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MLMC for parabolic SPDE

Topics discussed:

▶ Assumptions for convergence of parabolic SPDE, Spectral
Galerkin and Galerkin FEM more generally.

▶ MLMC: coupling of noise

▶ Antithetic MLMC for parabolic SPDE

▶ MIMC for SPDE



Early contributions on MLMC for SPDE

▶ Barth, Lang 2012, and Barth, Lang, Schwab 2013
Euler–Maruyama and Milstein numerical integration for
parabolic and hyperbolic SPDE.

▶ Barth, Schwab and Sukys 2016: multilevel Monte Carlo
simulation of statistical solutions to the navier–stokes
equations (randomness only in initial condition?)

▶ Mishra, Schwab, Sukys: MLMC for hyperbolic pde

▶ Reisinger and Wang 2016 and 2021, MIMC for the Zakai
equation in 1D and 2D.



Parabolic SPDE problem setting

dU(t) =
[
AU + f (U)

]
dt + G (U)dW (t) (t, x) ∈ [0,T ]× D

U(t = 0) ∈ L2(Ω,H) and F0 −measurable.

▶ For H = L2(D), we seek solution U : [0,T ]× Ω → H.
▶ Linear operator A : D(A) ⊂ H → H with spectral

decomposition

−Aej = λjej with 0 < λ1 ≤ λ2 ≤ . . .

and (ej) complete orthonormal basis on H.
▶ Q−Wiener process

W (t, x) :=
∞∑
j=1

√
qjϕj(x)W

(j)(t)

where (qj , ϕj) are eigenpairs of linear operator Q ∈ L+1 (H)
with a (ϕj) complete and orthonormal.

▶ f : H → H and G : H → LHS(Q
1/2(H),H) bounded and

uniformly Lipschitz.



Assumptions on previous slide imply existence of a unique mild
solution

U(t) = eAtU(0) +

∫ t

0
eA(t−s)f (U(s))ds +

∫ t

0
eA(t−s)G (U(s))dW (s) ∀t ∈ [0,T ]

Numerical approx: For d = 1 and sufficiently smooth U(0),
Euler–Maruyama integration with a ”stable rational
approximation” of semigroup exp(At) yields rates:

∥Ū∆x ,∆t(T )− U(T )∥L2(Ω,H) ≲
√
∆t +∆x (Barth et al. 2013)

MLMC for same method

∥EMLMC [U(T )]− E[U(T )]∥L2(Ω,H) ≲ ϵ at cost O(ϵ−3).

Coupling: in driving noise on shared subspace and U0.



Questions:

▶ Can one extend antithetic coupling (Giles and Szpruch 2014)
from SDE to above SPDE to achieve Milstein – double –
convergence rate in time?

Comment: Not clear as it comes with an overhead that may
be better spent on finer-mesh Euler–Maruyama solutions.

▶ For improved stability, can tamed integrators be helpful for
solving SPDE with MLMC?

▶ How to couple noise for pairwise solutions when not solving
with Galerkin/spectral Galerkin method?
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Spectral approach – additive noise

dU = (∆U + f (U(t, x))) dt + dW for (x , t) ∈ [0,T ]× D,

+Dirichlet initial and periodic boundary conditions.

(1)

In addition to earlier assumptions, we assume that A = ∆ and Q
shares eigenbasis (ej) with H = span(ej).
Let

Uℓ1,ℓ2(T , x) :=

Nℓ∑
j=1

ūℓ1,ℓ2j (T )ej(x)

That is, solution on subspace using exponential Euler method

HNℓ1 = (ej)
Nℓ1
j=1 using ∆tℓ2 = 2−ℓ2∆0.

Convergence rate (up to log terms):

∥Uℓ1+1,ℓ2+1 − Uℓ1,ℓ2∥L2(Ω;H) ≲ N−2
ℓ1

+ J−2
ℓ2

.

(Maybe Milstein method for SPDE can perform similarly?)



Multi-index Monte Carlo

Consider

EMIMC [U(T )] :=
∑

(ℓ1,ℓ2)∈I

EMℓ1,ℓ2
[Uℓ1,ℓ2−Uℓ1−1,ℓ2−Uℓ1,ℓ2−1+Uℓ1−1,ℓ2−1]

where I ⊂ N2
0, and Mℓ1,ℓ2 ≥ 1 for all (ℓ1, ℓ2) ∈ I.



The MIMC parameters:

Rough understanding:

▶ “shape of” the index set I is determined by the weak rate
(α1, α2)

▶ and num of samples Mℓ1,ℓ2 is determined by the variance
decay rates (β1, β2) and cost rates (γ1, γ2).



Assumptions for MLMC

The reaction term f : H → H is twice continuously differentiable,
where its derivatives satisfy the following

∥f ′(x)− f ′(y)∥H ≤ L∥x − y∥H , and more

and

∥A−1f ′′(x)(v ,w)∥H ≤ L∥(−A)−1/2v∥H∥(−A)−1/2w∥H ,

for all v ,w ∈ H.

Question: What kind of extensions are needed for MIMC?
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Crucial convergence rate MLMC

For MLMC we needed a rates

E∥Uℓ+1,ℓ+1 − Uℓ,ℓ∥2H ≲ N−2
ℓ + J−2

ℓ .

Setting Jℓ ≂ Nℓ ≂ 2ℓ leads to (up to log factors) near optimal
setting:

(i)
∥∥E[Uℓ,ℓ(T , ·)− U(T , ·)

]∥∥
H
≲ 2−ℓ.

(ii) Vℓ := E
[
∥Uℓ,ℓ(T , ·)− Uℓ−1,ℓ−1(T , ·)∥2H

]
≲ 2−2ℓ.

(iii) Cℓ := Cost(Uℓ,ℓ) ≂ 22ℓ.



Convergence rates for MIMC

For MIMC, the hope is to obtain multiplicative rates

E[∥Uℓ1+1,ℓ2+1 − Uℓ1+1,ℓ2 − Uℓ1,ℓ2+1 + Uℓ1,ℓ2∥2H ] ≲ N−2
ℓ1

× J−2
ℓ2

Questions:

▶ What regularity assumptions must be imposed on f to achieve
this? Third derivatives?

▶ Can it also be achieved for slowly varying multiplicative noise?

▶ Performance gains in d > 1?
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Numerical rate test
Consider problem

dUt = (ϵ(∆− I )Ut + f (Ut)) dt + dWt for t ∈ [0,T = 0.5],

with f (U) = U and white noise W U0 ∈ L2(Ω,H1/2). Numerical
experiments with (Nℓ1 , Jℓ2) ≂ (2ℓ1 , 2ℓ2) and ϵ = 0.00005 yields the
following output for H = L2(0, 1):
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