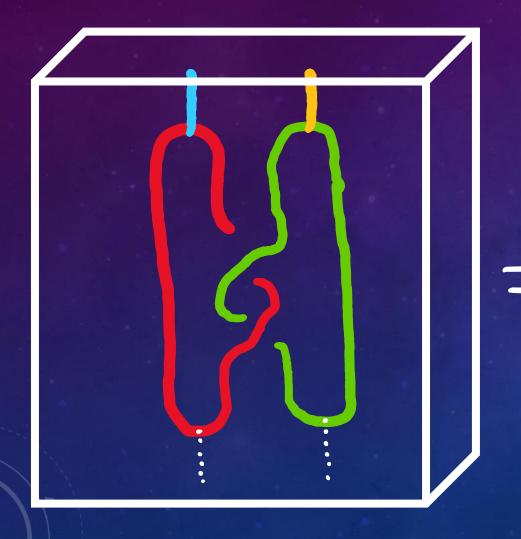
Center

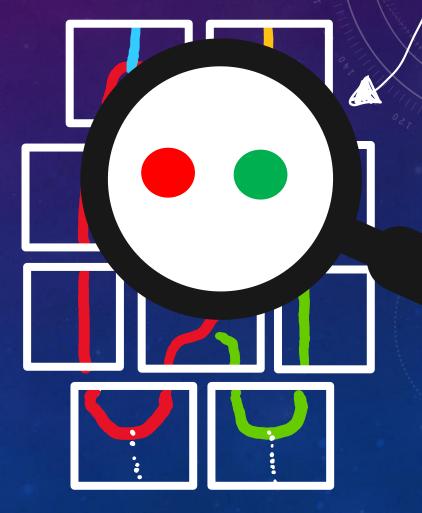
Anyon theory Z(C)= Modular tensor category





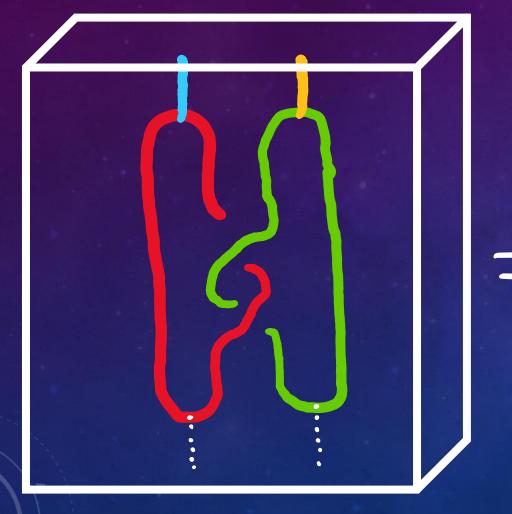
Objects: Anyons in 2-disk

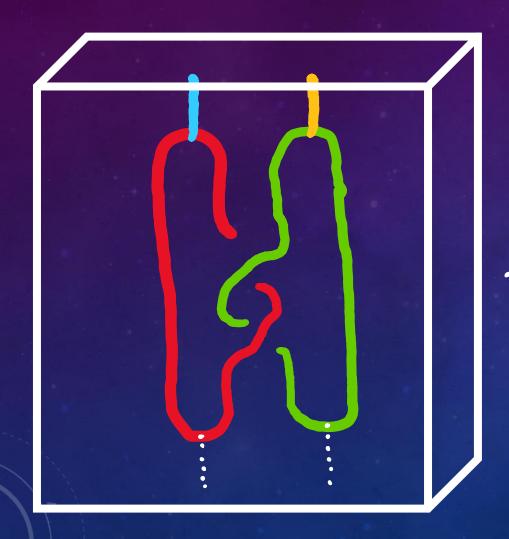


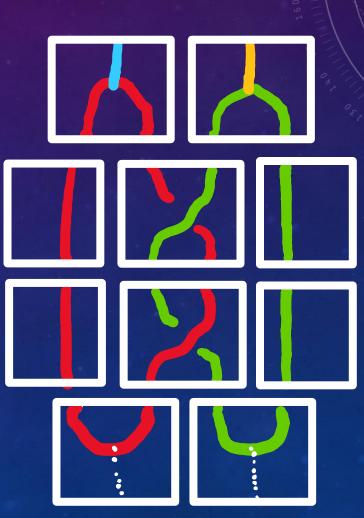


Morphisms: Isotopy classes of World-lines





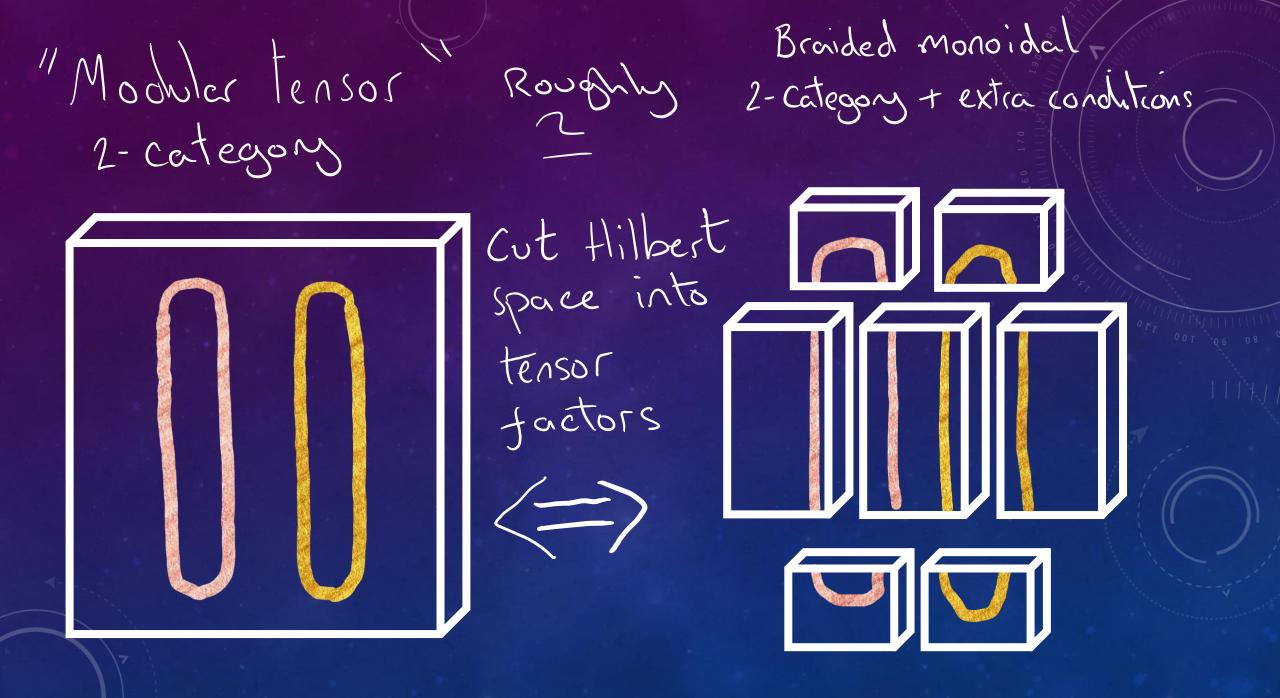




(Non-chiral) 371D Topological Phases of Matter "Membrane - net" Topological lattice Hamiltonian Unitary, sphenical fusion 2-category Topological excitations "Extended" Center Reutter 1812.)193 Anyon theory Z(M)= "Modular tensor 2-categony"

of Matter (Non-Chiral) 3+1D Topological Phases Membrane - net Topological lattice Unitary, sphenical Hamiltonian fusion 2-category DW theory Topological excitations Center "Extended" 2Vect Anyon theory 905.04644 see Z(M)VinTian Z(zvect () = "Modular tensor 2-categony"

(Non-Chiral) 371D Topological Phases of Matter "Membrane - net" Topological lattice Unitary, spherical Hamiltonian fusion 2-category Topological "Extended" Center excitations Anyon theory => Categorified tube algebra. Z(M)ogoz = "Modular tensor 2-categony"



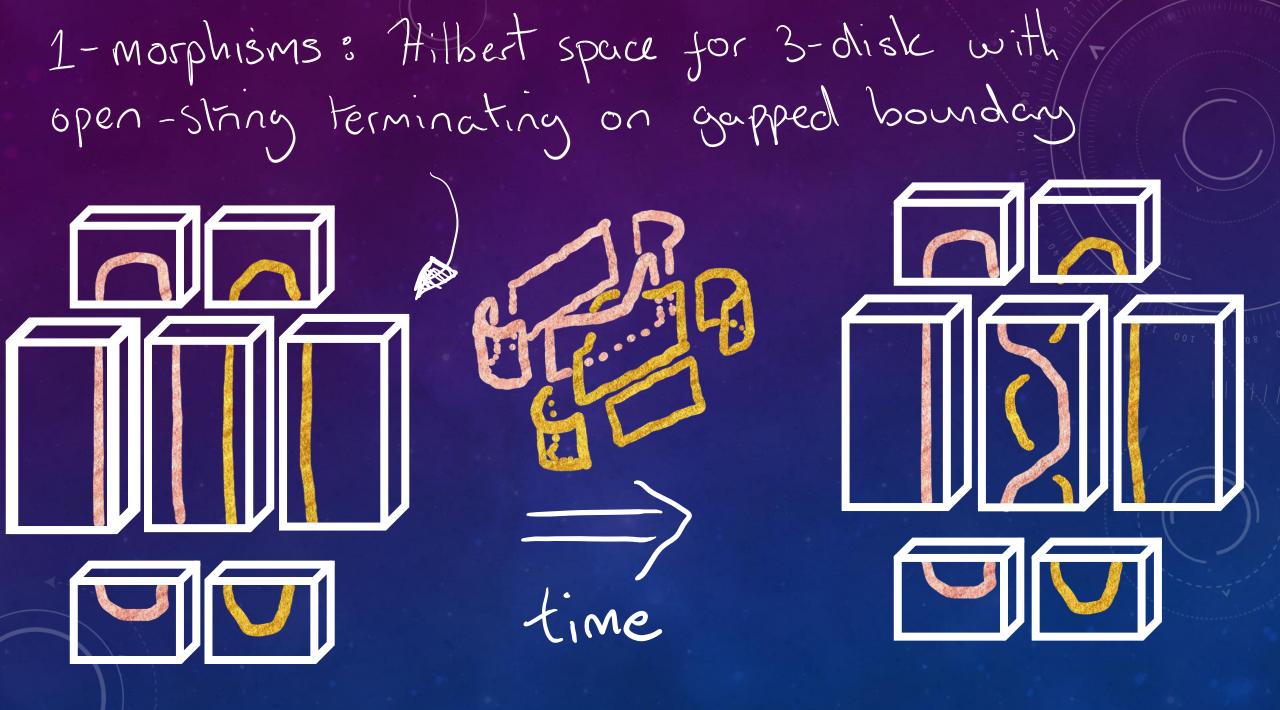
Real of the second seco

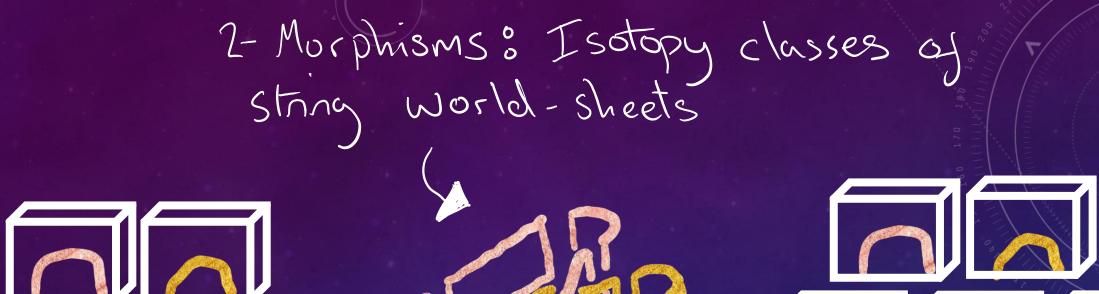
time



Objects: Anyons in gapped boundary condition for 2-disk

time

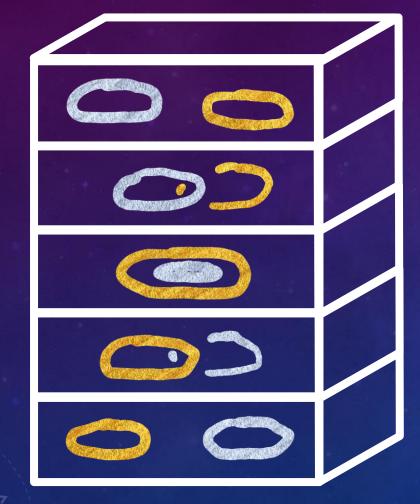




time

knotted susface in 40 - Amplitude depends only on isotopy class





Time

hinking of excitations

AB, Kimball, Martin, Rowell, 2018, CMP AB, Delcamp, 2019, JHEP

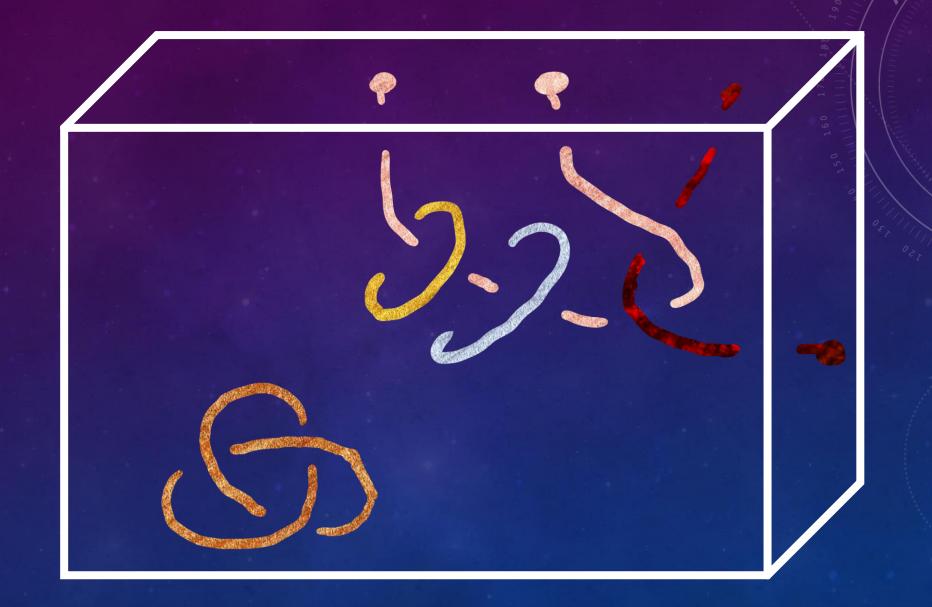
3-9-9

heap-frog move

-

Passing cround

the back



(Non-Chiral) 371D Topological Phases of Matter "Membrane - net" Topological lattice Unitary, spherical Hamiltonian fusion 2-category Topological "Extended" Center excitations Anyon theory => Categorified tube algebra. Z(M)ogoz = "Modular tensor 2-categony"

HAMILTONIAN MODELS OF TPM

Topological Lattice Models

 ★ oriented d-manifold Z equipped w. discretisation ZA
- discretisation := A-complex + branching structure * $H[z_{\Delta}] := Span_{\delta} \{ \phi : z_{\Delta} - \phi S \}$ * Local Hamiltonian H = - 2 Hao a°c Int (Za) s.t. $H_{\Delta^{\circ}} \cdot H_{\Delta^{\circ}} = H_{\Delta^{\circ}}, \quad [H_{\Delta^{\circ}}, H_{\Delta^{\circ}}] = O$ * Family of unitary isomorphisms U: GS[Ea] - 10 GS[Ea] whenever 22a = 22a - "symmetnes" of ground state subspace $U \circ [T H_{a} \circ] = [T H_{a} \circ] \circ U$ $a^{\circ} c I A (\xi_{a}) \circ U$

CATE GORIFIED TUBE ALGEBRAS

Algebra

Given a monoided category C an Algebra (A, P) is an object $A \in C^{\circ}$ and morphism $P: A \otimes A \rightarrow A$ s.L. following commutes

$$(A \otimes A) \otimes A \xrightarrow{P \otimes A} A \otimes A \xrightarrow{P} \xrightarrow{P} A \xrightarrow{P$$

2-Alogebra Given a monoided 2-category B a 2-algebra (A,P,Q) is an object A E B° a 1-morphism p: AMA-DA and 2-isomorphism

2-Aloyebra Given a monoided 2-category B a 2-algebra (A,P,Q) is an object A E B° a 1-morphism p: AWA-DA and 2-isomorphism

Categorified tube algebra E 2Vect := symmetric monoidal 2-category of Vect-module categories Construction outine: := semisimple Abelian category ~ module category for semisimple algebra 1) Desine 2Vector-space to cylinder Mod () 2) Form 2-algebra \otimes : Mod (\Box) \boxtimes Mod (\Box) — Mod inspired by 2-preserving diffeo glue 3) "Extended anyon theory ~ Representation theory for Mod ([])

Step 1: The 2-Vector space of the cylinder Mod ()

Given 3+1D TLM =>

G.S.

K bigon <u>2</u>2-disk

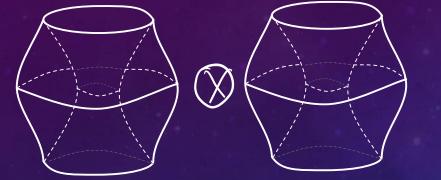
Pequipped w. Triangulation

=G.S.S'x

We can enrich this Hilbert space w.

Vect dinite - dimensional, associative, * - algebra => semisimple algebra

identify boundary



field configs

triangulation changing unitary isomosphism

05,5

project to

groundstate

Subspace

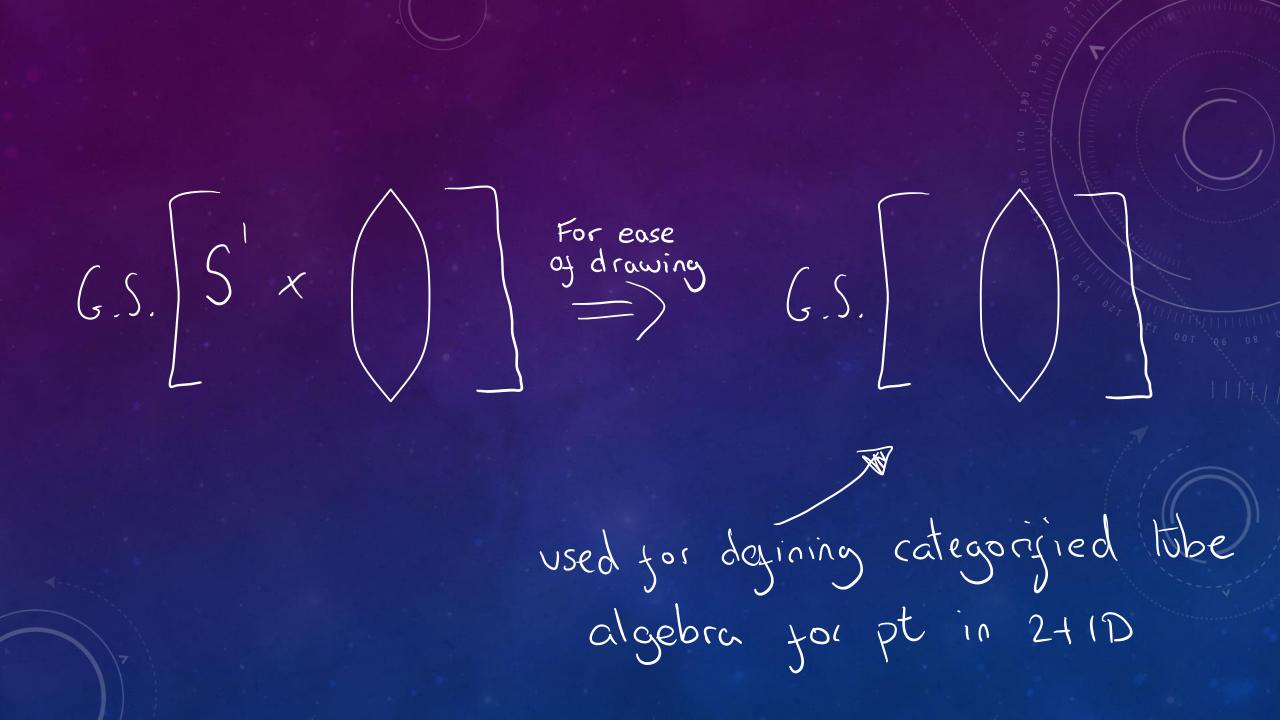
Mod ():= Category of G.S. [] - modules (right)

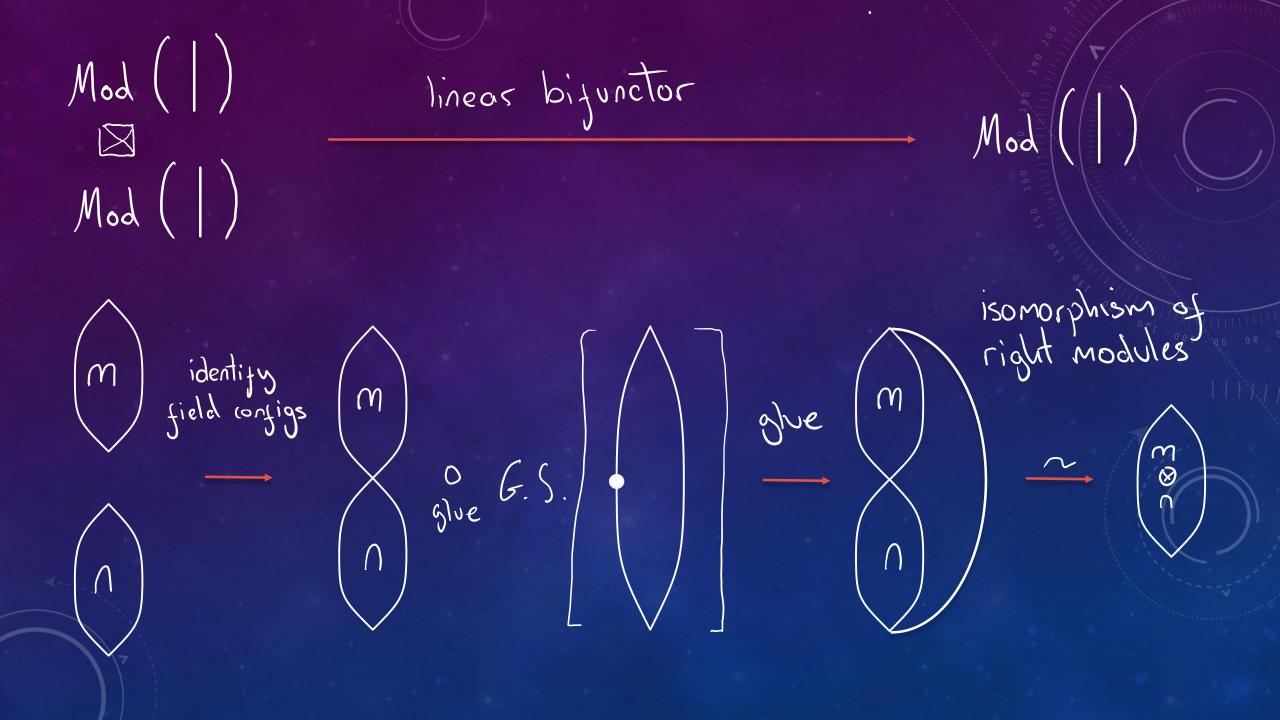
=> Semisimple Abelian category E 2Vect

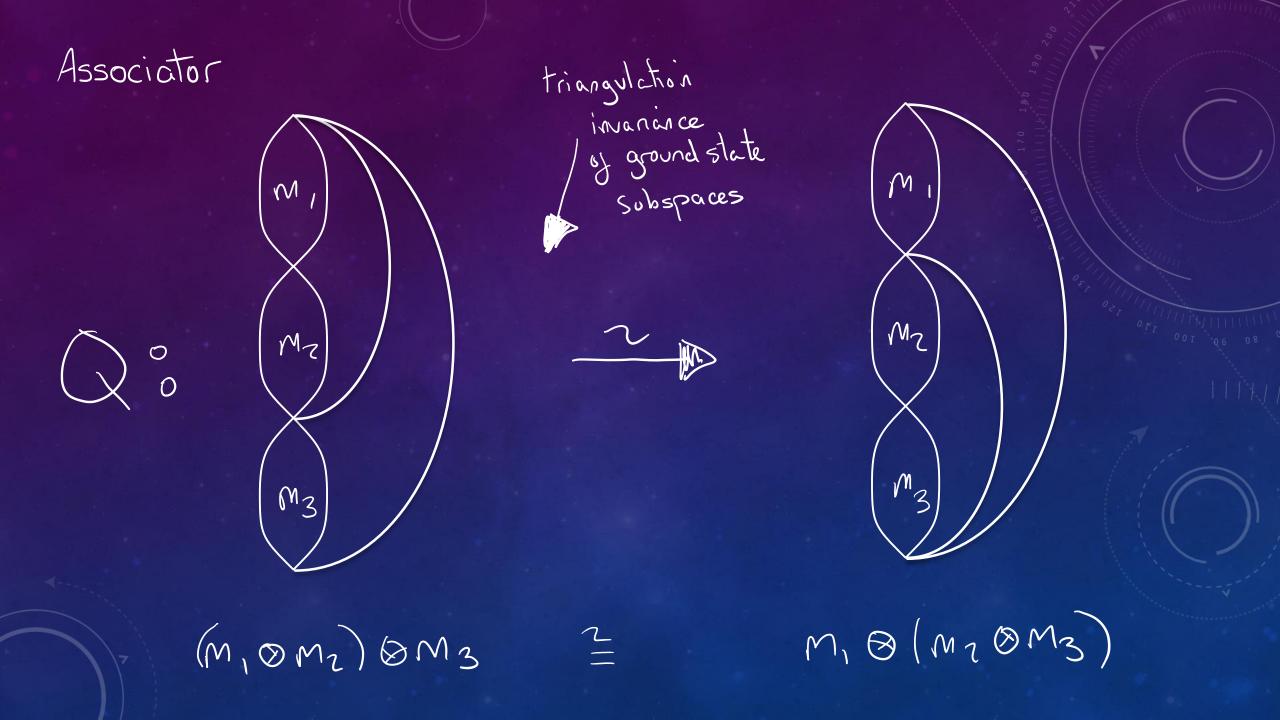
Step 2 °

Categorified tube algebra

\otimes \circ Mod $(\Box) \bowtie$ Mod $(\Box) \longrightarrow$ Mod (\Box)







Example: Topological gauge theory w. finite group G - theory of flat G-connections + gauge transformations $Mod(\square) = 7 Vect \otimes G/16$ (multitusion category) Objects: finite vector spaces graded by Zghaligh Jyghe G $:= \sqrt{\frac{1}{2}}$ Morphisms: grading preserving linear maps it g'= high 2-product: Q: Vgh & W, n' H (VQW) hh' else Zero vector space

Conjecture :

Mod ([]) is multipusion for all 3+10 topological lattice models. => Should follow from a 2-inner product Structure, really talling about 2-Hilbert spaces not just 2-vector space.

Conjecture: EAssume true from now onth Mod ([]) is multipusion for all 3+10 topological lattice models. => should follow from a 2-inner product Structure, really talking about 2-Hilbert spaces not just 2-vector space.

Step 3°

Mod ([]) - Representation theory + extended cryps theory

2-Category of module categories

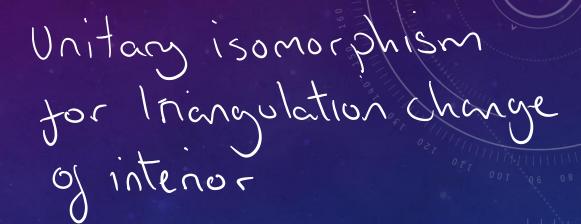
- Similarity to modules of an algebra, we can define module categories for a 2-algebra

MOD () := objects : Mod[®]() - module categories morphisms: Mod[®]() - module functors 2-mosphisms: Mod[®]() - module natural trans

Mod[®]([]) - module categories ~ Category of modules for a separable algebra in Mod[®]([]) Hom (Mod(A), Mod(B)) ~ Category of A-B-bimodules in Mod® ([]) Ssee Douglas + Reutter 1812.1193 hom-category (and Gaiotto + Johnson-Freyd 1905.09566 + Refs for nice intro

Morphisms in Mod ()

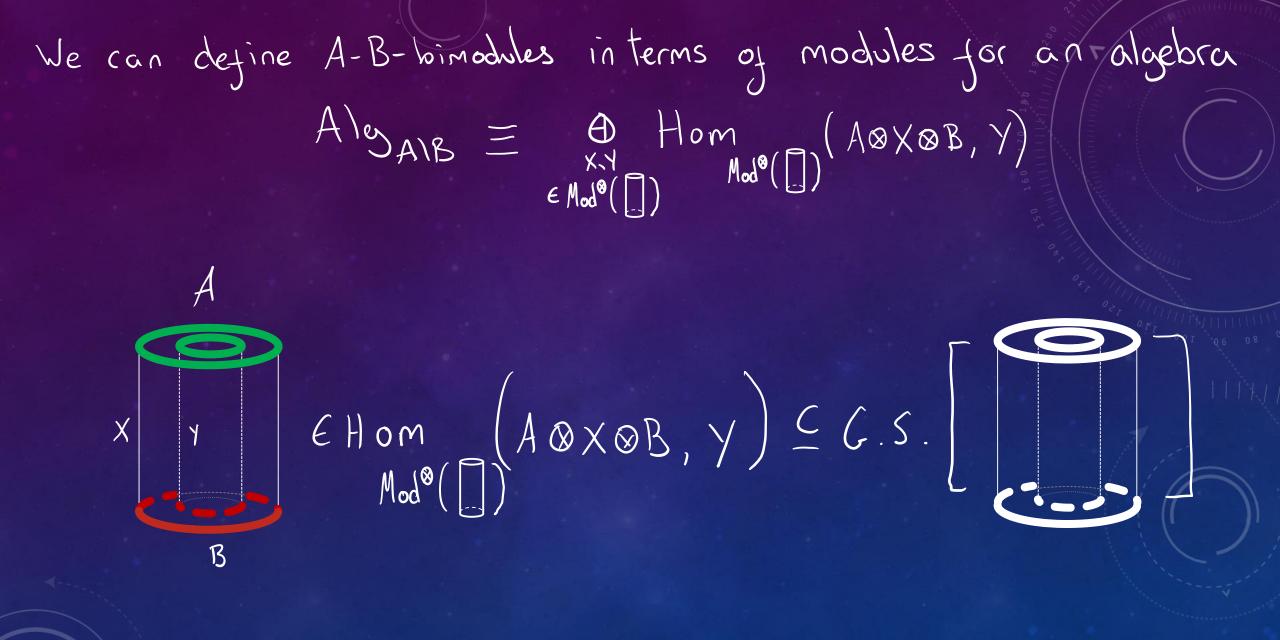
ghing <

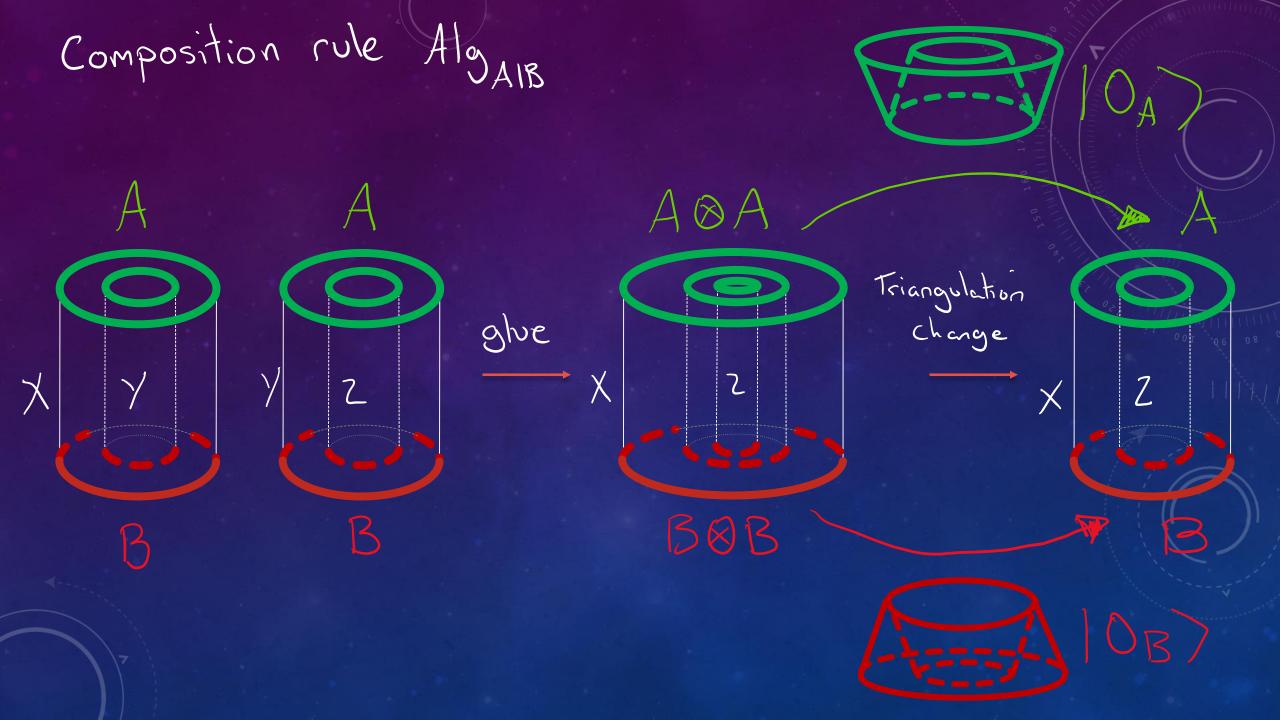


 $|\Psi\rangle \epsilon G.S.$

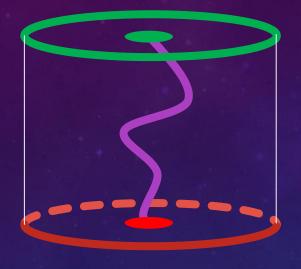
We can define A-B-bimodules interms of modules for an algebra $Alg_{AlB} \equiv \bigoplus_{\substack{X:Y \\ \in Mod^{\Theta}([])}} Hom (A \otimes X \otimes B, Y)$

We can define A-B-bimodules in terms of modules for an algebra $Alg_{AlB} \equiv \bigoplus_{\substack{X:Y \\ \in Mod^{\Theta}(\underline{1})}} Hom (A \otimes X \otimes B, Y)$





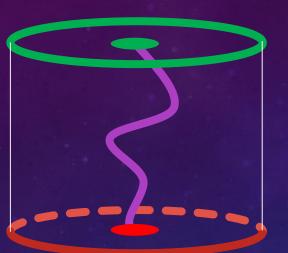
For gapped system SAX [DA] - X + Sexcite



cut away a local neighbourhood of excitation

topological properties of excitation encoded as boundary conditions For gapped system SAX [DA] - V + Sexcite

cut away a local neighbourhood of excitation



SAllgAIB-Module : Length scale invariant Hilbert space for open string a topological string upto local excitation

topological properties of excitation encoded as boundary conditions

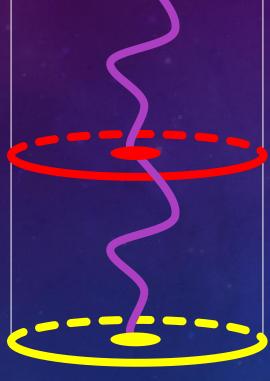
For gapped system SAX [DA] - V + Sexcite

cut away a local neighbourhood of excitation

topological properties of excitation encoded as boundary conditions

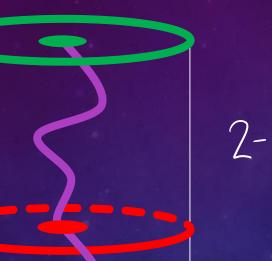
Mod(A) => Boundary conditions for endpoint of an open string () ~ boundary anyons upto local excitation.

Comp Of J-morph



(omp

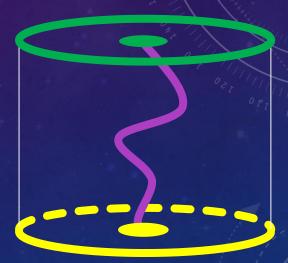
1-morph

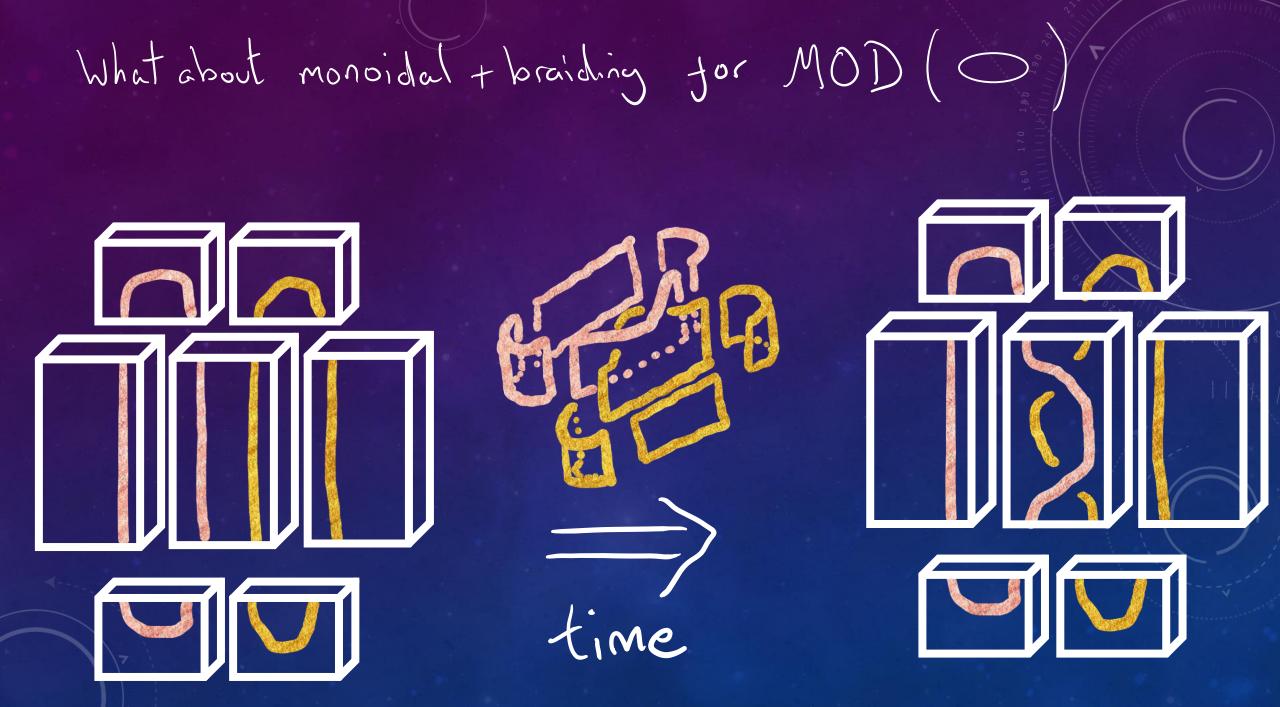


2-morphism

 $MOD(\bigcirc)$

"renormalisation"





Braiding + Monoidal Structure on MOD() * For topological gauge theory Mod[®]() = Vect[®] * Vect[®] defines "quasitriangular Hopf category" - see thesis of Neuchl * => MOD(Vect^{®,R}_{GIL}) is braided + monoidal 2-category ★ Kong, Tian, Zhou Z (2Vect G) 2 MOD (Vect 6/16)

Open questions: 1) Can we canonically put quasi-triangular hopp category (or weakened variant) on Mod[®]([])? 2) Assuming true 8 Given spherical jusion 2-category B => We can define 371D TLM (anonically $Z(B) \simeq MOD(O)$

Following Delcamps talle: For 3+1D TLM we can classify loop-like excitations using $Mod(0) \equiv Category of (right) G.S.(0) (1) - modules$

Dimension and crossing w. circle

=> Ground state - degeneracy of 3-torus = # of simple loop-like excitations

