Uniformization of metric surfaces

Damaris Meier University of Firbourg

Friday 17th January, 2025

Geometric structures and infinite-dimensional manifolds - ESI Vienna

Uniformization problem: Find conditions on a metric space X homeomorphic to a model space M such that there exists a mapping

 $u\colon M\to X$

with good geometric and analytic properties.

Uniformization problem: Find conditions on a metric space X homeomorphic to a model space M such that there exists a mapping

 $u\colon M\to X$

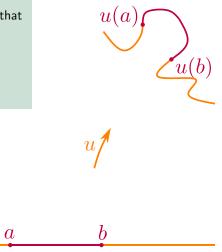
with good geometric and analytic properties.

Dimension 1:

- Every locally rectifiable curve admits a parametrization by arclength.
 - \circ *u* is 1-Lipschitz, i.e.

$$d(u(a), u(b)) \leq L \cdot |a - b|$$

for L = 1.



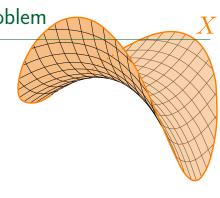
Uniformization problem: Find conditions on a metric space X homeomorphic to a model space M such that there exists a mapping

 $u\colon M\to X$

with good geometric and analytic properties.

Dimension 2:

► Classical uniformization theorem: Every simply connected Riemann surface X is conformally equivalent to the open unit disc D, the complex plane C, or the Riemann sphere S².



Uniformization problem: Find conditions on a metric space X homeomorphic to a model space M such that there exists a mapping

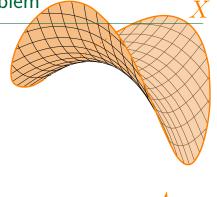
 $u\colon M\to X$

with good geometric and analytic properties.

Dimension 2:

- ► Classical uniformization theorem: Every simply connected Riemann surface X is conformally equivalent to the open unit disc D, the complex plane C, or the Riemann sphere S².
 - $\circ~$ Conformal map is locally bi-Lipschitz, i.e. $\exists L\geq 1~{\rm s.th.}$

$$L^{-1}\cdot |a-b| \leq d(u(a),u(b)) \leq L\cdot |a-b|.$$



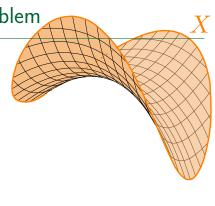
Uniformization problem: Find conditions on a metric space X homeomorphic to a model space M such that there exists a mapping

 $u\colon M\to X$

with good geometric and analytic properties.

Dimension 2:

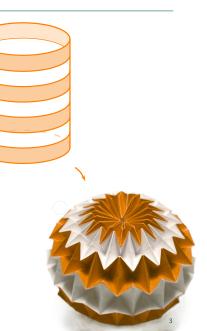
- ► Classical uniformization theorem: Every simply connected Riemann surface X is conformally equivalent to the open unit disc D, the complex plane C, or the Riemann sphere S².
 - Conformal map is locally bi-Lipschitz.
 - Maps infinitesimal balls to balls.



Metric surfaces

Definition: A metric space X is a <u>metric surface</u> if X is homeomorphic to a 2-dimensional manifold M.

- Non-smooth metric surfaces appear naturally as
 - $\circ~$ deformations of smooth surfaces,
 - o limits of sequences of Riemannian surfaces,
 - boundaries of Gromov hyperbolic groups.



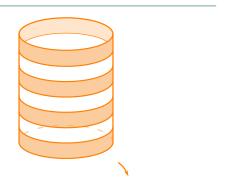
Metric surfaces

Definition: A metric space X is a <u>metric surface</u> if X is homeomorphic to a 2-dimensional manifold M.

Non-smooth metric surfaces appear naturally as

- $\circ~$ deformations of smooth surfaces,
- o limits of sequences of Riemannian surfaces,
- boundaries of Gromov hyperbolic groups.

Goal: Find conditions on X such that there exists a parametrization $u: M \to X$ satisfying certain properties.



Uniformization of metric surfaces

Uniformization of metric surfaces

Let X be a metric surface homeomorphic to a Riemannian surface M.

Question: What type of parametrization $u: M \to X$ can we expect?

▶ If $u: M \to X$ is *Lipschitz*, then

 $\ell(u \circ \gamma) \leq L \cdot \ell(\gamma)$ for every curve γ in M.

 \Rightarrow Every pair of points in X can be joined by a curve of finite length.

U

Uniformization of metric surfaces

Let X be a metric surface homeomorphic to a Riemannian surface M.

Question: What type of parametrization $u: M \to X$ can we expect?

▶ If $u: M \to X$ is *Lipschitz*, then

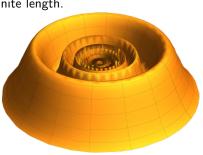
 $\ell(u \circ \gamma) \leq L \cdot \ell(\gamma)$ for every curve γ in M.

 \Rightarrow Every pair of points in X can be joined by a curve of finite length.

Example: Surface of revolution X

- Possesses finite Hausdorff 2-measure,
- Smooth except for 0,
- Every curve passing through 0 has infinite length.

 \Rightarrow X does not possess a Lipschitz parametrization $u: D \rightarrow X$.

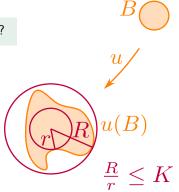


Uniformization of non-smooth metric surfaces

Let X be a metric surface homeomorphic to a Riemannian surface M.

Question: What type of parametrization $u: M \to X$ can we expect?

Quasisymmetric uniformization: A homeomorphism
 u: *M* → *X* is *quasisymmetric* if it distorts shapes of
 sets in a controlled manner on all scales.

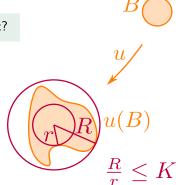


Uniformization of non-smooth metric surfaces

Let X be a metric surface homeomorphic to a Riemannian surface M.

Question: What type of parametrization $u: M \to X$ can we expect?

- Quasisymmetric uniformization: A homeomorphism
 u: *M* → *X* is *quasisymmetric* if it distorts shapes of
 sets in a controlled manner on all scales.
- 2. Quasiconformal uniformization: A homeomorphism $u: M \to X$ is *quasiconformal* if it distorts shapes of sets in a controlled manner on infinitesimal scales.

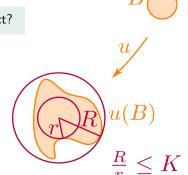


Uniformization of non-smooth metric surfaces

Let X be a metric surface homeomorphic to a Riemannian surface M.

Question: What type of parametrization $u: M \to X$ can we expect?

- Quasisymmetric uniformization: A homeomorphism
 u: *M* → *X* is *quasisymmetric* if it distorts shapes of
 sets in a controlled manner on all scales.
- 2. Quasiconformal uniformization: A homeomorphism $u: M \to X$ is *quasiconformal* if it distorts shapes of sets in a controlled manner on infinitesimal scales.



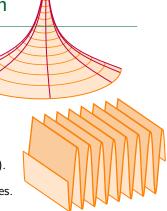
Weakly quasiconformal uniformization: An almost homeomorphism
 u: *M* → *X* is *weakly quasiconformal* if it distorts shapes of sets in a
 controlled manner on infinitesimal scales.

Theorem [Bonk–Kleiner 2002]: Let $X \approx S^2$ be an <u>Ahlfors</u> <u>2-regular</u> metric surface. There exists a quasisymmetric map $u: S^2 \rightarrow X$ if and only if X is *linearly locally contractible*.

Ahlfors 2-regularity: $\mathcal{H}^2(B(x, r))$ is comparable to r^2 .

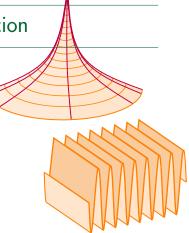
Linear local contractibility (LLC): B(x, r) is contractible in $B(x, \lambda r)$.

 \Rightarrow Prevent surface from having cusps, thin bottlenecks, dense wrinkles.



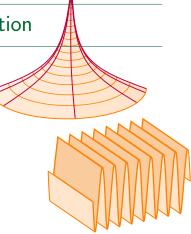
Theorem [Bonk–Kleiner 2002]: Let $X \approx S^2$ be an <u>Ahlfors</u> <u>2-regular</u> metric surface. There exists a quasisymmetric map $u: S^2 \rightarrow X$ if and only if X is *linearly locally contractible*.

 Theorem does not generalize to higher dimensions (Semmes, Heinonen-Wu, Pankka-Wu).



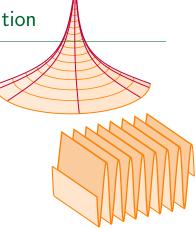
Theorem [Bonk–Kleiner 2002]: Let $X \approx S^2$ be an <u>Ahlfors</u> <u>2-regular</u> metric surface. There exists a quasisymmetric map $u: S^2 \rightarrow X$ if and only if X is *linearly locally contractible*.

- Theorem does not generalize to higher dimensions (Semmes, Heinonen-Wu, Pankka-Wu).
- Ahlfors 2-regularity is not a quasisymmetric invariant.
 - \circ id: $S^2 \to (S^2, d^{\alpha}_{S^2})$ for $\alpha \in (0, 1)$ is quasisymmetry.



Theorem [Bonk–Kleiner 2002]: Let $X \approx S^2$ be an <u>Ahlfors</u> <u>2-regular</u> metric surface. There exists a quasisymmetric map $u: S^2 \rightarrow X$ if and only if X is *linearly locally contractible*.

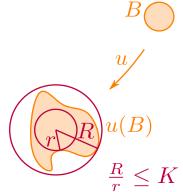
- Theorem does not generalize to higher dimensions (Semmes, Heinonen-Wu, Pankka-Wu).
- Ahlfors 2-regularity is not a quasisymmetric invariant.
 - id: $S^2 \rightarrow (S^2, d_{S^2}^{\alpha})$ for $\alpha \in (0, 1)$ is quasisymmetry.
- Same statement without Ahlfors 2-regularity would solve:



Cannon's conjecture: Let G be a Gromov hyperbolic group whose boundary at infinity $\partial_{\infty}G$ is homeomorphic to S^2 . Then G is a Kleinian group, i.e. G admits an isometric, properly discontinuous, and cocompact action on \mathbb{H}^3 .

Let X, Y be metric surfaces.

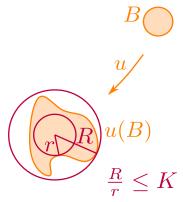
A homeomorphism u: X → Y is quasiconformal if it distorts shapes of sets in a controlled manner on infinitesimal scales.



Let X, Y be metric surfaces.

A homeomorphism u: X → Y is quasiconformal if it distorts shapes of sets in a controlled manner on infinitesimal scales.

► A homeomorphism u: X → Y is geometrically quasiconformal if it distorts families of curves in a controlled manner.

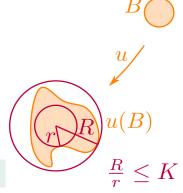


Let X, Y be metric surfaces.

► A homeomorphism u: X → Y is quasiconformal if it distorts shapes of sets in a controlled manner on infinitesimal scales.

► A homeomorphism u: X → Y is geometrically quasiconformal if it distorts families of curves in a controlled manner.

Question: How can we measure "largeness" of families of curves?



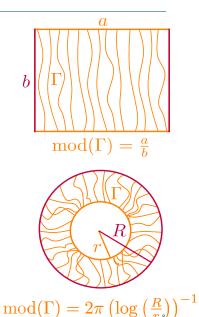
Let X, Y be metric surfaces and Γ a family of curves in X.

The (conformal) modulus of Γ is

$$\operatorname{mod}(\Gamma) := \inf \int_X \rho^2 \, d\mathcal{H}^2,$$

where the infimum is taken over all Borel functions $\rho\colon X\to [0,\infty]$ with

 $\int_{\gamma} \rho \geq 1 \quad \text{for every locally rectifiable } \gamma \in \mathsf{\Gamma}.$



Let X, Y be metric surfaces and Γ a family of curves in X.

► The (conformal) modulus of Γ is

$$\operatorname{mod}(\Gamma) := \inf \int_X \rho^2 \, d\mathcal{H}^2,$$

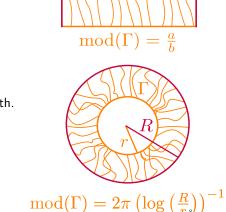
where the infimum is taken over all Borel functions $\rho\colon X\to [0,\infty]$ with

 $\int_{\gamma} \rho \geq 1 \quad \text{for every locally rectifiable } \gamma \in \mathsf{\Gamma}.$

• $u: X \to Y$ is geometrically quasiconformal if $\exists K \ge 1$ s.th.

 $K^{-1} \operatorname{mod}(\Gamma) \leq \operatorname{mod}(u \circ \Gamma) \leq K \operatorname{mod}(\Gamma)$

for every family Γ of curves in X.

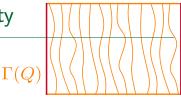


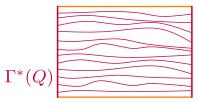
a

Modulus in the plane:

(1) If $Q \subset \mathbb{R}^2$ is a quadrilateral, then

$$\operatorname{mod}(\Gamma(Q)) \cdot \operatorname{mod}(\Gamma^*(Q)) = \frac{a}{b} \cdot \frac{b}{a} = 1.$$





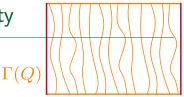
Modulus in the plane:

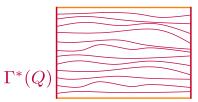
 $(1)~~{\rm If}~Q\subset \mathbb{R}^2$ is a quadrilateral, then

$$\operatorname{mod}(\Gamma(Q)) \cdot \operatorname{mod}(\Gamma^*(Q)) = \frac{a}{b} \cdot \frac{b}{a} = 1.$$

(2) If $x \in \mathbb{R}^2$ and $0 < r < R < \infty$, then

$$\lim_{r\to 0} \operatorname{mod}(\Gamma_r(x,R)) = \lim_{r\to 0} 2\pi \left(\log\left(\frac{R}{r}\right) \right)^{-1} = 0.$$





q

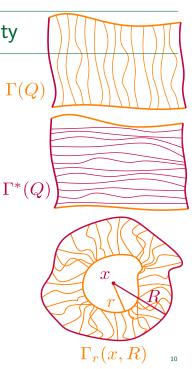
If $u\colon U\subset \mathbb{R}^2 o X$ is geometrically quasiconformal, then

(1) For every quadrilateral $Q \subset X$

$$\kappa^{-1} \leq \operatorname{mod}(\Gamma(Q)) \cdot \operatorname{mod}(\Gamma^*(Q)) \leq \kappa.$$

(2) For every $x \in \mathbb{R}^2$ and $0 < r < R < \infty$

$$\lim_{r\to 0} \operatorname{mod}(\Gamma_r(x,R)) = 0.$$



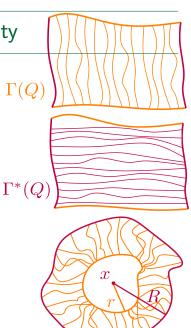
If $u: U \subset \mathbb{R}^2 \to X$ is geometrically quasiconformal, then (1) For every quadrilateral $Q \subset X$

 $\kappa^{-1} \leq \operatorname{mod}(\Gamma(Q)) \cdot \operatorname{mod}(\Gamma^*(Q)) \leq \kappa.$

(2) For every $x \in \mathbb{R}^2$ and $0 < r < R < \infty$

 $\lim_{r\to 0} \operatorname{mod}(\Gamma_r(x,R)) = 0.$

For example: \mathbb{R}^2 and Ahlfors 2-regular metric spaces.



 $\Gamma_r(x, R)$

If $u \colon U \subset \mathbb{R}^2 \to X$ is geometrically quasiconformal, then

(1) For every quadrilateral $Q \subset X$

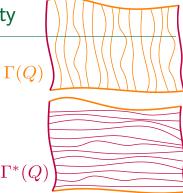
$$\kappa^{-1} \leq \operatorname{mod}(\Gamma(Q)) \cdot \operatorname{mod}(\Gamma^*(Q)) \leq \kappa.$$

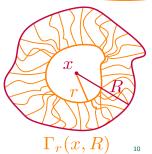
(2) For every
$$x \in \mathbb{R}^2$$
 and $0 < r < R < \infty$

$$\lim_{r\to 0} \mathrm{mod}(\Gamma_r(x,R)) = 0.$$

For example: \mathbb{R}^2 and Ahlfors 2-regular metric spaces.

Theorem [Rajala 2017]: Let $X \approx \mathbb{R}^2$ be a metric surface of locally finite \mathcal{H}^2 . There exists a (geometrically) quasisconformal map from a domain $U \subset \mathbb{R}^2$ onto X if and only if X satisfies (1) and (2).





Damaris Meier

Definition: A metric surface X is *reciprocal* if X satisfies

(1) For every quadrilateral $\mathcal{Q} \subset \mathcal{X}$

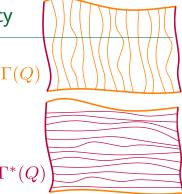
$$\kappa^{-1} \leq \operatorname{mod}(\Gamma(Q)) \cdot \operatorname{mod}(\Gamma^*(Q)) \leq \kappa.$$

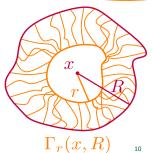
(2) For every
$$x \in \mathbb{R}^2$$
 and $0 < r < R < \infty$

$$\lim_{r\to 0} \operatorname{mod}(\Gamma_r(x,R)) = 0.$$

For example: \mathbb{R}^2 and Ahlfors 2-regular metric spaces.

Theorem [Rajala 2017]: Let $X \approx \mathbb{R}^2$ be a metric surface of locally finite \mathcal{H}^2 . There exists a (geometrically) quasisconformal map from a domain $U \subset \mathbb{R}^2$ onto X if and only if X is *reciprocal*.



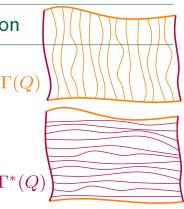


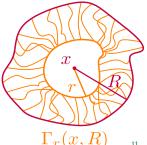
Damaris Meier

Let $X \approx \mathbb{R}^2$ be a metric surface of locally finite \mathcal{H}^2 .

Theorem [Rajala 2017]: There exists a (geometrically) quasisconformal map from a domain $U \subset \mathbb{R}^2$ onto X if and only if X is *reciprocal*.

➤ X Ahlfors 2-regular and LLC: Quasiconformal maps are quasisymmetric ⇒ recover Theorem of Bonk–Kleiner.

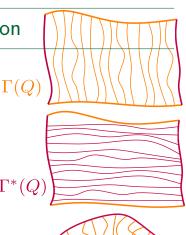


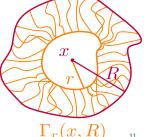


Let $X \approx \mathbb{R}^2$ be a metric surface of locally finite \mathcal{H}^2 .

Theorem [Rajala 2017]: There exists a (geometrically) quasisconformal map from a domain $U \subset \mathbb{R}^2$ onto X if and only if X is *reciprocal*.

- ➤ X Ahlfors 2-regular and LLC: Quasiconformal maps are quasisymmetric ⇒ recover Theorem of Bonk–Kleiner.
- Lower bound in (1) always holds for κ⁻¹ = (π/4)² (Rajala–Romney, Eriksson-Bique–Poggi-Corradini).

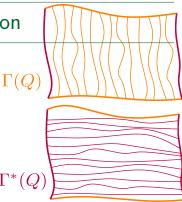


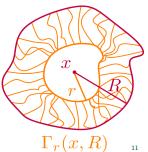


Let $X \approx \mathbb{R}^2$ be a metric surface of locally finite \mathcal{H}^2 .

Theorem [Rajala 2017]: There exists a (geometrically) quasisconformal map from a domain $U \subset \mathbb{R}^2$ onto X if and only if X is *reciprocal*.

- ➤ X Ahlfors 2-regular and LLC: Quasiconformal maps are quasisymmetric ⇒ recover Theorem of Bonk–Kleiner.
- Lower bound in (1) always holds for κ⁻¹ = (π/4)² (Rajala–Romney, Eriksson-Bique–Poggi-Corradini).
- Upper bound in (1) implies reciprocality, whereas condition (2) does not imply reciprocality (Ntalampekos–Romney).





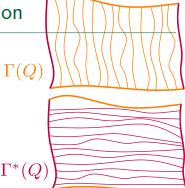
Let $X \approx \mathbb{R}^2$ be a metric surface of locally finite \mathcal{H}^2 .

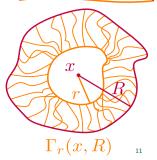
Theorem [Rajala 2017]: There exists a (geometrically) quasisconformal map from a domain $U \subset \mathbb{R}^2$ onto X if and only if X is *reciprocal*.

Definition: A metric surface X is *reciprocal* if $\exists \kappa \ge 1$ such that for every quadrilateral $Q \subset X$

 $\operatorname{mod}(\Gamma(Q)) \cdot \operatorname{mod}(\Gamma^*(Q)) \leq \kappa.$

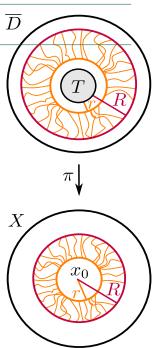
- In general, reciprocality condition is difficult to verify.
- There exist plenty of metric surfaces that are not reciprocal.





Example: Let $T := \overline{B}(0, \varepsilon)$ for $0 < \varepsilon < 1$ and $X := \overline{D}/T$.

The natural projection π: D→ X is local isometry on D \ T and maps T to the point x₀ := π(T).

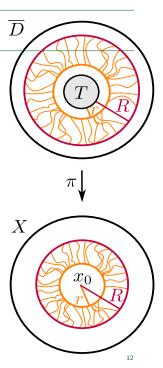


Example: Let $T := \overline{B}(0, \varepsilon)$ for $0 < \varepsilon < 1$ and $X := \overline{D}/T$.

The natural projection π: D→ X is local isometry on D \ T and maps T to the point x₀ := π(T).

► We compute

$$\begin{split} \lim_{r \to 0} \operatorname{mod}_X(\Gamma_r(x_0, R)) &= \lim_{r \to 0} \operatorname{mod}_{\mathbb{R}^2}\left(\Gamma_{r+\varepsilon}\left(0, R+\varepsilon\right)\right) \\ &= \lim_{r \to 0} 2\pi \left(\log\left(\frac{R+\varepsilon}{r+\varepsilon}\right)\right)^{-1} > 0. \end{split}$$



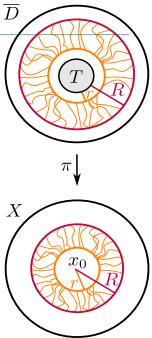
Example: Let $T := \overline{B}(0, \varepsilon)$ for $0 < \varepsilon < 1$ and $X := \overline{D}/T$.

The natural projection π: D → X is local isometry on D \ T and maps T to the point x₀ := π(T).

► We compute

$$\begin{split} \lim_{r \to 0} \operatorname{mod}_{X}(\Gamma_{r}(x_{0}, R)) &= \lim_{r \to 0} \operatorname{mod}_{\mathbb{R}^{2}}\left(\Gamma_{r+\varepsilon}\left(0, R+\varepsilon\right)\right) \\ &= \lim_{r \to 0} 2\pi \left(\log\left(\frac{R+\varepsilon}{r+\varepsilon}\right)\right)^{-1} > 0. \end{split}$$

⇒ Non-existence of geometrically quasiconformal parametrization!



Example: Let $T := \overline{B}(0, \varepsilon)$ for $0 < \varepsilon < 1$ and $X := \overline{D}/T$.

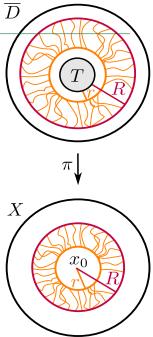
The natural projection π: D → X is local isometry on D \ T and maps T to the point x₀ := π(T).

We compute

$$\begin{split} \lim_{r \to 0} \operatorname{mod}_{X}(\Gamma_{r}(x_{0}, R)) &= \lim_{r \to 0} \operatorname{mod}_{\mathbb{R}^{2}}\left(\Gamma_{r+\varepsilon}\left(0, R+\varepsilon\right)\right) \\ &= \lim_{r \to 0} 2\pi \left(\log\left(\frac{R+\varepsilon}{r+\varepsilon}\right)\right)^{-1} > 0. \end{split}$$

⇒ Non-existence of geometrically quasiconformal parametrization!

Question: Can we construct a good parametrization of a general metric surface *X*?



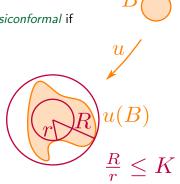
Let $X \approx M$ be a compact metric surface of finite \mathcal{H}^2 .

Definition: A continuous, surjective map $u: M \to X$ is weakly quasiconformal if

• u is a uniform limit of homeomorphisms $M \to X$, and

• there exists $K \ge 1$ s.th. for every family Γ of curves in M

 $mod(\Gamma) \leq K \cdot mod(u \circ \Gamma).$



Let $X \approx M$ be a compact metric surface of finite \mathcal{H}^2 .

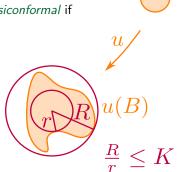
Definition: A continuous, surjective map $u: M \to X$ is weakly quasiconformal if

• *u* is a uniform limit of homeomorphisms $M \rightarrow X$, and

• there exists $K \ge 1$ s.th. for every family Γ of curves in M

 $mod(\Gamma) \leq K \cdot mod(u \circ \Gamma).$

Question (Rajala–Wenger): Can X always be parametrized by a *weakly quasiconformal map* $u: M \rightarrow X$?



Let $X \approx M$ be a compact metric surface of finite \mathcal{H}^2 .

Definition: A continuous, surjective map $u: M \to X$ is weakly quasiconformal if

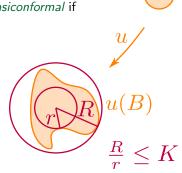
• *u* is a uniform limit of homeomorphisms $M \rightarrow X$, and

• there exists $K \ge 1$ s.th. for every family Γ of curves in M

 $mod(\Gamma) \leq K \cdot mod(u \circ \Gamma).$

Question (Rajala–Wenger): Can X always be parametrized by a *weakly quasiconformal map* $u: M \rightarrow X$?

YES if X is locally geodesic (M.–Wenger, Ntalampekos–Romney, M.).



Let $X \approx M$ be a compact metric surface of finite \mathcal{H}^2 .

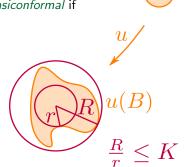
Definition: A continuous, surjective map $u: M \to X$ is weakly quasiconformal if

• *u* is a uniform limit of homeomorphisms $M \rightarrow X$, and

• there exists $K \ge 1$ s.th. for every family Γ of curves in M

 $mod(\Gamma) \leq K \cdot mod(u \circ \Gamma).$

Question (Rajala–Wenger): Can X always be parametrized by a *weakly quasiconformal map* $u: M \rightarrow X$?



YES if X is locally geodesic (M.–Wenger, Ntalampekos–Romney, M.).

YES always (Ntalampekos–Romney).

Let $X \approx M$ be a compact metric surface of finite \mathcal{H}^2 .

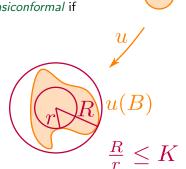
Definition: A continuous, surjective map $u: M \to X$ is weakly quasiconformal if

 \blacktriangleright *u* is a uniform limit of homeomorphisms $M \rightarrow X$, and

• there exists $K \ge 1$ s.th. for every family Γ of curves in M

 $mod(\Gamma) < K \cdot mod(u \circ \Gamma).$

Question (Rajala–Wenger): Can X always be parametrized by a weakly quasiconformal map $u: M \to X$?

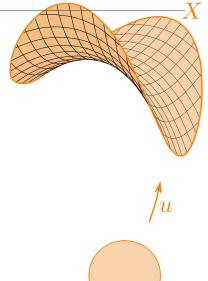


YES if X is locally geodesic (M.–Wenger, Ntalampekos–Romney, M.).

YES always (Ntalampekos–Romney).

 \blacktriangleright X reciprocal: u is guasiconformal homeomorphism. \Rightarrow Recover Theorem of Rajala. Damaris Meier

Theorem: Let X be a locally geodesic metric surface homeomorphic to \overline{D} . If $\mathcal{H}^2(X) < \infty$ and $\ell(\partial X) < \infty$, then there exists a weakly quasiconformal map $u: \overline{D} \to X$.

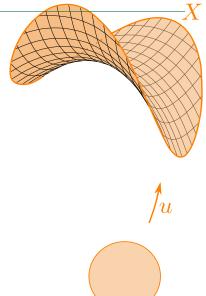


Theorem: Let X be a locally geodesic metric surface homeomorphic to \overline{D} . If $\mathcal{H}^2(X) < \infty$ and $\ell(\partial X) < \infty$, then there exists a weakly quasiconformal map $u: \overline{D} \to X$.

Strategy of proof (M.–Wenger):

<u>Idea:</u> Use solution of Plateau's problem to parametrize X.

<u>Plateau's problem</u>: Given a rectifiable Jordan curve γ in X. Find a surface having minimal area among all surfaces spanning γ .



Theorem: Let X be a locally geodesic metric surface homeomorphic to \overline{D} . If $\mathcal{H}^2(X) < \infty$ and $\ell(\partial X) < \infty$, then there exists a weakly quasiconformal map $u: \overline{D} \to X$.

Strategy of proof (M.–Wenger):

Idea: Use solution of Plateau's problem to parametrize X.

 $\Lambda(X) := \{ v \colon D \to X \text{ Sobolev: } \operatorname{tr}(v) \colon S^1 \to X \text{ almost parametrizes } \partial X \}$

Metric space valued Sobolev maps: A map $v \colon D \to X$ is Sobolev if

• postcomposition with distance function $d_x(\cdot) = d(\cdot, x)$ is in $W^{1,2}(D)$,

▶
$$\exists h \in L^2(D)$$
 s.th. $|\nabla(d_x \circ u)| \leq h$ a.e. on D .

<u>Reshetnyak energy</u>: $E_+^2(u) := \inf \left\{ \|h\|_{L^2(D)}^2 : h \text{ as above} \right\}.$

Theorem: Let X be a locally geodesic metric surface homeomorphic to \overline{D} . If $\mathcal{H}^2(X) < \infty$ and $\ell(\partial X) < \infty$, then there exists a weakly quasiconformal map $u: \overline{D} \to X$.

Strategy of proof (M.–Wenger):

Idea: Use solution of Plateau's problem to parametrize X.

- 1. Show that $\Lambda(X) \neq \emptyset$. \rightarrow highly non-trivial
 - X might contain a purely 2-unrectifiable part that is dense in X.
 - ▶ In general, \exists only few Lipschitz maps from open subsets of D to X.

Theorem: Let X be a locally geodesic metric surface homeomorphic to \overline{D} . If $\mathcal{H}^2(X) < \infty$ and $\ell(\partial X) < \infty$, then there exists a weakly quasiconformal map $u: \overline{D} \to X$.

Strategy of proof (M.–Wenger):

Idea: Use solution of Plateau's problem to parametrize X.

- 1. Show that $\Lambda(X) \neq \emptyset$. \rightarrow highly non-trivial
- 2. Existence of energy minimizer $u \in \Lambda(X)$.
 - Direct variational method.

Theorem: Let X be a locally geodesic metric surface homeomorphic to \overline{D} . If $\mathcal{H}^2(X) < \infty$ and $\ell(\partial X) < \infty$, then there exists a weakly quasiconformal map $u: \overline{D} \to X$.

Strategy of proof (M.–Wenger):

Idea: Use solution of Plateau's problem to parametrize X.

- 1. Show that $\Lambda(X) \neq \emptyset$. \rightarrow highly non-trivial
- 2. Existence of energy minimizer $u \in \Lambda(X)$.
- 3. Show that u has a continuous representative \bar{u} .

Theorem: Let X be a locally geodesic metric surface homeomorphic to \overline{D} . If $\mathcal{H}^2(X) < \infty$ and $\ell(\partial X) < \infty$, then there exists a weakly quasiconformal map $u: \overline{D} \to X$.

Strategy of proof (M.–Wenger):

Idea: Use solution of Plateau's problem to parametrize X.

- 1. Show that $\Lambda(X) \neq \emptyset$. \rightarrow highly non-trivial
- 2. Existence of energy minimizer $u \in \Lambda(X)$.
- 3. Show that u has a continuous representative \bar{u} .
- 4. \bar{u} is uniform limit of homeomorphisms.

Theorem: Let X be a locally geodesic metric surface homeomorphic to \overline{D} . If $\mathcal{H}^2(X) < \infty$ and $\ell(\partial X) < \infty$, then there exists a weakly quasiconformal map $u: \overline{D} \to X$.

Strategy of proof (M.–Wenger):

Idea: Use solution of Plateau's problem to parametrize X.

- 1. Show that $\Lambda(X) \neq \emptyset$. \rightarrow highly non-trivial
- 2. Existence of energy minimizer $u \in \Lambda(X)$.
- 3. Show that u has a continuous representative \bar{u} .
- 4. \bar{u} is uniform limit of homeomorphisms.
- 5. \bar{u} has desired distortion property.



Application: Lipschitz-volume rigidity

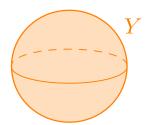
Question: Let $f: X \to Y$ be a 1-Lipschitz and surjective map between metric spaces that have the same volume. Is f an isometry?

Application: Lipschitz-volume rigidity

Question: Let $f: X \to Y$ be a 1-Lipschitz and surjective map between metric spaces that have the same volume. Is f an isometry?

Theorem (Folklore): YES, if X and Y are closed Riemannian *n*-manifolds.

▶ Proofs by (Burago–Ivanov) and (Besson–Courtois–Gallot).



Application: Lipschitz-volume rigidity

Question: Let $f: X \to Y$ be a 1-Lipschitz and surjective map between metric spaces that have the same volume. Is f an isometry?

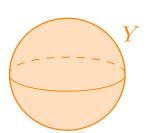
Theorem (Folklore): YES, if X and Y are closed Riemannian *n*-manifolds.

▶ Proofs by (Burago–Ivanov) and (Besson–Courtois–Gallot).

Theorem [M.–Ntalampekos 2024]: Let X be a closed metric surface and Y a closed Riemannian surface with $\mathcal{H}^2(X) = \mathcal{H}^2(Y)$. Then every 1-Lipschitz and surjective map $f: X \to Y$ is an isometry.

Proof highly depends on existence of weakly quasiconformal parametrization of X.

► Intermediate results depending on regularity of *Y*.



Damaris Meier

Outline

Uniformization problem Metric surfaces Uniformization of metric surfaces

Quasisymmetric uniformization

Quasiconformal uniformization

Geometric quasiconformality Quasiconformal uniformization Example

Weakly quasiconformal uniformization

Application: Lipschitz-volume rigidity