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Uniformization problem

Uniformization problem: Find conditions on a metric

space X homeomorphic to a model space M such that

there exists a mapping

u : M → X

with good geometric and analytic properties.
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Uniformization problem

Uniformization problem: Find conditions on a metric

space X homeomorphic to a model space M such that

there exists a mapping

u : M → X

with good geometric and analytic properties.

Dimension 1:

▶ Every locally rectifiable curve admits

a parametrization by arclength.

◦ u is 1-Lipschitz, i.e.

d(u(a), u(b)) ≤ L · |a− b|

for L = 1.
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Uniformization problem

Uniformization problem: Find conditions on a metric

space X homeomorphic to a model space M such that

there exists a mapping

u : M → X

with good geometric and analytic properties.

Dimension 2:

▶ Classical uniformization theorem: Every simply connected

Riemann surface X is conformally equivalent to the open unit

disc D, the complex plane C, or the Riemann sphere S2.

◦ Conformal map is locally bi-Lipschitz.

◦ Maps infinitesimal balls to balls.
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Metric surfaces

Definition: A metric space X is a metric surface if

X is homeomorphic to a 2-dimensional manifold M.

▶ Non-smooth metric surfaces appear naturally as

◦ deformations of smooth surfaces,

◦ limits of sequences of Riemannian surfaces,

◦ boundaries of Gromov hyperbolic groups.

Goal: Find conditions on X such that there exists a parametrization

u : M → X satisfying certain properties.
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Uniformization of metric surfaces

Let X be a metric surface homeomorphic to a Riemannian surface M.

Question: What type of parametrization u : M → X can we expect?

▶ If u : M → X is Lipschitz, then

ℓ(u ◦ γ) ≤ L · ℓ(γ) for every curve γ in M.

⇒ Every pair of points in X can be joined by a curve of finite length.

Example: Surface of revolution X

▶ Possesses finite Hausdorff 2-measure,

▶ Smooth except for 0,

▶ Every curve passing through 0 has infinite length.

⇒ X does not possess a Lipschitz parametrization u : D → X .
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Uniformization of non-smooth metric surfaces

Let X be a metric surface homeomorphic to a Riemannian surface M.

Question: What type of parametrization u : M → X can we expect?

1. Quasisymmetric uniformization: A homeomorphism

u : M → X is quasisymmetric if it distorts shapes of

sets in a controlled manner on all scales.

2. Quasiconformal uniformization: A homeomorphism

u : M → X is quasiconformal if it distorts shapes of sets

in a controlled manner on infinitesimal scales.

3. Weakly quasiconformal uniformization: An almost homeomorphism

u : M → X is weakly quasiconformal if it distorts shapes of sets in a

controlled manner on infinitesimal scales.
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Quasisymmetric uniformization

Theorem [Bonk–Kleiner 2002]: Let X ≈ S2 be an Ahlfors

2-regular metric surface. There exists a quasisymmetric map

u : S2 → X if and only if X is linearly locally contractible.

Ahlfors 2-regularity: H2(B(x , r)) is comparable to r2.

Linear local contractibility (LLC): B(x , r) is contractible in B(x , λr).

⇒ Prevent surface from having cusps, thin bottlenecks, dense wrinkles.

▶ Theorem does not generalize to higher dimensions

(Semmes, Heinonen-Wu, Pankka-Wu).

▶ Ahlfors 2-regularity is not a quasisymmetric invariant.

◦ id : S2 → (S2, dα
S2) for α ∈ (0, 1) is quasisymmetry.

▶ Same statement without Ahlfors 2-regularity would solve:

Cannon’s conjecture: Let G be a Gromov hyperbolic group whose boundary at infinity

∂∞G is homeomorphic to S2. Then G is a Kleinian group, i.e. G admits an isometric,

properly discontinuous, and cocompact action on H3.
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Geometric Quasiconformality

Let X ,Y be metric surfaces.

▶ A homeomorphism u : X → Y is quasiconformal if it distorts

shapes of sets in a controlled manner on infinitesimal scales.

~w
▶ A homeomorphism u : X → Y is geometrically quasiconformal

if it distorts families of curves in a controlled manner.

Question: How can we measure ”largeness” of families of curves?
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Geometric Quasiconformality

Let X ,Y be metric surfaces and Γ a family of curves in X .

▶ The (conformal) modulus of Γ is

mod(Γ) := inf

∫
X

ρ2 dH2,

where the infimum is taken over all Borel functions

ρ : X → [0,∞] with∫
γ

ρ ≥ 1 for every locally rectifiable γ ∈ Γ.

▶ u : X → Y is geometrically quasiconformal if ∃K ≥ 1 s.th.

K−1 mod(Γ) ≤ mod(u ◦ Γ) ≤ K mod(Γ)

for every family Γ of curves in X .
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Geometric Quasiconformality

Modulus in the plane:

(1) If Q ⊂ R2 is a quadrilateral, then

mod(Γ(Q)) ·mod(Γ∗(Q)) =
a

b
· b
a
= 1.

(2) If x ∈ R2 and 0 < r < R < ∞, then

lim
r→0

mod(Γr (x ,R)) = lim
r→0

2π

(
log

(
R

r

))−1

= 0.
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Geometric Quasiconformality

If u : U ⊂ R2 → X is geometrically quasiconformal, then

(1) For every quadrilateral Q ⊂ X

κ−1 ≤ mod(Γ(Q)) ·mod(Γ∗(Q)) ≤ κ.

(2) For every x ∈ R2 and 0 < r < R < ∞

lim
r→0

mod(Γr (x ,R)) = 0.

For example: R2 and Ahlfors 2-regular metric spaces.

Theorem [Rajala 2017]: Let X ≈ R2 be a metric surface of locally

finite H2. There exists a (geometrically) quasisconformal map from

a domain U ⊂ R2 onto X if and only if X .
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Geometric Quasiconformality

Definition: A metric surface X is reciprocal if X satisfies

(1) For every quadrilateral Q ⊂ X

κ−1 ≤ mod(Γ(Q)) ·mod(Γ∗(Q)) ≤ κ.

(2) For every x ∈ R2 and 0 < r < R < ∞

lim
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Quasiconformal uniformization

Let X ≈ R2 be a metric surface of locally finite H2.

Theorem [Rajala 2017]: There exists a (geometrically) qua-

sisconformal map from a domain U ⊂ R2 onto X if and only

if X is reciprocal.

▶ X Ahlfors 2-regular and LLC: Quasiconformal maps are

quasisymmetric ⇒ recover Theorem of Bonk–Kleiner.

▶ Lower bound in (1) always holds for κ−1 = (π/4)2

(Rajala–Romney, Eriksson-Bique–Poggi-Corradini).

▶ Upper bound in (1) implies reciprocality, whereas

condition (2) does not imply reciprocality

(Ntalampekos–Romney).

Definition: A metric surface X is reciprocal if ∃ κ ≥ 1 such

that for every quadrilateral Q ⊂ X

mod(Γ(Q)) ·mod(Γ∗(Q)) ≤ κ.

▶ In general, reciprocality condition is difficult to verify.

▶ There exist plenty of metric surfaces that are not

reciprocal.
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Quasiconformal uniformization

Example: Let T := B(0, ε) for 0 < ε < 1 and X := D/T .

▶ The natural projection π : D → X is local isometry on D \ T
and maps T to the point x0 := π(T ).

▶ We compute

lim
r→0

modX (Γr (x0,R)) = lim
r→0

modR2 (Γr+ε (0,R + ε))

= lim
r→0

2π

(
log

(
R + ε

r + ε

))−1

> 0.

⇒ Non-existence of geometrically quasiconformal

parametrization!

Question: Can we construct a good parametrization of a general

metric surface X?
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Weakly quasiconformal uniformization

Let X ≈ M be a compact metric surface of finite H2.

Definition: A continuous, surjective map u : M → X is weakly quasiconformal if

▶ u is a uniform limit of homeomorphisms M → X , and

▶ there exists K ≥ 1 s.th. for every family Γ of curves in M

mod(Γ) ≤ K ·mod(u ◦ Γ).

Question (Rajala–Wenger): Can X always be parametrized

by a weakly quasiconformal map u : M → X ?

YES if X is locally geodesic (M.–Wenger, Ntalampekos–Romney, M.).

YES always (Ntalampekos–Romney).

▶ X reciprocal: u is quasiconformal homeomorphism. ⇒ Recover Theorem of Rajala.
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Weakly quasiconformal uniformization

Theorem: Let X be a locally geodesic metric surface

homeomorphic to D. If H2(X ) < ∞ and ℓ(∂X ) < ∞,

then there exists a weakly quasiconformal map u : D → X .

Strategy of proof (M.–Wenger):

Idea: Use solution of Plateau’s problem to parametrize X .

Λ(X ) := {v : D → X Sobolev: tr(v) : S1 → X almost parametrizes ∂X}

1. Show that Λ(X ) ̸= ∅. → highly non-trivial

2. Existence of energy minimizer u ∈ Λ(X ).

3. Show that u has a continuous representative ū.

4. ū is uniform limit of homeomorphisms.

5. ū has desired distortion property.
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Application: Lipschitz-volume rigidity

Question: Let f : X → Y be a 1-Lipschitz and surjective map between

metric spaces that have the same volume. Is f an isometry?

Theorem (Folklore): YES, if X and Y are closed Riemannian n-manifolds.

▶ Proofs by (Burago–Ivanov) and (Besson–Courtois–Gallot).

Theorem [M.–Ntalampekos 2024]: Let X be a closed

metric surface and Y a closed Riemannian surface with

H2(X ) = H2(Y ). Then every 1-Lipschitz and surjective

map f : X → Y is an isometry.

▶ Proof highly depends on existence of weakly

quasiconformal parametrization of X .

▶ Intermediate results depending on regularity of Y .
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