Mathematical Methods for the Study of Self-organization in the Biological Science ESI, University of Vienna November 21-25, 2022

<u>Collective</u> cancer cell invasion in <u>3D tissue</u>: plasticity, interconversions and jamming

Katarina Wolf

Cell dynamics group Peter Friedl

Microscopical Imaging of the Cell, Dept. Cell Biology Radboud University Medical Centre, Nijmegen, The Netherlands

Cell movement in the body

Morphogenesis/ embryogenesis

The adult body

Tissue repair and angiogenesis

Immune system

Cancer

Metastasis

Transition programs from quiescent epithelium to collective migration

Collective tumor invasion into confined tissue regions

Alexander & Friedl, Trends in Mol. Medicine, 2011

Collective cell migration

Collective movement: strongly connected cells

→ <u>Cohesive</u> mode of collective cell migration

Expression of N-, M-, R-cadherin Charasse et al., Oncogene (2004)

Primary rhabdomyosarcoma explant (after 5 days of culture in 3-D collagen)

Friedl et al., Cancer Res. (1995)

Invasion culture

- Tumoroid
- 3D collagen matrix

Collective invasion: cell-cell junctions retain cadherins

Monitoring breast cancer invasion modes in vivo

Ilina et al., Dis. Models Mechan. (2018)

Collective invasion in vivo

Collective invasion in vivo: flow-like behavior

Analysis by: Fabio Giavazzi, Giorgio Scita

Diversity of collective migration modes

Cell-matrix adhesions

- Force generating
- •• Anchoring

Cell-cell adhesions

••• Adherens junctions

Tissue structures

Interstitial matrix
 Basement membrane
 Brain stroma

3D → organization of ECM Jamming transition-

modulating tissue space

HT-1080 mesenchymal tumors in vivo: predominantly collective invasion

3 Tumor invasion: Leading edge follows pre-existing interfaces and adapts to tissue architecture

Myofibers, collagen (SHG) Blood vessels (AlexaFluor 750) Tumor cells Tumor nuclei

Adaptation of migration mode in response to tissue patterns

Plasticity of mesenchymal invasion: probing porosity

Confinement supports cell-cell junctions and alignment

Alignment of mitotic planes

Haeger et al., BBA Gen. Subj. (2014)

Probing cell decision making in bimodal tissue in vitro: adjacent random and interphase-type 3D matrix

Sjoerd van Helvert

Characterization of collagen-collagen interphase gels

Diversity of multicellular invasion programs

Friedl, Locker, Sahai & Segall, Nat. Cell Biol. (2012)

Loss of cadherin expression

Epithelial-mesenchymal transition and cell individualization

Kalluri & Weinberg, J. Clin. Invest. 119:1420–1428 (2009)

Collective patterns in human breast carcinoma irrespective of E-cadherin status

Invasive lobular carcinoma

Thin and cohesive multicellular strands and clusters (Collective invasion) and individual dissociated cells

Khalil et al., Clin. Exp. Metast. (2017)

DAPI Vimentin Cytokeratin

100 um

Conclusion I

Two types of collective invasion:

- Cohesive: with stable cell-cell junctions
 "Loose": weak cell-cell junctions, associated with tissue confinement
- → How do cell-cell junctions and confinement cooperate in regulating collective migration?

Modulating E-cadherin expression and tissue confinement

llina et al., Nat Cell Biol, 2020

Low confinement regions enable single-cell detachment

A: Downregulation of E-cadherin

B: Modulation of tissue porosity (=confinement)

High porosity

Low porosity

Cell scale

1:1

Deformation limit: 5-10 µm² nuclear cross section (Wolf et al., JCB 2013)

4T1 cells in low- vs mid-density 3D collagen

Porosity

Low-density collagen Persisting collective movement under confining conditions

1. Matrix confinement enforces multicellular patterns irrespective of E-cadherin levels in vitro and in vivo

2. Single-cell detachment is probabilistic and requires
(i) non-confining tissue niches and
(ii) weakened adherens junctions

Defining minimal components by *in silico* modeling

Andreas Deutsch

Simon Syga TU

TU Dresden

Lattice-Gas Cellular Automaton (LGCA)

- Origin: Simulation of fluid dynamics
 (Frisch, Hasslacher, Pomeau 1986; "FHP model")
- Suitable for analyzing a range of biological systems:
 - Avascular tumor growth (Dormann, Deutsch 2002)
 - Glioma invasion (Tektonidis et al. 2011)
 - Angiogenesis (Mente et al. 2012)

Necrotic tumor region

Modeling conditions

- General: cells proliferate and undergo apoptosis
- Cells move along ECM by cell-ECM adhesion

• Adhesion between cells reduces mobility of individual cells

• Volume exclusion between cells and ECM

• ECM remodeling: cells can push ECM into free areas

Besides individualization: defective next-neighbor correlations

Differential "fluidity" in collective patterning

Caterina della Porta Stefano Zapperi U Milan

Jürgen Lippoldt Josef Käs U Leipzig

Collagen 2 mg/ml

H2B/mCherry

Particle imaging velocimetry: velocity and vorticity

Vorticity as a function of collagen density and junctional stability

Probing jamming transitions under low and high ECM confinement

H2B/mCherry

High vorticity during sheet migration under high-density collagen conditions

Individualized

Grouped

E-cadherin is required for directional coordination between cells

Nuclei tracks Segmented nuclei

Jürgen Lippoldt, Josef Käs

Collective cell pattern but lack of next-neighbor coordination

2 mg/ml

6 ng/nl

F-actin DAPI

 \rightarrow Fully individualized kinetic behavior in the moving sheet

Plasticity of cancer invasion programs: partial and complete unjamming

1/cell density

Two types of multicellular migration

- 1) Active nematics: Collective migration with cadherin-based cell-cell junctions
- 2) Active fluid: Single-cell like movement with low-adhesive cell-cell interactions

Cell Dynamics Laboratory / MIC

NWO-*Vici* ERC Consolidator T3Net