Approximately differentiable homeomorphisms: derivatives and Jacobians

Vienna, Erwin Schrödinger International Institute, 27/01/25

Thematic programme: Infinite-dimensional Geometry: Theory and Applications

Zofia Grochulska (University of Jyväskylä, Finland)

Research from my PhD at University of Warsaw, Poland: joint work with Paweł Goldstein (University of Warsaw) and Piotr Hajłasz (University of Pittsburgh)

John Ball's nonlinear elasticity

- Aim: model deformations of materials
- Ω a domain in \mathbb{R}^n ,
- Family of admissible mappings: $f: \Omega \to \mathbb{R}^n$ (for example: homeomorphisms)
- Energy of the form: $\int_{\Omega} W(Df(x)) \, dx$, so we need a derivative of f
- Minimize among admissible mappings

The minimizer: does it still describe a physical deformation?

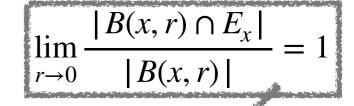
- Does it preserve orientation?
- Does it map sets of measure zero onto sets of measure zero (the Lusin condition (N))?

John Ball's nonlinear elasticity gives rise to questions

- What are the properties of limits (in different metrics) of homeomorphisms?
- How can we easily check if a homeomorphism preserves or reverses orientation?

- What can we say about Jacobians of homeomorphisms?
- And about derivatives?

Approximate derivative

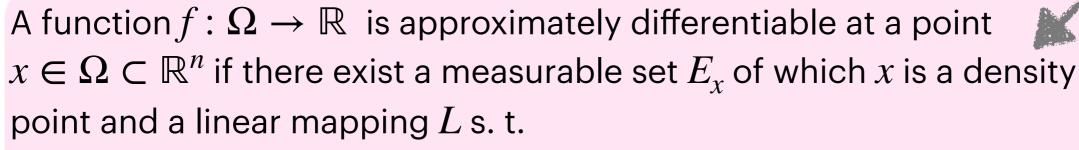


A function $f: \Omega \to \mathbb{R}$ is approximately differentiable at a point $X \in \Omega \subset \mathbb{R}^n$ if there exist a measurable set E_x of which x is a density point and a linear mapping L s. t.

$$\lim_{y \to x, y \in E_x} \frac{|f(x) - f(y) - L(x - y)|}{|x - y|} = 0.$$

Notation: $L = D_a f(x)$

Approximate derivative



$$\lim_{y \to x, y \in E_x} \frac{|f(x) - f(y) - L(x - y)|}{|x - y|} = 0.$$

 $\lim \frac{|B(x,r) \cap E_x|}{|B(x,r) \cap E_x|}$

 $r \rightarrow 0$

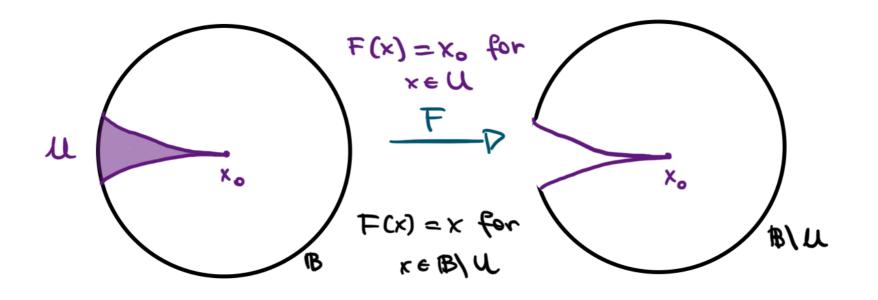
B(x, r)

Notation: $L = D_a f(x)$

(Whitney) A function f is approximately differentiable a.e. on $\Omega \subset \mathbb{R}^n$ if for any $\varepsilon > 0$ there exists a C^1 function $g : \mathbb{R}^n \to \mathbb{R}$ s. t.

 $|\{x \in \Omega : f(x) \neq g(x)\}| < \varepsilon.$

• The mapping $F : \mathbb{B} \to \mathbb{R}^2$ is approximately differentiable at x_o but it is not classically differentiable at x_0 .



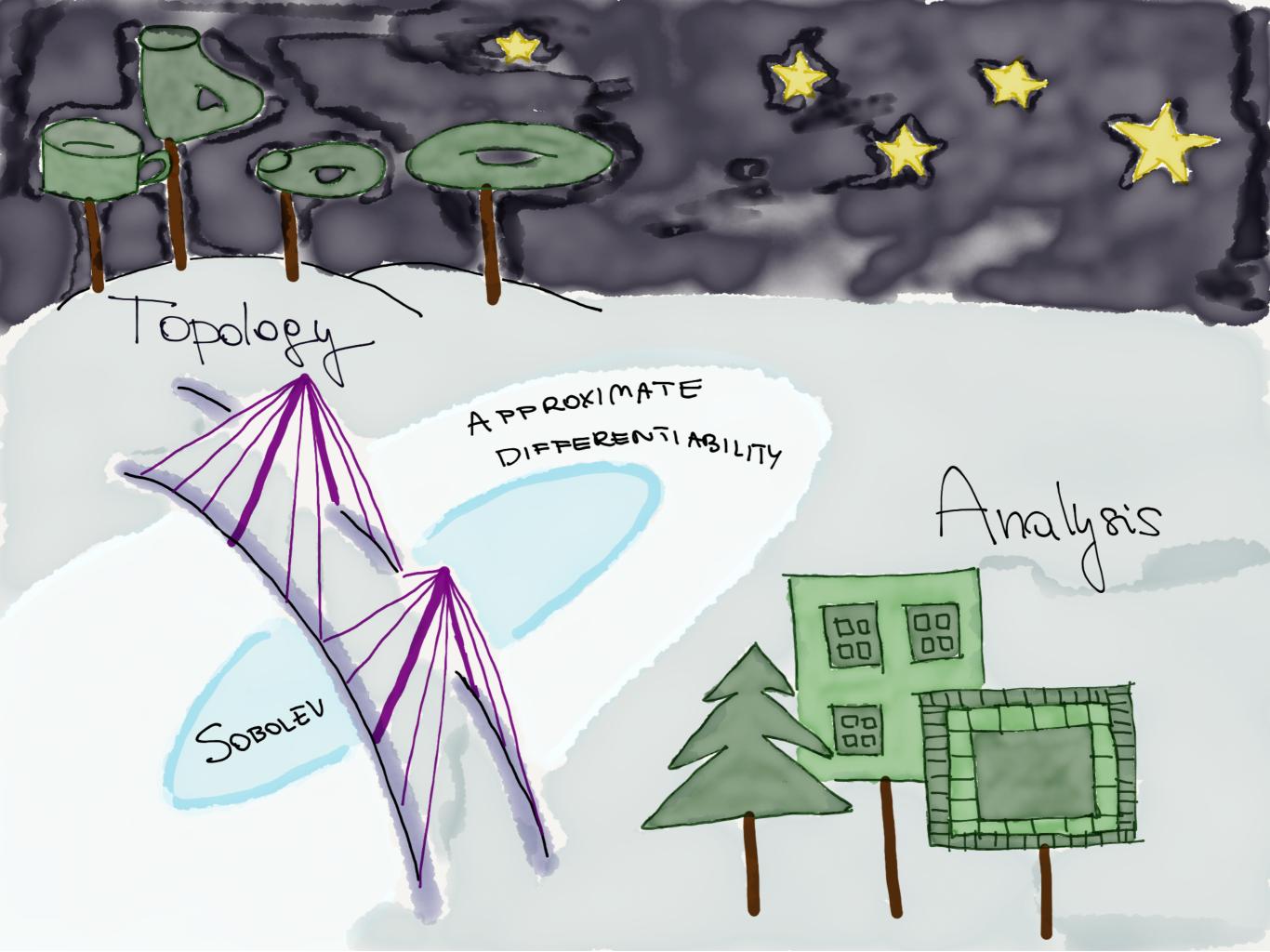
- The Weierstrass nowhere differentiable function is also nowhere approximately differentiable.
- Old concept: appeared in 1916 in the works of Khintchine and Denjoy.
- For a while: contender for the best non-classical derivative.

Approximate derivative is important

- Sobolev functions and functions of bounded variation are a.e. approximately differentiable.
- Federer's change of variables theorem: $J_{a}f := \det D_{a}f$

(Federer) Let Ω be an open set in \mathbb{R}^n and $f: \Omega \to \mathbb{R}^n$ be an a.e. approximately differentiable homeomorphism, which satisfies the Lusin condition (N). Then for any measurable function $\varphi : \mathbb{R}^n \to \mathbb{R}$, we have $\int_{\Omega} (\varphi \circ f)(x) |J_a f(x)| \, dx = \int_{\theta(\Omega)} \varphi(y) \, dy.$

- A.e. approximately differentiable mappings: limits of C^1 -mappings in the Lusin metric $d_L(f,g) = |\{x : f(x) \neq g(x)\}|$
- Used for regularity results in Heisenberg groups (Capolli, Pinamonti, Speight).

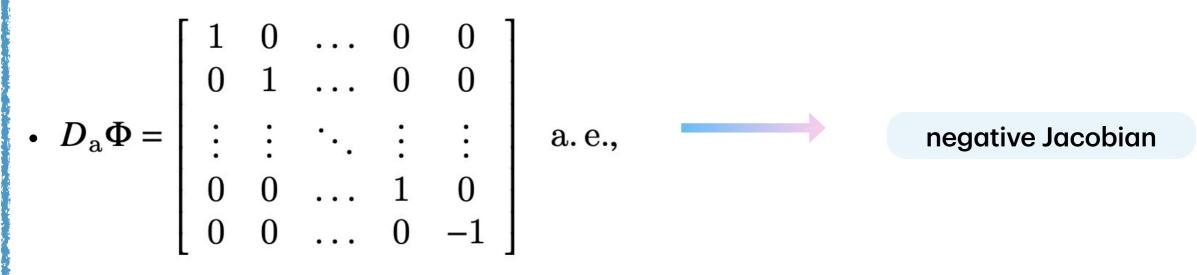


Theorem 1. (Goldstein, Hajłasz; ARMA 2017) There is an a.e. approximately differentiable homeomorphism $\Phi : [0,1]^n \to [0,1]^n$, such that

- $\Phi = id$ on $\partial [0,1]^n$, orientation-preserving
- $D_{\rm a}\Phi = \begin{bmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & \dots & 0 & -1 \end{bmatrix}$ a.e., negative Jacobian
 - Φ satisfies the Lusin condition (N).
 - Φ is a uniform limit of measure-preserving C^∞ -diffeomorphisms.

Theorem 1. (Goldstein, Hajłasz; ARMA 2017) There is an a.e. approximately differentiable homeomorphism $\Phi : [0,1]^n \to [0,1]^n$, such that

• $\Phi = id$ on $\partial [0,1]^n$, orientation-preserving



- Φ satisfies the Lusin condition (N).
- Φ is a uniform limit of measure-preserving C^∞ -diffeomorphisms.

Hajłasz's question: does there exist a $W^{1,p}(\Omega, \mathbb{R}^n)$ -homeomorphism which preserves orientation and whose Jacobian changes sign?

Depends on *p* and *n*! Answers centered around S. Hencl (Charles University, Prague). Not yet fully answered.

Theorem 1. (Goldstein, Hajłasz; ARMA 2017) There is an a.e. approximately differentiable homeomorphism $\Phi : [0,1]^n \to [0,1]^n$, such that

orientation-preserving

- $\Phi = id$ on $\partial [0,1]^n$,
- $D_{\rm a}\Phi = \begin{bmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & \dots & 0 & -1 \end{bmatrix}$ a.e., negative Jacobian
- Φ satisfies the Lusin condition (N).
- Φ is a uniform limit of measure-preserving C^∞ -diffeomorphisms.

Conjecture: it is possible to prescribe more general derivatives than the reflection matrix

Theorem 2. (**P. Goldstein, Z.G., P. Hajłasz; AiM 2025)** Let $Q = [0,1]^n$. For any measurable map $T : Q \to GL(n)$ that satisfies

 $\int_{Q} |\det T(x)| \, dx = 1,$

Necessary because of Federer's Change of variables

there exists an a.e. approximately differentiable homeomorphism $\Phi: Q \to Q$ s. t. $\Phi|_{\partial O} = \operatorname{id} \operatorname{and} D_a \Phi = T$ a.e.

Theorem 2. (P. Goldstein, Z.G., P. Hajłasz; AiM 2025) Let $Q = [0,1]^n$. For any measurable map $T: Q \to GL(n)$ that satisfies $\int_Q |\det T(x)| \, dx = 1, \qquad \text{Necessary because of Federer's Change of variables}$ there exists an a.e. approximately differentiable homeomorphism $\Phi: Q \to Q$ s. t. $\Phi|_{\partial O} = \text{id and } D_a \Phi = T$ a.e.

- Basically any sensible mapping can be the approximate derivative of an a.e. approximately differentiable homeomorphism.
- But: assumption T(x) ∈ GL(n) implies that det T(x) ≠ 0. This is not necessary, there are even Sobolev homeomorphisms with zero Jacobian a.e. (S. Hencl 2011).
- Is it more difficult to prescribe general T instead of a reflection matrix?

Theorem 2. (**P. Goldstein, Z.G., P. Hajłasz; AiM 2025)** Let $Q = [0,1]^n$. For any measurable map $T : Q \to GL(n)$ that satisfies

$$\int_{Q} |\det T(x)| \, dx = 1,$$

Necessary because of Federer's Change of variables

there exists an a.e. approximately differentiable homeomorphism $\Phi: Q \to Q$ s. t. $\Phi|_{\partial O} = \operatorname{id} \operatorname{and} D_a \Phi = T$ a.e.

Moreover,

- Φ^{-1} is approximately differentiable a.e. and $D_a\Phi^{-1} = T^{-1}(\Phi^{-1}(y))$ for almost all $y \in Q$;
- Φ preserves sets of measure zero, i.e., for any $A \subset Q$,

$$|A| = 0$$
 if and only if $|\Phi(A)| = 0$;

• Φ is a limit of C^{∞} -diffeomorphisms $\Phi_k : Q \twoheadrightarrow Q$ in the uniform metric, i.e., $||\Phi - \Phi_k||_{\infty} + ||\Phi^{-1} - \Phi_k^{-1}||_{\infty} \to 0$ as $k \to 0$.

The moral: uniform limits of diffeomorphisms can be horrible.

Diffeomorphisms with prescribed derivative

Theorem 3. (P.G., Z.G., P.H.) Suppose that

- $\Omega \subset \mathbb{R}^n$ is a bounded domain;
- $F: \Omega \to \mathbb{R}^n$ is an orientation preserving diffeomorphism onto the bounded image $F(\Omega)$;
- $T: \Omega \to GL(n)^+$ is a measurable mapping s.t.

 $\int_{\Omega} \det T(x) \, dx \le |F(\Omega)|.$

Then for any $\varepsilon > 0$, there exists a diffeomorphism $\Phi : \Omega \to F(\Omega)$

- with $\Phi = F$ near $\partial \Omega$
- and a compact set $K \subset \Omega$ s.t.
 - $D\Phi = T \text{ on } K \text{ and } |\Omega \setminus K| < \varepsilon.$

Necessary because of Change of variables

Idea of the proof of Theorem 3

A constructive proof: a lot of different tools

Alberti's theorem (1991) about Lusin type theorem for gradients

Dacorogna-Moser theory of mappings with prescribed Jacobian

Many explicit constructions of diffeomorphisms

Sketch of the proof of Theorem 2

Theorem 2. (P. Goldstein, Z.G., P. Hajłasz; AiM 2025) Let $Q = [0,1]^n$. For any measurable map $T : Q \rightarrow GL(n)$ that satisfies

$$\int_{2} |\det T(x)| \, dx = 1$$

there exists an a.e. approximately differentiable homeomorphism $\Phi: Q \to Q$ s. t. $\Phi|_{\partial Q} = \mathrm{id}$ and $D_{\mathrm{a}} \Phi = T$ a.e.

Step 1

• Reduction to the case det T > 0.

- Smart use of the a.e. approximately differentiable homeomorphism with $J_{\rm a} \Phi = -1$ (Theorem 1).

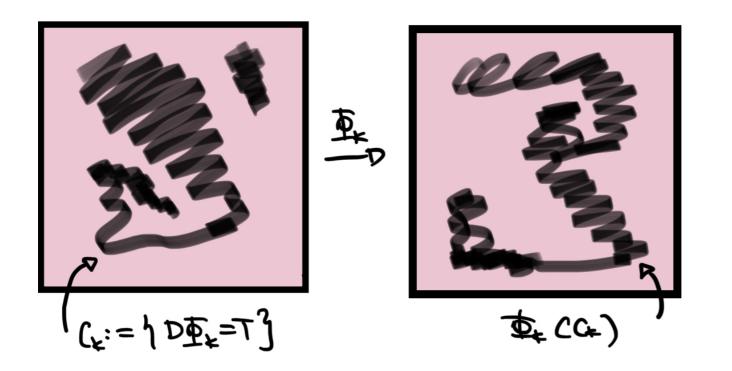
Step 2

- Prescribing the derivative of a diffeomorphism by Theorem 3.
- Why not just use Theorem 3?
- A naive iteration does not guarantee injectivity in the limit...

Sketch of the proof of Theorem 2

Step 2

- Prescribing the derivative of a diffeomorphism by Theorem 3.
- Why not just use Theorem 3? We get a sequence of diffeomorphisms $\Phi_k...$
- A naive iteration does not guarantee injectivity in the limit...



$$\det T(x) \, dx = |\Phi_k(Q \setminus C_k)|$$

Applying Theorem 3 to $Q \setminus C_k$ means moving around points within the entire cube!

• So: difficult iteration scheme to ensure that the approximating sequence of diffeomorphisms converges uniformly.

Iteration scheme

- Aim: prescribe the derivative at small scales
- We need the volume constraint to hold at small scales
- We construct a sequence of diffeomorphisms $\Phi_k:Q\to Q$ and of partitions $\mathscr{P}_k=\{P_{ki}\}_i$ of Q such that
 - $D\Phi_k = T$ on a large part of Q,
 - diam (P_{ki}) is small,

•
$$\int_{P_{ki}} \det T(x) \, dx = |\Phi_k(P_{ki})|.$$

Iteration scheme

- Aim: prescribe the derivative at small scales
- We need the volume constraint to hold at small scales
- We construct a sequence of diffeomorphisms $\Phi_k:Q\to Q$ and of partitions $\mathscr{P}_k=\{P_{ki}\}_i$ of Q such that
 - $D\Phi_k = T$ on a large part of Q,
 - diam (P_{ki}) is small,

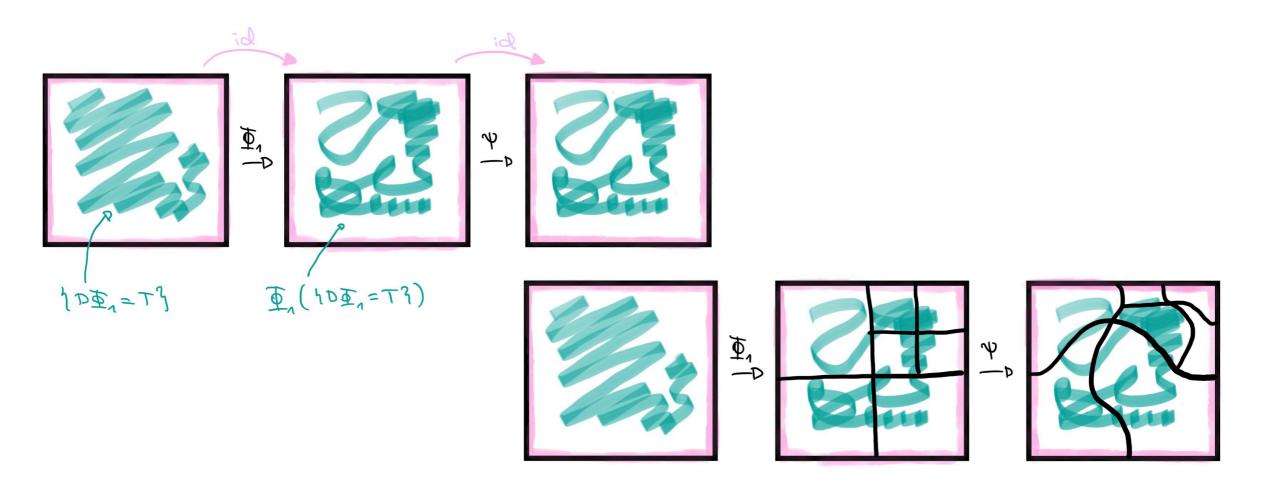
•
$$\int_{P_{ki}} \det T(x) \, dx = |\Phi_k(P_{ki})|.$$

- Φ_1 directly from Theorem 3:
 - $\Phi_1 = \operatorname{id} \operatorname{near} \partial Q$,
 - $D\Phi_1 = T$ on a compact set E_1 ,
 - the partition: the entire Q.

Construction of Φ_2 : part 1

Correct the way in which Φ_1 distributes the measure (pprox correct its Jacobian)

- We find $\widetilde{\Phi}_2 := \Psi \circ \Phi_1$ and the partition $\mathscr{P}_2 = \{P_{2i}\}_{i'}$
- $\widetilde{\Phi}_2 = \Phi_1 \text{ near } \partial Q$ and near a *large* part of the set $\{D\Phi_1 = T\}$, • $\int_{P_{2i}} \det T(x) \, dx = |\widetilde{\Phi}_2(P_{2i})|$.



$\operatorname{Idea}\operatorname{behind}\Psi$

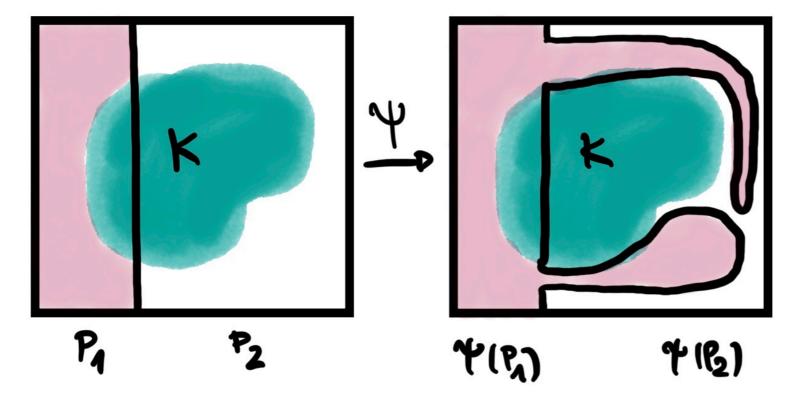
Let $f: Q \to [0,\infty)$ s.t. • $\int_Q f(x) \, dx = |Q|$,

- K compact subset of Q,
- f = 1 a.e. on K,
- $Q = P_1 \cup P_2$.

Then there is a diffeomorphism $\Psi: Q \to Q$ s.t.

• $\Psi = id$ near ∂Q and near a large part of K

•
$$\int_{P_i} f = |\Psi(P_i)|$$
 for $i = 1, 2$.



Inspired by the Homeomorphic measures theorem of Oxtoby and Ulam (1944)

$$\mu(E) = |h(E)|$$

Construction of $\Phi_2: \text{part 2}$

Reminder of part 1:

Correct the way in which Φ_1 distributes the measure (pprox correct its Jacobian)

- We find $\widetilde{\Phi}_2 := \Psi \circ \Phi_1$ and the partition $\mathscr{P}_2 = \{P_{2i}\}_{i'}$
- $\widetilde{\Phi}_2 = \Phi_1 \text{ near } \partial Q$ and near a *large* part of the set $\{D\Phi_1 = T\}$, • $\int_{P_{2i}} \det T(x) \, dx = |\widetilde{\Phi}(P_{2i})|.$

Part 2: Correct the derivative of $\widetilde{\Phi}_2$ inside each P_{2i} using Theorem 3.

This yields Φ_2 s.t. $D\Phi_2 = T$ on a larger set.

The end of the sketch of the proof

Topology helps

Topology helps

A very important corollary from Brouwer's Invariance of Domain theorem

Given two bounded domains Ω, Ω' in \mathbb{R}^n and a homeomorphism $f: \overline{\Omega} \to \overline{\Omega'}$, we have

 $f(\partial \Omega) = \partial \Omega'$ and $f(\Omega) = \Omega'$.

Homeomorphisms map boundaries to boundaries and interiors to interiors!

What is the use of Theorem 2?

- Gives little hope for the use of a.e. approximately differentiable mappings in nonlinear elasticity.
- Makes you appreciate *positive* results more.
- Could be useful in other constructions.
- Gives rise to further questions, for example:

What is the use of Theorem 2?

- Gives little hope for the use of a.e. approximately differentiable mappings in nonlinear elasticity.
- Makes you appreciate positive results more.
- Could be useful in other constructions.
- Gives rise to further questions, for example:

Question. Let $Q = [0,1]^n$ and $T : Q \to GL(n)^+$ be measurable with $\int_Q \det T(x) \, dx = 1$. Does there exist a homeomorphism $\Phi : Q \to Q, \Phi|_{\partial Q} = \mathrm{id}$ which is **differentiable** a.e. on Q with $D\Phi = T$ a.e.? Thank you!