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Uniformization problem

Uniformization problem: Find conditions on a metric
space X homeomorphic to a model space M such that

there exists a mapping

u:M— X

with good geometric and analytic properties.
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Uniformization problem

Uniformization problem: Find conditions on a metric
space X homeomorphic to a model space M such that U(CL)

there exists a mapping
ur M= X u(b)

with good geometric and analytic properties.

Dimension 1:

» Every locally rectifiable curve admits
a parametrization by arclength.

o uis 1-Lipschitz, i.e.
d(u(a),u(b)) <L-la—0»b
(u(a), u(b)) | | a b
for L =1.
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Uniformization problem*%#L

Uniformization problem: Find conditions on a metric
space X homeomorphic to a model space M such that

there exists a mapping
u:M— X

with good geometric and analytic properties.

Dimension 2:
» Classical uniformization theorem: Every simply connected
Riemann surface X is conformally equivalent to the open unit
disc D, the complex plane C, or the Riemann sphere S2.
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Uniformization problem*%#L

Uniformization problem: Find conditions on a metric
space X homeomorphic to a model space M such that

there exists a mapping
u:M— X

with good geometric and analytic properties.

Dimension 2:

» Classical uniformization theorem: Every simply connected
Riemann surface X is conformally equivalent to the open unit
disc D, the complex plane C, or the Riemann sphere S2.

o Conformal map is locally bi-Lipschitz, i.e. 9L > 1 s.th.

L7']a—b| < d(u(a),u(b)) < L-|a— b
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Uniformization problem*%#L

Uniformization problem: Find conditions on a metric
space X homeomorphic to a model space M such that

there exists a mapping
u:M— X

with good geometric and analytic properties.

Dimension 2:

» Classical uniformization theorem: Every simply connected
Riemann surface X is conformally equivalent to the open unit
disc D, the complex plane C, or the Riemann sphere S2.

o Conformal map is locally bi-Lipschitz.

o Maps infinitesimal balls to balls.
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Metric surfaces

Definition: A metric space X is a metric surface if

X is homeomorphic to a 2-dimensional manifold M.

» Non-smooth metric surfaces appear naturally as

o deformations of smooth surfaces,

o limits of sequences of Riemannian surfaces,

o boundaries of Gromov hyperbolic groups.
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Metric surfaces

Definition: A metric space X is a metric surface if
X is homeomorphic to a 2-dimensional manifold M.

» Non-smooth metric surfaces appear naturally as

o deformations of smooth surfaces,

o limits of sequences of Riemannian surfaces,

o boundaries of Gromov hyperbolic groups.

Goal: Find conditions on X such that there exists a parametrization

u: M — X satisfying certain properties.
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Uniformization of metric surfaces

Let X be a metric surface homeomorphic to a Riemannian surface M.
Question: What type of parametrization u: M — X can we expect?

» If u: M — X is Lipschitz, then
luo~y) < L-4(y) forevery curve vy in M.

= Every pair of points in X can be joined by a curve of finite length.
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Uniformization of metric surfaces

Let X be a metric surface homeomorphic to a Riemannian surface M.
Question: What type of parametrization u: M — X can we expect?

» If u: M — X is Lipschitz, then
luo~y) < L-4(y) forevery curve vy in M.

= Every pair of points in X can be joined by a curve of finite length.

Example: Surface of revolution X
» Possesses finite Hausdorff 2-measure,
» Smooth except for 0,
» Every curve passing through 0 has infinite length.

= X does not possess a Lipschitz parametrization u: D — X.
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Uniformization of non-smooth metric surfaces

Let X be a metric surface homeomorphic to a Riemannian surface M.

Question: What type of parametrization u: M — X can we expect? O
Uu
1. Quasisymmetric uniformization: A homeomorphism

u: M — X is quasisymmetric if it distorts shapes of

sets in a controlled manner on all scales.
& u(B)
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Uniformization of non-smooth metric surfaces

Let X be a metric surface homeomorphic to a Riemannian surface M.

Question: What type of parametrization u: M — X can we expect?

1. Quasisymmetric uniformization: A homeomorphism

u: M — X is quasisymmetric if it distorts shapes of
sets in a controlled manner on all scales.
2. Quasiconformal uniformization: A homeomorphism ‘!
u: M — X is quasiconformal if it distorts shapes of sets
in a controlled manner on infinitesimal scales.

Damaris Meier Uniformization of metric surfaces

gl
IA



Uniformization of non-smooth metric surfaces

Let X be a metric surface homeomorphic to a Riemannian surface M.

Question: What type of parametrization u: M — X can we expect?

1. Quasisymmetric uniformization: A homeomorphism
u: M — X is quasisymmetric if it distorts shapes of
sets in a controlled manner on all scales.

2. Quasiconformal uniformization: A homeomorphism ‘!
u: M — X is quasiconformal if it distorts shapes of sets

in a controlled manner on infinitesimal scales.

3. Weakly quasiconformal uniformization: An almost homeomorphism
u: M — X is weakly quasiconformal if it distorts shapes of sets in a

controlled manner on infinitesimal scales.
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Quasisymmetric uniformization /T\

2-regular metric surface. There exists a quasisymmetric map

Theorem [Bonk—Kleiner 2002]: Let X ~ S be an Ahlfors \ \\

u: 2 — X if and only if X is linearly locally contractible.

Ahlfors 2-regularity: H?(B(x,r)) is comparable to r>.

Linear local contractibility (LLC): B(x, r) is contractible in B(x, Ar).

= Prevent surface from having cusps, thin bottlenecks, dense wrinkles.
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Quasisymmetric uniformization

Theorem [Bonk—Kleiner 2002]: Let X ~ S be an Ahlfors
2-regular metric surface. There exists a quasisymmetric map
u: 2 — X if and only if X is linearly locally contractible.

» Theorem does not generalize to higher dimensions
(Semmes, Heinonen-Wu, Pankka-Wu).
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Quasisymmetric uniformization

Theorem [Bonk—Kleiner 2002]: Let X ~ S be an Ahlfors
2-regular metric surface. There exists a quasisymmetric map
u: 2 — X if and only if X is linearly locally contractible.

» Theorem does not generalize to higher dimensions
(Semmes, Heinonen-Wu, Pankka-Wu).

» Ahlfors 2-regularity is not a quasisymmetric invariant.

o id: §% — (5%,d%) for a € (0,1) is quasisymmetry.
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Theorem [Bonk—Kleiner 2002]: Let X ~ S be an Ahlfors
2-regular metric surface. There exists a quasisymmetric map

Quasisymmetric uniformization /T\

u: 2 — X if and only if X is linearly locally contractible.

» Theorem does not generalize to higher dimensions
(Semmes, Heinonen-Wu, Pankka-Wu).
» Ahlfors 2-regularity is not a quasisymmetric invariant.

o id: §% — (5%,d%) for a € (0,1) is quasisymmetry.
» Same statement without Ahlfors 2-regularity would solve:

Cannon’s conjecture: Let G be a Gromov hyperbolic group whose boundary at infinity
Ooo G is homeomorphic to S2. Then G is a Kleinian group, i.e. G admits an isometric,

properly discontinuous, and cocompact action on H3.
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Geometric Quasiconformality

Let X, Y be metric surfaces.
O

» A homeomorphism u: X — Y is quasiconformal if it distorts

shapes of sets in a controlled manner on infinitesimal scales.
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Geometric Quasiconformality

Let X, Y be metric surfaces.
O

» A homeomorphism u: X — Y is quasiconformal if it distorts

shapes of sets in a controlled manner on infinitesimal scales.

ﬂ s

» A homeomorphism u: X — Y is geometrically quasiconformal B
if it distorts families of curves in a controlled manner. ' lL( )
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Geometric Quasiconformality

Let X, Y be metric surfaces.
O

» A homeomorphism u: X — Y is quasiconformal if it distorts

shapes of sets in a controlled manner on infinitesimal scales.

J
» A homeomorphism u: X — Y is geometrically quasiconformal B
if it distorts families of curves in a controlled manner. & ‘ U( )

Question: How can we measure "largeness” of families of curves? R < R
r =
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Geometric Quasiconformality

Let X, Y be metric surfaces and I a family of curves in X.

» The (conformal) modulus of T is

mod(T") = inf/p2 dH2, bl I
X

where the infimum is taken over all Borel functions
p: X — [0, 00] with

/p >1 for every locally rectifiable v € T'.
y
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Geometric Quasiconformality

Let X, Y be metric surfaces and I a family of curves in X.

a
» The (conformal) modulus of T is
mod(T") = inf/xp2 dH2, bl I
where the infimum is taken over all Borel functions

p: X — [0, 00] with

mod(I") = ¢

/p >1 for every locally rectifiable v € T'.
y

» u: X — Y is geometrically quasiconformal if 3K > 1 s.th.
K~ mod(I") < mod(uoTl) < K mod(I)

for every family ' of curves in X.
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Geometric Quasiconformality

Modulus in the plane:

Q)

(1) If @ C R? is a quadrilateral, then

b

mod(1(Q)) - mod(F*(Q)) = 7 - = = 1.

ol o

(Q)
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Geometric Quasiconformality
Modulus in the plane:

= I

— ]
b P —

-1 /:/—\/\
a

(2) f xeR?and 0 < r < R < o0, then F*(Q)

mod(I(Q)) - mod(I(Q)) =

ol o

. . AN
rh—% mod(l,(x,R)) = r||_n>10 27 (Iog <7>> =0.
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Geometric Quasiconformality
If u: U C R? — X is geometrically quasiconformal, then

. I'(Q)
(1) For every quadrilateral Q C X

k1 < mod(T(Q)) - mod(M(Q)) < k.
(2) Forevery xeR?>and 0 <r < R < o0

lim mod(l,(x, R)) = 0.

r—0




If u: U C R? — X is geometrically quasiconformal, then

(1) For every quadrilateral Q C X
k1 < mod(T(Q)) - mod(M(Q)) < k.
(2) Forevery xeR?>and 0 <r < R < o0

lim mod(l,(x, R)) = 0.

r—0

For example: R? and Ahlfors 2-regular metric spaces.
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Geometric Quasiconformality
If u: U C R? — X is geometrically quasiconformal, then Ij(Q)
(1) For every quadrilateral Q C X ’7
k™1 < mod(M(Q)) - mod(IM(Q)) < &.
(2) Forevery xeR?>and 0 <r < R < o0
(Q)

lim mod(l,(x, R)) = 0.

r—0

For example: R? and Ahlfors 2-regular metric spaces.

Theorem [Rajala 2017]: Let X ~ R? be a metric surface of locally
finite H2. There exists a (geometrically) quasisconformal map from
a domain U C R? onto X if and only if X satisfies (1) and (2).
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Geometric Quasiconformality
Definition: A metric surface X is reciprocal if X satisfies Ij(Q)
(1) For every quadrilateral Q C X ’7
k™1 < mod(M(Q)) - mod(M(Q)) < &.
(2) Forevery xeR?and 0 <r < R < o0
(Q)
lim mod(l,(x, R)) = 0.

r—0

For example: R? and Ahlfors 2-regular metric spaces.

Theorem [Rajala 2017]: Let X ~ R? be a metric surface of locally
finite H2. There exists a (geometrically) quasisconformal map from
a domain U C R? onto X if and only if X is reciprocal.
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Let X =~ R? be a metric surface of locally finite #2.

Quasiconformal uniformization
Q)

Theorem [Rajala 2017]: There exists a (geometrically) qua-
sisconformal map from a domain U C R? onto X if and only
if X is reciprocal.

» X Ahlfors 2-regular and LLC: Quasiconformal maps are
quasisymmetric = recover Theorem of Bonk—Kleiner.
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Let X =~ R? be a metric surface of locally finite #2.

Quasiconformal uniformization
Q)

Theorem [Rajala 2017]: There exists a (geometrically) qua-
sisconformal map from a domain U C R? onto X if and only
if X is reciprocal.

» X Ahlfors 2-regular and LLC: Quasiconformal maps are
quasisymmetric = recover Theorem of Bonk—Kleiner.

» Lower bound in (1) always holds for k=1 = (7/4)?
(Rajala—Romney, Eriksson-Bique—Poggi-Corradini).
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Let X =~ R? be a metric surface of locally finite #2.

Quasiconformal uniformization
Q)

Theorem [Rajala 2017]: There exists a (geometrically) qua-
sisconformal map from a domain U C R? onto X if and only

if X is reciprocal.

» X Ahlfors 2-regular and LLC: Quasiconformal maps are
quasisymmetric = recover Theorem of Bonk—Kleiner.

» Lower bound in (1) always holds for k=1 = (7/4)?
(Rajala—Romney, Eriksson-Bique—Poggi-Corradini).

» Upper bound in (1) implies reciprocality, whereas
condition (2) does not imply reciprocality
(Ntalampekos—Romney).

Damaris Meier Uniformization of metric surfaces




Let X =~ R? be a metric surface of locally finite #2.

Quasiconformal uniformization
Q)

Theorem [Rajala 2017]: There exists a (geometrically) qua-
sisconformal map from a domain U C R? onto X if and only

if X is reciprocal.

Definition: A metric surface X is reciprocal if 3 k > 1 such
that for every quadrilateral Q@ C X

mod(M'(Q)) - mod(M(Q)) < «.

» In general, reciprocality condition is difficult to verify.

» There exist plenty of metric surfaces that are not
reciprocal.
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Quasiconformal uniformization

Example: Let T := B(0,e) for 0<e < 1land X :=D/T.

» The natural projection 7: D — X is local isometry on D\ T
and maps T to the point xg := 7(T).




Quasiconformal uniformization

Example: Let T := B(0,¢) for0<e<1land X:=D/T.

» The natural projection 7: D — X is local isometry on D\ T
and maps T to the point xg := 7(T).

» We compute

lim modx (I, (x0, R)) = lim modg: (I1 (0, R + €))
r—0 r—0

-1
— lim 27 (Iog <R+5>) > 0.
r—0 r+e
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Quasiconformal uniformization

Example: Let T := B(0,¢) for0<e<1land X:=D/T.

» The natural projection 7: D — X is local isometry on D\ T
and maps T to the point xg := 7(T).

» We compute

lim modx (I, (x0, R)) = lim modg: (I1 (0, R + €))
r—0 r—0

-1
— lim 27 (Iog <R+5>) > 0.
r—0 r+e

= Non-existence of geometrically quasiconformal

parametrization!
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Quasiconformal uniformization

Sl

Example: Let T := B(0,e) for0<e<1land X:=D/T.

» The natural projection 7: D — X is local isometry on D\ T
and maps T to the point xg := 7(T).

» We compute

Iim0 modx (', (xg, R)) = lim modg: (I';4c (0, R + ¢))
r— r

—0

-1
— lim 27 (Iog <R+E>> > 0.
r—0 r+e

= Non-existence of geometrically quasiconformal

parametrization!

Question: Can we construct a good parametrization of a general
metric surface X7

Damaris Meier Uniformization of metric surfaces
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Weakly quasiconformal uniformization

Let X ~ M be a compact metric surface of finite 2.

Definition: A continuous, surjective map u: M — X is weakly quasiconformal if O
» uis a uniform limit of homeomorphisms M — X, and U
» there exists K > 1 s.th. for every family [ of curves in M

mod(lN) < K -mod(uoTl).
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Weakly quasiconformal uniformization

Let X ~ M be a compact metric surface of finite 2.

Definition: A continuous, surjective map u: M — X is weakly quasiconformal if Q
» 1 is a uniform limit of homeomorphisms M — X, and U
» there exists K > 1 s.th. for every family [ of curves in M

mod(lN) < K -mod(uoTl).

Q u(B)
Question (Rajala—Wenger): Can X always be parametrized “

by a weakly quasiconformal map u: M — X ? R <
B ¢
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Weakly quasiconformal uniformization

Let X ~ M be a compact metric surface of finite 2.

Definition: A continuous, surjective map u: M — X is weakly quasiconformal if
» uis a uniform limit of homeomorphisms M — X, and

» there exists K > 1 s.th. for every family [ of curves in M

mod(lN) < K -mod(uoTl).

Question (Rajala—Wenger): Can X always be parametrized E

by a weakly quasiconformal map u: M — X ?

YES if X is locally geodesic (M.-Wenger, Ntalampekos—Romney, M.).

Damaris Meier Uniformization of metric surfaces
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Weakly quasiconformal uniformization

Let X ~ M be a compact metric surface of finite 2.

Definition: A continuous, surjective map u: M — X is weakly quasiconformal if
» uis a uniform limit of homeomorphisms M — X, and

» there exists K > 1 s.th. for every family [ of curves in M

mod(lN) < K -mod(uoTl).

Question (Rajala—Wenger): Can X always be parametrized E

by a weakly quasiconformal map u: M — X ?

YES if X is locally geodesic (M.-Wenger, Ntalampekos—Romney, M.).

YES always (Ntalampekos—Romney).
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Weakly quasiconformal uniformization

Let X ~ M be a compact metric surface of finite 2.

Definition: A continuous, surjective map u: M — X is weakly quasiconformal if
» uis a uniform limit of homeomorphisms M — X, and

» there exists K > 1 s.th. for every family [ of curves in M

mod(lN) < K -mod(uoTl).

Question (Rajala—Wenger): Can X always be parametrized E

by a weakly quasiconformal map u: M — X ?

[

YES if X is locally geodesic (M.-Wenger, Ntalampekos—Romney, M.).

YES always (Ntalampekos—Romney).

» X reciprocal: u is quasiconformal homeomorphism. = Recover Theorem of Rajala.
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Weakly quasiconformal uniformization

Theorem: Let X be a locally geodesic metric surface
homeomorphic to D. If H2(X) < oo and £(0X) < oo,
then there exists a weakly quasiconformal map u: D — X.
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Weakly quasiconformal uniformization

Theorem: Let X be a locally geodesic metric surface
homeomorphic to D. If H?(X) < oo and £(0X) < oo,
then there exists a weakly quasiconformal map u: D — X.

Strategy of proof (M.—Wenger):

Idea: Use solution of Plateau’s problem to parametrize X.

Plateau’s problem: Given a rectifiable Jordan curve v in X.

Find a surface having minimal area among all surfaces
spanning v. U
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Weakly quasiconformal uniformization

Theorem: Let X be a locally geodesic metric surface
homeomorphic to D. If H?(X) < oo and £(0X) < oo,
then there exists a weakly quasiconformal map u: D — X.

Strategy of proof (M.—Wenger):

Idea: Use solution of Plateau’s problem to parametrize X.

A(X) :={v: D — X Sobolev: tr(v): S* — X almost parametrizes 90X}

Metric space valued Sobolev maps: A map v: D — X is Sobolev if

> postcomposition with distance function dy(-) = d(, x) is in W2(D),
» 3 he L?D) s.th. [V(dxou)| < hae onD.

Reshetnyak energy: E2(u) := inf {||h||i2(D) :has above} .
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Weakly quasiconformal uniformization

Theorem: Let X be a locally geodesic metric surface
homeomorphic to D. If H?(X) < oo and £(0X) < oo,
then there exists a weakly quasiconformal map u: D — X.

Strategy of proof (M.—Wenger):

Idea: Use solution of Plateau’s problem to parametrize X.

A(X) :={v: D — X Sobolev: tr(v): S* — X almost parametrizes 90X}

1. Show that A(X) #®. — highly non-trivial

> X might contain a purely 2-unrectifiable part that is dense in X.

» In general, 3 only few Lipschitz maps from open subsets of D to X.
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Weakly quasiconformal uniformization

Theorem: Let X be a locally geodesic metric surface
homeomorphic to D. If H?(X) < oo and £(0X) < oo,
then there exists a weakly quasiconformal map u: D — X.

Strategy of proof (M.—Wenger):

Idea: Use solution of Plateau’s problem to parametrize X.

A(X) :={v: D — X Sobolev: tr(v): S* — X almost parametrizes 90X}

1. Show that A(X) #®. — highly non-trivial /U

2. Existence of energy minimizer u € A(X).

» Direct variational method.
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Weakly quasiconformal uniformization

Theorem: Let X be a locally geodesic metric surface
homeomorphic to D. If H?(X) < oo and £(0X) < oo,
then there exists a weakly quasiconformal map u: D — X.

Strategy of proof (M.—Wenger):

Idea: Use solution of Plateau’s problem to parametrize X.

A(X) :={v: D — X Sobolev: tr(v): S* — X almost parametrizes 90X}

1. Show that A(X) #®. — highly non-trivial /U
2. Existence of energy minimizer u € A(X).

3. Show that u has a continuous representative .
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Weakly quasiconformal uniformization

(AT 77
Theorem: Let X be a locally geodesic metric surface ‘6““““\\\\\\\\({{"‘"“
homeomorphic to D. If H3(X) < oo and £(dX) < oo, &":‘:::&Q\'w“
then there exists a weakly quasiconformal map u: D — X. o \\ "

Strategy of proof (M.—Wenger):

Idea: Use solution of Plateau’s problem to parametrize X.
A(X) :={v: D — X Sobolev: tr(v): S* — X almost parametrizes 90X}

. Show that A(X) #0. — highly non-trivial /U
. Existence of energy minimizer u € A(X).

. Show that u has a continuous representative .

A w0 DD =

i is uniform limit of homeomorphisms.
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Weakly quasiconformal uniformization

Theorem: Let X be a locally geodesic metric surface
homeomorphic to D. If H?(X) < oo and £(0X) < oo,
then there exists a weakly quasiconformal map u: D — X.

Strategy of proof (M.—Wenger):

Idea: Use solution of Plateau’s problem to parametrize X.

A(X) :={v: D — X Sobolev: tr(v): S* — X almost parametrizes 90X}

Show that A(X) # 0. — highly non-trivial
Existence of energy minimizer u € A(X).

Show that v has a continuous representative .

e

i is uniform limit of homeomorphisms.

5. & has desired distortion property.
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Application: Lipschitz-volume rigidity

Question: Let f: X — Y be a 1-Lipschitz and surjective map between
metric spaces that have the same volume. Is f an isometry?
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Application: Lipschitz-volume rigidity

Question: Let 7: X — Y be a 1-Lipschitz and surjective map between
metric spaces that have the same volume. Is f an isometry?

Theorem (Folklore): YES, if X and Y are closed Riemannian n-manifolds.

» Proofs by (Burago—lvanov) and (Besson—Courtois—Gallot).
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Application: Lipschitz-volume rigidity

Question: Let 7: X — Y be a 1-Lipschitz and surjective map between
metric spaces that have the same volume. Is f an isometry?

Theorem (Folklore): YES, if X and Y are closed Riemannian n-manifolds.

» Proofs by (Burago—lvanov) and (Besson—Courtois—Gallot).

Theorem [M.—Ntalampekos 2024]: Let X be a closed
metric surface and Y a closed Riemannian surface with
H?(X) = H?(Y). Then every 1-Lipschitz and surjective
map f: X — Y is an isometry.

» Proof highly depends on existence of weakly
quasiconformal parametrization of X.

» Intermediate results depending on regularity of Y.
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