

Xiao-Gang Wen (MIT), Higher Structures and Field Theory

Introduction to topological order

Condensed matter physics and higher category

- Condensed matter systems:
 - defined by microscopic theoretical **lattice models** probed by macroscopic experimental measurements
- Concepts in condensed matter systems defined by microscopic lattice models defined by macroscopic properties
- **Superconductivity**: (micro) electron-pair condensation. (macro) zero resistance, vortex quantization
- **Concepts in mathematics** (in some areas) defined by **topological invariants** = macroscopic properties
- We have a microscopic definition of gapped phases in condensed matter. A full macroscopic characterization of nd (n+1D) gapped phases → unitary fusion n-category

 We have a microscopic definition of gapless phases in condensed matter. A full macroscopic characterization of nd (n+1D) gapless quantum phases → ???

A many-body quantum system (a lattice model)

• A gapped quantum system (a concept for $N \to \infty$ limit) = a sequence of pairs, $\{(\mathcal{V}_{N_1}, \mathcal{H}_{N_1}); (\mathcal{V}_{N_2}, \mathcal{H}_{N_2}); (\mathcal{V}_{N_3}, \mathcal{H}_{N_3}); \cdots \}$, where each \mathcal{H}_N has gapped eigenvalue spectrum: $\Delta_N \to \Delta_\infty$, $0 < \Delta_\infty < \infty$ and $\varepsilon_N \to 0$, as $N \to \infty$ \to ground-state subspace \mathcal{V}_{grnd} (= gapped state in physics)

subspace $\epsilon \rightarrow 0$

A many-body quantum system (a lattice model)

• A quantum system is described by $(\mathcal{V}_N, \mathcal{H}_N)$ \mathcal{V}_N : a Hilbert space with a tensor decomposition $\mathcal{V}_N = \bigotimes_{i=1}^N \mathcal{V}_i$, where \mathcal{V}_i has a finite dimension. H_N : a local Hamiltonian (hermitian operator) acting on \mathcal{V}_N : $H_N = \sum_i O_i + \sum_{ii} O_{\langle ij \rangle} + \cdots$ O_i hermitian operator acts on \mathcal{V}_i , O_{ii} hermitian operator acts on $\mathcal{V}_i \otimes \mathcal{V}_i$ $_{\text{ground-state}} \mid \Delta \text{--sfinite gap}$ subspace $\pm \epsilon \rightarrow 0$ • A gapped quantum system (a concept for $N \to \infty$ limit) =

• A gapped quantum system (a concept for $N \to \infty$ limit) = a sequence of pairs, $\{(\mathcal{V}_{N_1}, \mathcal{H}_{N_1}); (\mathcal{V}_{N_2}, \mathcal{H}_{N_2}); (\mathcal{V}_{N_3}, \mathcal{H}_{N_3}); \cdots \}$, where each \mathcal{H}_N has gapped eigenvalue spectrum: $\Delta_N \to \Delta_\infty$, $0 < \Delta_\infty < \infty$ and $\varepsilon_N \to 0$, as $N \to \infty$ \to ground-state subspace \mathcal{V}_{grnd} (= gapped state in physics) Xiao-Gang Wen (MIT), Higher Structures and Field Theory Introduction to topological order 3/61

Examples of gapped systems and gapped states

- Ising model: symmetry breaking state $\mathcal{V}_N = \mathbb{C}_2^{\otimes N}, \mathbb{C}_2 = \{|\uparrow\rangle, |\downarrow\rangle\}. H_N = \sum_i O_{i,i+1} = -\sum_i Z_i Z_{i+1}$ $\rightarrow 2$ -dim. ground-state subspace = $\operatorname{span}_{\mathbb{C}}\{|\cdots\uparrow\uparrow\uparrow\uparrow\cdots\rangle, |\cdots\downarrow\downarrow\downarrow\cdots\rangle\}$
- H_N has a \mathbb{Z}_2 on-site symmetry generated by $U = \bigotimes_i X_i$ $X_i | \uparrow \rangle_i = | \downarrow \rangle_i, X_i | \downarrow \rangle_i = -| \uparrow \rangle_i$: $UH_N U^{-1} = H_N$

Symmetry breaking state: A basis of ground-state subspace $|\cdot\uparrow\uparrow\uparrow\rangle \pm |\cdot\downarrow\downarrow\downarrow\downarrow\rangle \cdot\rangle$, that is **symmetric** $(U|\Psi\rangle = e^{i\theta}|\Psi\rangle)$ but not product states. Another basis, $|\cdot\uparrow\uparrow\uparrow\uparrow\cdot\rangle$, $|\cdot\downarrow\downarrow\downarrow\downarrow\cdot\rangle$, that are product states but not symmetric.

Examples of gapped systems and gapped states

- Ising model: symmetry breaking state $\mathcal{V}_N = \mathbb{C}_2^{\otimes N}, \mathbb{C}_2 = \{|\uparrow\rangle, |\downarrow\rangle\}. H_N = \sum_i O_{i,i+1} = -\sum_i Z_i Z_{i+1}$ $\rightarrow 2$ -dim. ground-state subspace = $\operatorname{span}_{\mathbb{C}}\{|\cdots\uparrow\uparrow\uparrow\cdots\rangle, |\cdots\downarrow\downarrow\downarrow\cdots\rangle\}$ - H_N has a \mathbb{Z}_2 on-site symmetry generated by $U = \otimes_i X_i$
 - $X_i|\uparrow\rangle_i=|\downarrow\rangle_i, X_i|\downarrow\rangle_i=-|\uparrow\rangle_i: \quad UH_NU^{-1}=H_N$

Symmetry breaking state: A basis of ground-state subspace $|\cdot\uparrow\uparrow\uparrow\rangle \pm |\cdot\downarrow\downarrow\downarrow\downarrow\rangle \cdot\rangle$, that is **symmetric** $(U|\Psi\rangle = e^{i\theta}|\Psi\rangle)$ but not product states. Another basis, $|\cdot\uparrow\uparrow\uparrow\uparrow\cdot\rangle$, $|\cdot\downarrow\downarrow\downarrow\downarrow\cdot\rangle$, that are product states but not symmetric.

Examples of gapped systems and gapped states

- Ising model: symmetry breaking state $\mathcal{V}_{N} = \mathbb{C}_{2}^{\otimes N}, \mathbb{C}_{2} = \{|\uparrow\rangle, |\downarrow\rangle\}. H_{N} = \sum_{i} O_{i,i+1} = -\sum_{i} Z_{i}Z_{i+1}$ $\rightarrow 2$ -dim. ground-state subspace = $\operatorname{span}_{\mathbb{C}}\{|\cdots\uparrow\uparrow\uparrow\cdots\rangle, |\cdots\downarrow\downarrow\downarrow\cdots\rangle\}$
- H_N has a \mathbb{Z}_2 on-site symmetry generated by $U = \bigotimes_i X_i$ $X_i | \uparrow \rangle_i = | \downarrow \rangle_i, X_i | \downarrow \rangle_i = -| \uparrow \rangle_i$: $UH_N U^{-1} = H_N$

Symmetry breaking state: A basis of ground-state subspace $|\cdot\uparrow\uparrow\uparrow\rangle \pm |\cdot\downarrow\downarrow\downarrow\downarrow\rangle$, that is **symmetric** $(U|\Psi\rangle = e^{i\theta}|\Psi\rangle)$ but not product states. Another basis, $|\cdot\uparrow\uparrow\uparrow\uparrow\rangle$, $|\cdot\downarrow\downarrow\downarrow\downarrow\rangle\rangle$, that are product states but not symmetric.

Gapped phases of many-body quantum systems

- Two gapped systems, *ie* two sequences $\{H_N|_{N\to\infty}\}$ and $\{H'_N|_{N\to\infty}\}$, are equivalent if H_N can smoothly deform into H'_N without $\varepsilon \to 0$ closing the gap Δ . The resulting equivalent classes are gapped quantum phases of matter.
- Two symmetric gapped systems, *ie* two sequences symmetric $\{H_N|_{N\to\infty}\}$ and $\{H'_N|_{N\to\infty}\}$, are equivalent if H_N can smoothly symmetrically deform into H'_N without closing the gap Δ . The resulting equivalent classes are gapped quantum phases of matter with symmetry.
- Trivial gapped phase: The unique ground states of equivalent Hamiltonians are related by local unitary transformations: a product state → a short-range entangled (SRE) state:
 SRE state) = monomic product state)

Xiao-Gang Wen (MIT), Higher Structures and Field Theory

Introduction to topological order

Gapped phases of many-body quantum systems

- Two gapped systems, *ie* two sequences $\{H_N|_{N\to\infty}\}$ and $\{H'_N|_{N\to\infty}\}$, are equivalent if H_N can smoothly deform into H'_N without closing the gap Δ . The resulting equivalent classes are gapped quantum phases of matter.
- Two symmetric gapped systems, *ie* two sequences symmetric $\{H_N|_{N\to\infty}\}$ and $\{H'_N|_{N\to\infty}\}$, are equivalent if H_N can smoothly symmetrically deform into H'_N without closing the gap Δ . The resulting equivalent classes are gapped quantum phases of matter with symmetry.
- Trivial gapped phase: The unique ground states of equivalent Hamiltonians are related by local unitary transformations: a product state → a short-range entangled (SRE) state:
 SRE state) =

Xiao-Gang Wen (MIT), Higher Structures and Field Theory

Introduction to topological order

Gapped phases of many-body quantum systems

- Two gapped systems, *ie* two sequences $\{H_N|_{N\to\infty}\}$ and $\{H'_N|_{N\to\infty}\}$, are equivalent if H_N can smoothly deform into H'_N without closing the gap Δ . The resulting equivalent classes are gapped quantum phases of matter.
- Two symmetric gapped systems, *ie* two sequences symmetric $\{H_N|_{N\to\infty}\}$ and $\{H'_N|_{N\to\infty}\}$, are equivalent if H_N can smoothly symmetrically deform into H'_N without closing the gap Δ . The resulting equivalent classes are gapped quantum phases of matter with symmetry.
- Trivial gapped phase: The unique ground states of equivalent Hamiltonians are related by local unitary transformations: a product state → a short-range entangled (SRE) state: SRE state) = SRE state) = product state

More careful discussion of local unitary equivalence

• A gapped quantum phase: an equivalence class of gapped quantum systems: Chen Gu Wen, arXiv:1004.3835 **Def**: $\{H_{N_i}\} \sim \{H'_{N_i}\}$, if their ground-state subspaces satisfy $\Psi'_N = U_{LU} \Psi_N$, where $U_{\rm III}$ is a **local unitary** transformation: $U_{\rm LU} =$ • A gapped quantum liquid phase: Generalized local unitary (gLU) trans, • Trivial phase and N_{k+1} N_{l} symmetry breaking

Xiao-Gang Wen (MIT), Higher Structures and Field Theory

Gapped liquid phases

Introduction to topological order

More careful discussion of local unitary equivalence

• A gapped quantum phase: an equivalence class of gapped quantum systems: Chen Gu Wen, arXiv:1004.3835 **Def**: $\{H_{N_i}\} \sim \{H'_{N_i}\}$, if their ground-state subspaces satisfy $\Psi'_N = U_{LU} \Psi_N$, where U_{111} is a **local unitary** transformation: $U_{LU} =$ • A gapped quantum liquid phase:

Zeng Wen, arXiv:1406.5090 $\xrightarrow{\text{local addition}} \Psi_{N_i} \otimes |\uparrow\rangle^{\otimes (N_{i+1}-N_i)}$ $\Psi_{N_{i+2}}$

 Trivial phase and symmetry breaking phases are examples of **Gapped liquid phases**

Xiao-Gang Wen (MIT), Higher Structures and Field Theory

Generalized local unitary (gLU) trans, N_{k+1}

Introduction to topological order

Symmetry breaking phase: quantum point of view

In most textbooks, symmetry breaking phase is explained using a classical point of view.

The Hamitonian H_N has a symmetry G_H : $U_g H_N U_g^{-1} = H_N$, where U_g form a representation of a group $g \in G_H$.

• Symmetry breaking phase: The ground-state subspace has a SRE basis, *ie* each basis vector is local unitary equivalent to a product subspace $U_g \in G_H$. But the basis may be symmetric under the transformations in a subgroup $U_g \in G_{\Psi} \subset G_H$.

Classify phases of quantum matter (T = 0 phases)

For a long time, we thought that Landau symmetry breaking classify all phases of matter

- Symm. breaking phases are characterized by order parameters and classified by a pair $G_{\Psi} \subset G_{H}$
 - G_H = symmetry group of the system.
 - G_{Ψ} = symmetry group of the ground states.

• 230 crystals from group theory

Xiao-Gang Wen (MIT), Higher Structures and Field Theory

Con a

8/61

Introduction to topological order

Topological orders in quantum Hall effect

• Quantum Hall states $R_{xy} = V_y/I_x = \frac{m}{\pi} \frac{2\pi\hbar}{c^2}$ vonKlitzing Dorda Pepper, PRL 45 494 (1980) Tsui Stormer Gossard, PRL 48 1559 (1982)

- FQH states have different phases even when there is no symm. $(G_H = 1)$ and no symm. breaking. $(G_{\Psi} = G_{H})$
- FQH liquids must contain a new kind of order, named as topological order

• New equivalent classes of $\{H_N\}$ beyond symm. breaking phase

Xiao-Gang Wen (MIT), Higher Structures and Field Theory

Magnetic Field (T)

Introduction to topological order

Topological orders in quantum Hall effect

• Quantum Hall states $R_{xy} = V_y/I_x = \frac{m}{n} \frac{2\pi\hbar}{c^2}$ vonKlitzing Dorda Pepper, PRL 45 494 (1980) Tsui Stormer Gossard, PRL 48 1559 (1982)

- FQH states have different phases even when there is no symm. $(G_H = 1)$ and no symm. breaking. $(G_{\Psi} = G_{H})$
- FQH liquids must contain a new kind of order, named as topological order

Wen, PRB 40 7387 (89); IJMP 4 239 (90)

• New equivalent classes of $\{H_N\}$ beyond symm. breaking phase

Xiao-Gang Wen (MIT), Higher Structures and Field Theory

Introduction to topological order

Macroscopic characterization of topological order

 New equivalent classes → new topological invariants. How to extract new topological invariants beyond symmetry breaking from complicated many-body state

$$|\Psi
angle = \sum_{{m x}_1, \cdots, {m x}_{10^{20}}} \Psi({m x}_1, \cdots, {m x}_{10^{20}}) | {m x}_1, \cdots, {m x}_{10^{20}}
angle$$

Put the gapped system on space with various topologies, and measure the ground state degeneracy. Wen PRB 40 7387 (89

New topological invariant \rightarrow Notion of **topological order**

Haldane PRL 51 605 (83); Tao-Wu, PRB 30 1097 (84)

Why ground state degeneracy is a topological invariant?

Xiao-Gang Wen (MIT), Higher Structures and Field Theory Introduction to topological order 10 / 61

Macroscopic characterization of topological order

 New equivalent classes → new topological invariants. How to extract new topological invariants beyond symmetry breaking from complicated many-body state

$$|\Psi
angle = \sum_{x_1, \cdots, x_{10^{20}}} \Psi(x_1, \cdots, x_{10^{20}}) | x_1, \cdots, x_{10^{20}} \rangle$$

Put the gapped system on space with various topologies, and measure the ground state degeneracy. Wen PRB 40 7387 (89)

New topological invariant \rightarrow Notion of topological order

Haldane PRL 51 605 (83); Tao-Wu, PRB 30 1097 (84)

Why ground state degeneracy is a topological invariant?

Xiao-Gang Wen (MIT), Higher Structures and Field Theory Introduction to topological order 10 / 61

The ground state degeneracy is topological

• The ground state degeneracies, in $N \to \infty$ limit, are robust against any local perturbations that can break any symmetries. The ground state degeneracies have nothing to do with symmetry. We call such a degeneracy as topological degeneracy Wen Niu PRB 41 9377 (90)

Δ

Xiao-Gang Wen (MIT), Higher Structures and Field Theory

Introduction to topological order

The ground state degeneracy is topological

- The ground state degeneracies, in $N \to \infty$ limit, are robust against any local perturbations that can break any symmetries. The ground state degeneracies have nothing to do with symmetry. We call such a degeneracy as topological degeneracy Wen Niu PRB 41 9377 (90)
- The ground state degeneracies can only vary by some large changes of Hamiltonian \rightarrow gap-closing phase transition.

Δ

Xiao-Gang Wen (MIT), Higher Structures and Field Theory

Topological invariants that fully define topo. orders

The ground state degeneracy only partially characterize topological order, not fully define it.

- We conjectured that nd (*ie* n + 1D) topological order can be completely defined via the following topological property: Wen IJMPB 4, 239 (90); Keski-Vakkuri Wen IJMPB 7, 4227 (93)
- Vector bundle on the moduli space
 - i. Consider a closed 2-dim space $\sum_{g} w/$ metrics g_{ij} .
 - ii. Different diffeomorphic equivalent classes of metrics g_{ij} form the moduli space \mathcal{M}_{Σ_g} .
 - iii. The moduli space is the space of Hamiltonians $H(g_{ij})$. We jumped here: discrete lattice \rightarrow continuous manifold The emergence of continuous geometry from discrete algebra
 - iv. The ground subspace $\mathcal{V}_{\text{grnd}}(g_{ij})$ (an *n*-dim vector space) of $H(g_{ij})$ depends on the diffeomorphic equivalent classes of the spacial metrics $g_{ij} \rightarrow$ a vector bundle over \mathcal{M}_{Σ_g} with fiber $\mathcal{V}_{\text{grnd}}(g_{ij})$.

Topological invariants that fully define topo. orders

- **Vector bundle on the moduli space** is a U(n) bundle with SU(n) flat connection (due to the topological degeneracy).
- Local U(1) curvature \rightarrow gravitational Chern-Simons term $e^{-S_{eff}} = e^{i\frac{2\pi c}{24}\int_{M^2 \times S^1} \omega_3}$
 - \rightarrow chiral central charge \emph{c}
 - \rightarrow quantized thermal Hall conductance

Tangent bundle on a 2-sphere

Topological invariants that fully define topo. orders

- **Vector bundle on the moduli space** is a U(n) bundle with SU(n) flat connection (due to the topological degeneracy).
- Local U(1) curvature \rightarrow gravitational Chern-Simons term $e^{-S_{eff}} = e^{i \frac{2\pi c}{24} \int_{M^2 \times S^1} \omega_3}$
 - \rightarrow chiral central charge \emph{c}
 - \rightarrow quantized thermal Hall conductance

Tangent bundle on a 2-sphere

Xiao-Gang Wen (MIT), Higher Structures and Field Theory

Introduction to topological order

The microscopic origin of topological degeneracy

- For a highly entangled many-body quantum systems: knowing every parts still cannot determine the whole
- In other words, there are different "wholes", that their every local parts are identical.

- Local Hamiltonians can only see the parts → those different "wholes" (the whole quantum states) have the same energy.
 What is a "whole"?, what is "part"?
 whole = many-body wave function |Ψ⟩ = Ψ(m₁, m₂, ···, m_N) where m_i label states on site-i
 - **part** = entanglement density matrix:

 $\rho_{\mathsf{site-1},2} = \mathrm{Tr}_{\mathsf{site-3},\cdots,\mathsf{N}} |\Psi\rangle \langle\Psi|, \ \ \langle H_{1,2}\rangle = \mathrm{Tr}(H_{1,2}\rho_{\mathsf{site-1},2})$

 $\rho_{m_1,m_2;m_1',m_2'}$

$$=\sum \Psi^*(m_1,m_2,m_3,\cdots,m_N)\Psi(m_1',m_2',m_3,\cdots,m_N)$$

Xiao-Gang Wen (MIT), Higher Structures and Field Theory

The microscopic origin of topological degeneracy

- For a highly entangled many-body quantum systems: knowing every parts still cannot determine the whole
- In other words, there are different "wholes", that their every local parts are identical.

WHOLE =
$$\sum_{parts} + ?$$

- Local Hamiltonians can only see the parts \rightarrow those different "wholes" (the whole quantum states) have the same energy.
- What is a "whole"?, what is "part"? whole = many-body wave function $|\Psi\rangle = \Psi(m_1, m_2, \cdots, m_N)$ where m_i label states on site-*i*
 - **part** = entanglement density matrix:

 $\rho_{\text{site-1},2} = \text{Tr}_{\text{site-3},\dots,N} |\Psi\rangle \langle\Psi|, \quad \langle H_{1,2}\rangle = \text{Tr}(H_{1,2}\rho_{\text{site-1},2})$ $\rho_{m_1,m_2;m'_1,m'_2}$ $= \sum_{m_2,\dots,m_N} \Psi^*(m_1,m_2,m_3,\dots,m_N) \Psi(m'_1,m'_2,m_3,\dots,m_N)$

Xiao-Gang Wen (MIT), Higher Structures and Field Theory

The microscopic origin of topological orders

• Those kinds of many-body quantum systems have

topological entanglement entropy

Kitaev-Preskill hep-th/0510092 Levin Wen cond-mat/0510613

and long range quantum entanglement Chen Gu Wen arXiv:1004.3835 Long range entanglement \rightarrow Topo. degeneracy

What is long-range entanglement?

Chen Gu Wen arXiv:1004.3835

 g_1

- All SRE states belong to the same trivial phase
- LRE states can belong to many different phases
 - = different patterns of long-range entanglements
 - = different topological orders Wen PRB 40 7387 (89)

What is long-range entanglement?

Chen Gu Wen arXiv:1004.3835

 g_1

- All SRE states belong to the same trivial phase
- LRE states can belong to many different phases
 - = different patterns of long-range entanglements
 - = different topological orders Wen PRB 40 7387 (89)

How to make long range entanglement?

- Short-range-entanglement (SRT) \sim product state $|\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\rangle$
- To make topological order, need to sum over many different product states. But summing over everything with equal weight ∑_{all spin config.} | ↑↓ ...> = (| ↑> + | ↓>)^{⊗N} → product state
- Sum over everything with phase factors $\sum_{\text{all spin config.}} \prod_{i < j} (z_i^{\uparrow} - z_j^{\uparrow})^m | \uparrow \downarrow ... \rangle$ $\rightarrow \text{ chiral spin liquid or FQH state.}$
- Sum over a subset of spin configurations:

• Can the above wavefunction be the ground states of local Hamiltonians?

 $|\Phi_{\text{loops}}^{\mathbb{Z}_2}\rangle = \sum \left|\Im \Im \right\rangle$

How to make long range entanglement?

- Short-range-entanglement (SRT) \sim product state $|\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\rangle$
- To make topological order, need to sum over many different product states. But summing over everything with equal weight ∑_{all spin config.} | ↑↓ ...> = (| ↑> + | ↓>)^{⊗N} → product state
- Sum over everything with phase factors $\sum_{\text{all spin config.}} \prod_{i < j} (z_i^{\uparrow} - z_j^{\uparrow})^m | \uparrow \downarrow .. \rangle$ $\rightarrow \text{ chiral spin liquid or FQH state.}$
- Sum over a subset of spin configurations:

• Can the above wavefunction be the ground states of local Hamiltonians?

 $|\Phi_{\text{loops}}^{\mathbb{Z}_2}\rangle = \sum \left|\Im \Im \right\rangle$

How to make long range entanglement?

- Short-range-entanglement (SRT) \sim product state $|\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\rangle$
- To make topological order, need to sum over many different product states. But summing over everything with equal weight ∑_{all spin config.} | ↑↓ ...> = (| ↑> + | ↓>)^{⊗N} → product state
- Sum over everything with phase factors $\sum_{\text{all spin config.}} \prod_{i < j} (z_i^{\uparrow} - z_j^{\uparrow})^m | \uparrow \downarrow .. \rangle$ $\rightarrow \text{ chiral spin liquid or FQH state.}$
- Sum over a subset of spin configurations:

 $|\Phi_{\mathsf{loops}}^{DS}
angle = \sum (-)^{\# \; \mathsf{of} \; \mathsf{loops}} \left| \widecheck{\heartsuit} \widecheck{\diamondsuit} \right\rangle$

• Can the above wavefunction be the ground states of local Hamiltonians?

 $\left| \Phi_{\text{loops}}^{\mathbb{Z}_2} \right\rangle = \sum \left| \bigotimes \bigotimes \bigotimes \right\rangle$

• Local rules of a string liquid (for ground state): (1) Dance while holding hands (no open ends) (2) $\Phi_{str} (\square) = \Phi_{str} (\square), \quad \Phi_{str} (\square) = \Phi_{str} (\square)$

 \rightarrow Global wave function of loops $\Phi_{str} \left(\bigotimes \bigotimes \right) = 1$

There is a Hamiltonian *H* (the toric code model):
 (1) Open ends cost energy
 (2) string can hop and reconnect freely.
 The ground state of *H* gives rise to the above string lquuid wave function.

Kitaev quant-ph/97070

Xiao-Gang Wen (MIT), Higher Structures and Field Theory

• Local rules of a string liquid (for ground state): (1) Dance while holding hands (no open ends) (2) $\Phi_{str} (\square) = \Phi_{str} (\square), \quad \Phi_{str} (\square) = \Phi_{str} (\square)$

 \rightarrow Global wave function of loops $\Phi_{str} \left(\bigotimes \bigotimes \right) = 1$

There is a Hamiltonian *H* (the toric code model):
(1) Open ends cost energy
(2) string can hop and reconnect freely. The ground state of *H* gives rise to the above string lqiuid wave function.

Kitaev quant-ph/9707021

 $\mathbf{D}\mathbf{G}\mathbf{T}$

 \square Local rules of another string liquid (ground state): (1) Dance while holding hands (no open ends) $(2) \Phi_{\mathsf{str}} \left(\square \right) = \Phi_{\mathsf{str}} \left(\square \right), \Phi_{\mathsf{str}} \left(\square \right) = -\Phi_{\mathsf{str}} \left(\square \square \right)$ \rightarrow Global wave function of loops $\Phi_{str} \left(\bigotimes \bigotimes \right) = (-)^{\# \text{ of loops}}$ • The second string liquid $\Phi_{\sf str}\left(\overset{\infty}{\otimes}\overset{\infty}{\otimes}\right)=(-)^{\#\,{\sf of}\,{\sf loops}}$ can exist The first string liquid $\Phi_{\sf str}\left(\bigotimes_{str}\right) = 1$ can exist in both 2- and

()(1)(1)

• Local rules of another string liquid (ground state): (1) Dance while holding hands (no open ends) $(2) \Phi_{str} \left(\blacksquare \right) = \Phi_{str} \left(\blacksquare \right), \Phi_{str} \left(\blacksquare \right) = -\Phi_{str} \left(\blacksquare \blacksquare \right)$ \rightarrow Global wave function of loops $\Phi_{str} \left(\bigotimes \bigotimes \right) = (-)^{\# \text{ of loops}}$ • The second string liquid $\Phi_{str} \left(\bigotimes \bigotimes \right) = (-)^{\# \text{ of loops}}$ can exist only in 2-dimensions. The first string liquid $\Phi_{str} \left(\bigotimes \bigotimes \right) = 1$ can exist in both 2- and 3-dimensions.

• Quantum entanglement \rightarrow WHOLE = $\sum parts + 7$

- 4 locally indistinguishable states on torus for both liquids \rightarrow topo. order
- Ground state degeneracy cannot distinguish them.

Knowing all the parts \neq knowing the whole

Topological excitations

- Ends of strings behave like point objects.
- They cannot be created alone → topological
- Let us fix 4 ends of string on a sphere *S*². *How many locally indistinguishable states are there?*
- There are 2 sectors \rightarrow 2 states (?)
- In fact, there is only 1 sector \rightarrow 1 state, due to the string reconnection fluctuations Φ_{str} () = $\pm \Phi_{str}$ (
- In general, fixed 2N ends of string → 1 state. Each end of string has no degeneracy → no internal degrees of freedom.
- \bullet Another type of topological excitation **vortex** at \times :

Xiao-Gang Wen (MIT), Higher Structures and Field Theory

Topological excitations

- Ends of strings behave like point objects.
- They cannot be created alone → topological
- Let us fix 4 ends of string on a sphere S². How many locally indistinguishable states are there?
- There are 2 sectors \rightarrow 2 states (?)
- In fact, there is only 1 sector \rightarrow 1 state, due to the string reconnection fluctuations Φ_{str} () = $\pm \Phi_{str}$ (
- In general, fixed 2N ends of string → 1 state. Each end of string has no degeneracy → no internal degrees of freedom.
- Another type of topological excitation **vortex** at ×:

Xiao-Gang Wen (MIT), Higher Structures and Field Theory

Topological excitations

- Ends of strings behave like point objects.
- They cannot be created alone → topological
- Let us fix 4 ends of string on a sphere S². How many locally indistinguishable states are there?
- There are 2 sectors ightarrow 2 states (?)
- In fact, there is only 1 sector \rightarrow 1 state, due to the string reconnection fluctuations Φ_{str} () = $\pm \Phi_{str}$ ()
- In general, fixed 2N ends of string → 1 state. Each end of string has no degeneracy → no internal degrees of freedom.
- Another type of topological excitation **vortex** at ×:

 $|m\rangle = \sum (-)^{\# \text{ of loops around } \times}$

Emergence of fractional spin (topological spin)

- Ends of strings are point-like. Are they bosons or fermions? *Two ends* = a single string = a boson, but each end can still be a fermion. Fidkowski Freedman Nayak Walker Wang cond-mat/0610583
- $\Phi_{str} \left(\bigotimes \bigotimes \right) = 1$ string liquid $\Phi_{str} \left(\blacksquare \right) = \Phi_{str} \left(\blacksquare \right)$
- End of string wave function: $|\text{end}\rangle = [+c]^{\circ} + c]^{\circ} + \cdots$

The string near the end is totally fixed, since the end is determined by a trapping Hamiltonian δH which can be chosen to fix the string. The string alway from the end is not fixed, since they are determined by the bluk Hamiltonian H which gives rise to a string liquid.

- 360° rotation: $\uparrow \rightarrow \uparrow$ and $\uparrow = \uparrow \rightarrow \uparrow$: $R_{360^\circ} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- We find two types of topological exitations (1) $|e\rangle = |+| ?$ spin 0. (2) $|f\rangle = |-|?$ spin 1/2.

Spin-statistics theorem: Emergence of Fermi statistics

- (a) \rightarrow (b) = exchange two string-ends.
- (d) \rightarrow (e) = 360° rotation of a string-end.
- Amplitude (a) = Amplitude (e)
- Exchange two string-ends plus a 360° rotation of one of the string-end generate no phase.

\rightarrow Spin-statistics theorem

\mathbb{Z}_2 topological order and its physical properties

- $\Phi_{\text{str}} \left(\bigotimes \bigotimes \right) = 1 \text{ string liquid has } \mathbb{Z}_2 \text{-topological order.}$ $4 \text{ types of topological excitations:} \qquad (f \text{ is a fermion})$ $(1) |e\rangle = \mathring{|} + \widehat{?} \text{ spin } 0. \qquad (2) |f = e \otimes m\rangle = \mathring{|} \widehat{?} \text{ spin } 1/2.$ $(3) |m\rangle = \times \bigotimes \text{ spin } 0. \qquad (4) |1\rangle = \times + \bigotimes \text{ spin } 0.$ The type-1 excitation is the tirivial excitation, that can be
- The type-1 excitation is the tirivial excitation, that can be created by local operators.

The type-*e*, type-*m*, and type-*f* excitations are non-tirivial excitation, that cannot be created by local operators.

- 1, e, m are bosons and f is a fermion. e, m, and f have π mutual statistics between them.
- Fusion rule:

 $e \otimes e = 1;$ $f \otimes f = 1;$ $m \otimes m = 1;$ $e \otimes m = f;$ $f \otimes e = m;$ $m \otimes f = e;$ $1 \otimes e = e;$ $1 \otimes m = m;$ $1 \otimes f = f;$

Topo. order and topological quantum field theory

 \mathbb{Z}_2 topologica order is described by \mathbb{Z}_2 gauge theory – a topological quantum field theory Physical properties of \mathbb{Z}_2 gauge theory = Physical properties of \mathbb{Z}_2 topological order

- \mathbb{Z}_2 -charge $\rightarrow e$, \mathbb{Z}_2 -vortex $\rightarrow m$, bound state $\rightarrow f$.
- \mathbb{Z}_2 -charge (a representatiosn of \mathbb{Z}_2) and \mathbb{Z}_2 -vortex (π -flux) as two bosonic point-like excitations.
- Z₂-charge and Z₂-vortex bound state → a fermion (f), since Z₂-charge and Z₂-vortex has a π mutual statistics between them (charge-1 around flux-π).
- \mathbb{Z}_2 -charge, \mathbb{Z}_2 -vortex, and their bound state has a π mutual statistics between them.
- $\bullet~\mathbb{Z}_2$ gauge theory on torus also has 4 degenerate ground states

Emergence of fractional spin and semion statistics

- $\Phi_{str} \left(\bigotimes \right) = (-)^{\# \text{ of loops}} \text{ string liquid. } \Phi_{str} \left(\square \right) = -\Phi_{str} \left(\square \square \right)$
- End of string wave function: $|\text{end}\rangle = |+c^{\textcircled{o}} c^{\textcircled{o}} + \cdots$
- 360° rotation: $\stackrel{\bullet}{|} \rightarrow \stackrel{\bullet}{\gamma}$ and $\stackrel{\bullet}{\gamma} = -\stackrel{\bullet}{\backslash} \rightarrow -\stackrel{\bullet}{|}: R_{360^{\circ}} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$
- Types of topological excitations: $(s_{\pm} \text{ are semions})$ (1) $|s_{+}\rangle = |+i^{\circ}| \sin \frac{1}{4}$. (2) $|s_{-} = s_{+} \otimes m\rangle = |-i^{\circ}| \sin -\frac{1}{4}$ (3) $|m\rangle = \times - \otimes \text{ spin } 0$. (4) $|1\rangle = \times + \otimes \text{ spin } 0$.
- **double-semion topo. order** = $U^2(1)$ Chern-Simon gauge theory $L(a_{\mu}) = \frac{2}{4\pi} a_{\mu} \partial_{\nu} a_{\lambda} \epsilon^{\mu\nu\lambda} \frac{2}{4\pi} \tilde{a}_{\mu} \partial_{\nu} \tilde{a}_{\lambda} \epsilon^{\mu\nu\lambda}$
- Two string lquids \rightarrow Two topological orders: \mathbb{Z}_2 topo. order Read Sachdev PRL 66, 1773 (91), Wen PRB 44, 2664 (91), Moessner Sondhi PRL 86 1881 (01) and double-semion topo. order Freedman etal cond-mat/0307511, Levin Wen cond-mat/0404617

Emergence of fractional spin and semion statistics

- $\Phi_{str} \left(\bigotimes \right) = (-)^{\# \text{ of loops}} \text{ string liquid. } \Phi_{str} \left(\bigcirc \right) = -\Phi_{str} \left(\blacksquare \Box \right)$
- End of string wave function: $|\text{end}\rangle = |+c^{\textcircled{o}} c^{\textcircled{o}} + \cdots$
- 360° rotation: $\stackrel{\bullet}{|} \rightarrow \stackrel{\bullet}{\gamma}$ and $\stackrel{\bullet}{\gamma} = -\stackrel{\bullet}{\backslash} \rightarrow -\stackrel{\bullet}{|}: R_{360^{\circ}} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$
- Types of topological excitations: $(s_{\pm} \text{ are semions})$ (1) $|s_{+}\rangle = |+i^{\circ}| \sin \frac{1}{4}$. (2) $|s_{-} = s_{+} \otimes m\rangle = |-i^{\circ}| \sin -\frac{1}{4}$ (3) $|m\rangle = \times - \otimes \text{ spin } 0$. (4) $|1\rangle = \times + \otimes \text{ spin } 0$.
- double-semion topo. order = $U^2(1)$ Chern-Simon gauge theory $L(a_{\mu}) = \frac{2}{4\pi} a_{\mu} \partial_{\nu} a_{\lambda} \epsilon^{\mu\nu\lambda} \frac{2}{4\pi} \tilde{a}_{\mu} \partial_{\nu} \tilde{a}_{\lambda} \epsilon^{\mu\nu\lambda}$
- Two string lquids \rightarrow Two topological orders: \mathbb{Z}_2 topo. order Read Sachdev PRL 66, 1773 (91), Wen PRB 44, 2664 (91), Moessner Sondhi PRL 86 1881 (01) and double-semion topo. order Freedman etal cond-mat/0307511, Levin Wen cond-mat/0404617

String-net liquid

Ground state:

• String-net liquid: allow three strings to join, but do not allow a string to end Φ_{str}

Levin Wen cond-mat/0404617

• The dancing rule :

$$\Phi_{\rm str}\left(\square\right) = \Phi_{\rm str}\left(\square\right)$$

$$\Phi_{\rm str}\left(\boxtimes\right) = \gamma \Phi_{\rm str}\left(\boxtimes\right) + \sqrt{\gamma} \Phi_{\rm str}\left(\boxtimes\right)$$

$$\Phi_{\rm str}\left(\boxtimes\right) = \sqrt{\gamma} \Phi_{\rm str}\left(\boxtimes\right) - \gamma \Phi_{\rm str}\left(\boxtimes\right)$$

$$\gamma = (\sqrt{5} - 1)/2$$

Topological excitations in string-net liquid

• Topological excitations:

For fixed 4 ends of string-net on a sphere S^2 , how many locally indistinguishable states are there? four states?

• In fact, there are only two linearly independent states. This can be obtain using fusion rule: $\phi \otimes \phi = 1 \oplus \phi$.

 $\phi\otimes\phi$ means bound state of two ϕ -particles (fusion). But what does $1\oplus\phi$ means?

Topological excitations in string-net liquid

• Topological excitations:

For fixed 4 ends of string-net on a sphere S^2 , how many locally indistinguishable states are there? four states?

• In fact, there are only two linearly independent states. This can be obtain using fusion rule: $\phi \otimes \phi = 1 \oplus \phi$.

 $\phi\otimes\phi$ means bound state of two ϕ -particles (fusion). But what does $1\oplus\phi$ means?

Topological excitations in string-net liquid

• Topological excitations:

For fixed 4 ends of string-net on a sphere S^2 , how many locally indistinguishable states are there? four states?

 In fact, there are only two linearly independent states. This can be obtain using fusion rule: φ ⊗ φ = 1 ⊕ φ.

 $\phi \otimes \phi$ means bound state of two ϕ -particles (fusion). But what does $1 \oplus \phi$ means?

A general theory of topological excitations

- In a gapped system: $H = \sum_{x} \hat{O}_{x}$, excitations = $\delta H_{\xi_{i}}$ gapped traps $H + \delta H_{\xi_{1}} + \delta H_{\xi_{2}} + \delta H_{\xi_{3}} \rightarrow$ gapped ground space $\mathcal{V}_{exc}(\xi, \xi', \cdots)$
- Different excitations are labeled by different trap Hamiltonians δH_{ξ}
- **Topological types**: Two excitations, δH_{ξ} ground-state Δ -sfinite gap and $\delta \tilde{H}_{\xi}$, are equivalent if δH_{ξ} and $\delta \tilde{H}_{\xi}$ can $\epsilon \to 0$ deform into each other without closing the gap. The equivalent class of excitations $[\delta H_{\xi}] \equiv type-\alpha$.
- Trivial type-1 if the corresponding equiv. class $[\delta H_{\xi}] \ni \delta H_{\xi} = 0$
- It can be created by local O_{ξ} : $\mathcal{V}_{\mathsf{exc}}(\xi,\xi',\cdots) = O_{\xi}\mathcal{V}_{\mathsf{exc}}(\xi',\cdots)$
- It has trivial double braiding (mutual statistics) with all excitations.
- Non-trivial type- α at ξ : $[\delta H_{\xi}] \not\supseteq \delta H_{\xi} = 0$

Xiao-Gang Wen (MIT), Higher Structures and Field Theory

Η

 ξ_1^{\times}

 $H + \Sigma \delta H_{\varepsilon}$

Simple/composite excitation and fusion category

- simple excitation at ξ: The ground space V^{simple}_{exc}(ξ,...) is robust against local perturbation near ξ → type *i*.
 composite excitation at ξ: The ground space
 - $\mathcal{V}_{\text{exc}}(\xi, \cdots)$ (the degeneracy) can be splitted by local perturbation near ξ , *ie* contain accidental degeneracy \rightarrow type $\alpha = i \oplus j$.
- Excitations in 1d ightarrow Fusion cat. theory
- Excitations $\delta H_{\xi} =$ objects
- Morphism = deformation $\delta H_{\alpha} \rightarrow \delta H_{\beta}$: $\alpha \rightarrow i$
- The object type-*i* = isomorphism classes of excitations δH_{ξ} .
- In 1D and above,

• Fusion space: $\mathcal{V}_{exc}(\xi_1, \xi_2, \cdots) = \mathcal{V}(i_1, i_2, \cdots)$

Xiao-Gang Wen (MIT), Higher Structures and Field Theory

 $\overline{\delta H_{\alpha}} \rightarrow \overline{\delta H_{\beta}}$

α

Simple/composite excitation and fusion category

- simple excitation at ξ: The ground space V^{simple}_{exc}(ξ,...) is robust against local perturbation near ξ → type *i*.
 composite excitation at ξ: The ground space V_{exc}(ξ,...) (the degeneracy) can be splitted by local perturbation near ξ, *ie* contain accidental degeneracy → type α = i ⊕ j.
- \bullet Excitations in 1d \rightarrow Fusion cat. theory
- Excitations δH_{ξ} = objects
- Morphism = deformation $\delta H_{\alpha} \rightarrow \delta H_{\beta}$: $\alpha \rightarrow i$
- The object type-i = isomorphism classes of excitations δH_{ξ} .
- In 1D and above, $i \otimes j = \underbrace{k \oplus \cdots \oplus k}_{k} \oplus \cdots = \oplus_{k} N_{k}^{ij} k$

• Fusion space: $\mathcal{V}_{exc}(\xi_1,\xi_2,\cdots) = \mathcal{V}(i_1,i_2,\cdots)$

Xiao-Gang Wen (MIT), Higher Structures and Field Theory

 N_{ν}^{ij} copies

 $\overline{\delta H_{\alpha}} \rightarrow \overline{\delta H_{\beta}}$

Consider two ways to compute $i \otimes j \otimes k = \bigoplus_{l} N_{l}^{ijk} I$ $(i \otimes j) \otimes k = \bigoplus_{m} N_{m}^{ij} \ m \otimes k = \bigoplus_{m,l} N_{m}^{ij} N_{l}^{mk} \ I$ $i \otimes (j \otimes k) = \bigoplus_{n} N_{n}^{jk} \ n \otimes k = \bigoplus_{n,l} N_{n}^{jk} N_{l}^{in} \ I$

$$\sum_{m,l} N_m^{ij} N_l^{mk} = \sum_{n,l} N_n^{jk} N_l^{in}$$
$$\mathbf{V}_i^{\mathbf{1}i} = N_i^{i\mathbf{1}} = \delta_{ij}, \quad \mathbf{N}_{\mathbf{1}}^{i\overline{j}} = \delta_{ij}.$$

But N_k^{ij} is not all the data to describe the fusion of excitations. There is an additional data.

The *F*-symbol: $F_{I;n\chi\delta}^{ijk;m\alpha\beta}$

- Consider the fusion $i \otimes j \otimes k \rightarrow I \oplus \cdots \oplus I \rightarrow \mathcal{V}(i, j, k; \cdots) = \mathcal{V}(I; \cdots) \oplus \cdots \oplus \mathcal{V}(I; \cdots)$, but the direct sum \oplus decomposition is not unique (like different choices of basis)
- $\begin{array}{l} -\mathcal{V}(i,j,k;\cdots) \rightarrow \oplus_{m,\alpha=1\cdots N_{m}^{ij}} \mathcal{V}_{\alpha}(m,k;\cdots) \\ \rightarrow \oplus_{m,\alpha} \oplus_{\beta,l} \mathcal{V}_{\alpha;m,\beta}(l;\cdots) = \oplus_{m,\alpha;\beta,l} \mathcal{V}_{\alpha;m,\beta}(l;\cdots) \\ -\mathcal{V}(i,j,k;\cdots) \rightarrow \oplus_{n,\chi=1\cdots N_{n}^{jk}} \mathcal{V}_{\chi}(i,n;\cdots) \\ \rightarrow \oplus_{n,\chi} \oplus_{\delta,l} \mathcal{V}_{\chi;n,\delta}(l;\cdots) = \oplus_{n,\chi;\delta,l} \mathcal{V}_{\chi;n,\delta}(l;\cdots) \end{array}$
- $\mathcal{V}_{\alpha;m,\beta}(I;\cdots)$ and $\mathcal{V}_{\chi;n,\delta}(I;\cdots)$ like two sets of basis that span the same fusion space $\mathcal{V}(i,j,k;\cdots)$
- The F-symbol is a unitary matrix that relate the two basis

$$\begin{array}{c} \mathcal{V}_{\chi;n,\delta}(I;\cdots) & \stackrel{i}{\searrow}_{n}^{j} \chi^{k} \\ \stackrel{i}{\searrow}_{n}^{j} & \stackrel{k}{\swarrow}_{n}^{k} = \sum_{\substack{m \alpha \beta \\ i \\ l}} (F_{l}^{ijk})_{n\chi\delta}^{m\alpha\beta} \mathcal{V}_{\alpha;m,\beta}(I;\cdots) & \stackrel{i}{\longrightarrow}_{m}^{j} \chi^{k} \\ \stackrel{i}{\boxtimes}_{n}^{j} & \stackrel{k}{\boxtimes}_{n}^{l} \chi^{i} \\ \stackrel{i}{\boxtimes}_{n}^{j} & \stackrel{k}{\boxtimes}_{n}^{l} \chi^{i} \\ \stackrel{i}{\boxtimes}_{n}^{m} & \stackrel{i}{\boxtimes}_{n}^{m} & \stackrel{i}{\boxtimes}_{n}^{l} \chi^{i} \\ \stackrel{i}{\boxtimes}_{n}^{m} & \stackrel{i}{\boxtimes}_{n}^{m} & \stackrel{i}{\boxtimes}_{n}^{l} & \stackrel{i}{\boxtimes}_{n}^{l} \\ \stackrel{i}{\boxtimes}_{n}^{m} & \stackrel{i}{\boxtimes}_{n}^{m} & \stackrel{i}{\boxtimes}_{n}^{l} \\ \stackrel{i}{\boxtimes}_{n}^{m} & \stackrel{i}{\boxtimes}_{n}^{m} & \stackrel{i}{\boxtimes}_{n}^{l} \\ \stackrel{i}{\boxtimes}_{n}^{m} & \stackrel{i}{\boxtimes}_{n}^{l} & \stackrel{i}{\boxtimes}_{n}^{l} \\ \stackrel{i}{\boxtimes}_{n}^{m} & \stackrel{i}{\boxtimes}_{n}^{l} \\ \stackrel{i}{\boxtimes}_{n}^{m} & \stackrel{i}{\boxtimes}_{n}^{l} \\ \stackrel{i}{\boxtimes}_{n}^{m} & \stackrel{i}{\boxtimes}_{n}^{l} \\ \stackrel{i}{\boxtimes}_{n}^{l} & \stackrel{i}{\boxtimes}_{n}^{$$

Xiao-Gang Wen (MIT), Higher Structures and Field Theory

Consistent conditions for $F_{l;n\chi\delta}^{ijk;m\alpha\beta}$ and UFC

The two paths should lead to the same unitary trans.:

 $\sum_{t,\eta,\varphi,\kappa} F_{n;t\eta\varphi}^{ijk;m\alpha\beta} F_{p;s\kappa\gamma}^{itl;n\varphi\chi} F_{s;q\delta\phi}^{jkl;t\eta\kappa} = \sum_{\epsilon} F_{p;q\delta\epsilon}^{mkl;n\beta\chi} F_{p;s\phi\gamma}^{ijq;m\alpha\epsilon}$ Such a set of non-linear algebraic equations is the famous pentagon identity. MacLane 63; Moore-Seiberg 89 $(N_k^{ij}, F_{l;n\chi\delta}^{ijk;m\alpha\beta}) \rightarrow \text{Unitary fusion category} \rightarrow \text{theory of 1d excitations}$

An example of UFC: Fibonacci fusion category

- A 1d topo. order described by a Fibonacci fusion category:
- Two types of topological excitations $\mathbf{1}, \phi$.
- Fusion rule N_k^{ij} : $\phi \otimes \phi = \mathbf{1} \oplus \phi$.

- F-symbol
$$\mathcal{F}_{l;n\chi\delta}^{ijk;m\alpha\beta}$$
: $\mathcal{F}_{\phi}^{\phi\phi\phi} = \begin{pmatrix} \gamma & \gamma^{1/2} \\ \gamma^{1/2} & -\gamma \end{pmatrix}$, $\gamma = \frac{\sqrt{5}-1}{2}$
 $\mathcal{F}_{1}^{\phi\phi\phi} = \mathcal{F}_{\phi}^{1\phi\phi} = \mathcal{F}_{\phi}^{\phi\phi1} = \mathcal{F}_{\phi}^{\phi\phi1} = \cdots = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Relation to the 2d string-net wave function

$$\Phi_{\mathsf{str}}\left(\bigotimes\right) = \gamma \Phi_{\mathsf{str}}\left(\bigotimes\right) + \sqrt{\gamma} \Phi_{\mathsf{str}}\left(\bigotimes\right)$$
$$\Phi_{\mathsf{str}}\left(\bigotimes\right) = \sqrt{\gamma} \Phi_{\mathsf{str}}\left(\bigotimes\right) - \gamma \Phi_{\mathsf{str}}\left(\bigotimes\right)$$

Internal degrees of freedom - quantum dimension

- Let D_n be the number of locally indistinguishable states for $n \\ \phi$ -particles on a sphere. The internal degrees of freedom of ϕ
 - quantum dimension $d = \lim_{n \to \infty} D_n^{1/n}$

$$\underbrace{\phi \otimes \cdots \otimes \phi}_{n} = \underbrace{\mathbf{1} \oplus \cdots \oplus \mathbf{1}}_{D_{n}} \oplus \underbrace{\phi \oplus \cdots \oplus \phi}_{F_{n}}$$

 $D_n = \mathsf{Dim}(\mathsf{Hom}(\phi^{\otimes n}, \mathbf{1})), \quad F_n = \mathsf{Dim}(\mathsf{Hom}(\phi^{\otimes n}, \phi)),$

$$\underbrace{\phi \otimes \cdots \otimes \phi}_{n} \otimes \phi = \underbrace{\mathbf{1} \oplus \cdots \oplus \mathbf{1}}_{F_{n}} \oplus \underbrace{\phi \oplus \cdots \oplus \phi}_{F_{n} + D_{n}}$$

 $D_{n+1} = F_n, \ F_{n+1} = F_n + D_n = F_n + F_{n-1}, \ D_1 = 0, \ F_1 = 1.$

The internal degrees of freedom of ϕ is (spin- $\frac{1}{2}$ electron d = 2)

$$d = \lim_{n \to \infty} F_{n-1}^{1/n} = \frac{1 + \sqrt{5}}{2} = 1.61803398874989 \cdots$$

We say a UFC describes 1d excitations. But can we really find a 1d local lattice model such that its excitations are described by the UFC? Answer: No. This obstruction is called anomaly

 Remotely detectable = Realizable (anomaly-free) Every non-trivial topological excitation *i* can be remotely detected by at least one topo. braiding) \leftrightarrow the topological order is realizable

- 1+1D TQFT's are all unstable and do not correspond to 1d (1+1D) topo. orders (gapped phases with no symm.).

Xiao-Gang Wen (MIT), Higher Structures and Field Theory

We say a UFC describes 1d excitations. But can we really find a 1d local lattice model such that its excitations are described by the UFC? Answer: No. This obstruction is called anomaly How to tell if a theory for excitations is anomalous or not?

 Remotely detectable = Realizable (anomaly-free) Every non-trivial topological excitation *i* can be remotely detected by at least one topo. braiding) \leftrightarrow the topological order is realizable

 All non-tirival UFCs, as theory for 1d excitations, are There is no non-trivial (anomaly-free/realizable) topological order in 1d.

- 1+1D TQFT's are all unstable and do not correspond to 1d (1+1D) topo. orders (gapped phases with no symm.).

Xiao-Gang Wen (MIT), Higher Structures and Field Theory

Introduction to topological order

We say a UFC describes 1d excitations. But can we really find a 1d local lattice model such that its excitations are described by the UFC? Answer: **No**. This obstruction is called **anomaly** *How to tell if a theory for excitations is anomalous or not?*

 Remotely detectable = Realizable (anomaly-free) Every non-trivial topological excitation *i* can be remotely detected by at least one topo. excitation *j* via remote operations (such as braiding) ↔ the topological order is realizable

in the same dimension. Levin arXiv:1301.7355, Kong Wen arXiv:1405.5858

 All non-tirival UFCs, as theory for 1d excitations, are anomalous, ie not realizable by 1d lattice models
 There is no non-trivial (anomaly-free/realizable) topological order in 1d.

 1+1D TQFT's are all unstable and do not correspond to 1d (1+1D) topo. orders (gapped phases with no symm.).

Xiao-Gang Wen (MIT), Higher Structures and Field Theory

Introduction to topological order

We say a UFC describes 1d excitations. But can we really find a 1d local lattice model such that its excitations are described by the UFC? Answer: **No**. This obstruction is called **anomaly** How to tell if a theory for excitations is anomalous or not?

• Remotely detectable = Realizable (anomaly-free) Every non-trivial topological excitation *i* can be remotely detected by at least one topo. excitation *i* via remote operations (such as braiding) \leftrightarrow the topological order is realizable

in the same dimension. Levin arXiv:1301.7355, Kong Wen arXiv:1405.5858

- All non-tirival UFCs, as theory for 1d excitations, are anomalous, ie not realizable by 1d lattice models There is no non-trivial (anomaly-free/realizable) topological order in 1d.
- 1+1D TQFT's are all unstable and do not correspond to 1d (1+1D) topo. orders (gapped phases with no symm.).

Xiao-Gang Wen (MIT), Higher Structures and Field Theory

Introduction to topological order

Theory of 2d excitations = braided fusion category

Xiao-Gang Wen (MIT), Higher Structures and Field Theory

Introduction to topological order

Theory of 2d excitations = braided fusion category

- Braiding requires that $N_k^y = N_k^{y}$.
- Braiding $\rightarrow R_{k;\beta}^{ij;\alpha}$ **mutual statistics** = double braiding: $R_{k;\beta}^{ij;\alpha}R_{k;\gamma}^{ji;\beta} = e^{i\theta_{ij}^{(k)}}\delta_{\alpha\gamma}$

topological spin s_i : $\theta_{ij}^{(k)} = 2\pi(s_k - s_i - s_j)$

- Hexagon identity: $R_{p;\epsilon}^{ik;\phi}F_{l;m\delta}^{ikj;p\epsilon\lambda}R_{n;\chi}^{jk;\eta} = \sum_{m\alpha\beta}F_{l;m\alpha\gamma}^{kij;p\phi\lambda}R_{l;\beta}^{mk;\gamma}F_{l;n\chi\delta}^{ijk;m\alpha\beta}$
- Theory of unitary braided fusion category (UBFC) are fully characterized by those (N^{ij}_k, F^{ijk;mαβ}_{l;nγλ}, R^{ij;α}_{k;β})

 R_{h}

Examples of UBFC (excitations in 2d topo. orders)

- Anomalous (degenerate) UBFC
- $i: (1, e), d_i: (1, 1), s_i: (0, 0)$ (symm. fusion cat. $\mathcal{R}ep(\mathbb{Z}_2)$)
- Anomaly-free (non-degenerate) UBFC
- $i: (1, s), d_i: (1, 1), s_i: (0, \frac{1}{4}).$ ($\nu = \frac{1}{2}$ bosonic FQH state)
- $i: (1, \phi), d_i: (1, \frac{\sqrt{5}+1}{2} = \gamma), s_i: (0, \frac{2}{5}).$ (Fibonacci topo. order)
- $i: (1, e, m, f), d_i: (1, 1, 1, 1), s_i: (0, 0, 0, \frac{1}{2}).(\mathbb{Z}_2 \text{ gauge theory})$
- $i: (\mathbf{1}, \phi, \bar{\phi}, \phi \bar{\phi}), d_i: (1, \gamma, \gamma, \gamma^2), s_i: (0, \frac{2}{5}, -\frac{2}{5}, 0).$ (string-net)
- The *E*₂-center (Müger center) of UBFC *C* = the set of particles with trivial mutual statistics respecting to all others: *Z*₂(*C*) ≡ {*i* | θ^(k)_{ij} = 0, ∀*j*, *k*}

Remote detectable $\leftrightarrow Z_2(\mathcal{C}) = \{1\} \pmod{2} \leftrightarrow \text{Realizable}$ Excitations in an anomaly-free (realizable) 2d topological order are described by an unitary modular tenser category (UMTC)

Examples of UBFC (excitations in 2d topo. orders)

- Anomalous (degenerate) UBFC
- $i: (1, e), d_i: (1, 1), s_i: (0, 0)$ (symm. fusion cat. $\mathcal{R}ep(\mathbb{Z}_2)$)
- Anomaly-free (non-degenerate) UBFC
- $i: (1, s), d_i: (1, 1), s_i: (0, \frac{1}{4}).$ ($\nu = \frac{1}{2}$ bosonic FQH state)
- $i: (1, \phi), d_i: (1, \frac{\sqrt{5}+1}{2} = \gamma), s_i: (0, \frac{2}{5}).$ (Fibonacci topo. order)
- $-i: (1, e, m, f), d_i: (1, 1, 1, 1), s_i: (0, 0, 0, \frac{1}{2}).(\mathbb{Z}_2 \text{ gauge theory})$
- $i : (\mathbf{1}, \phi, \bar{\phi}, \phi \bar{\phi}), d_i : (1, \gamma, \gamma, \gamma^2), s_i : (0, \frac{2}{5}, -\frac{2}{5}, 0).$ (string-net)
- The *E*₂-center (Müger center) of UBFC *C* = the set of particles with trivial mutual statistics respecting to all others:
 *Z*₂(*C*) ≡ {*i* | θ^(k)_{ij} = 0, ∀*j*, *k*}

Remote detectable $\leftrightarrow Z_2(\mathcal{C}) = \{1\} \pmod{3} \leftrightarrow \text{Realizable}$ Excitations in an anomaly-free (realizable) 2d topological order are described by an unitary modular tenser category (UMTC)

Xiao-Gang Wen (MIT), Higher Structures and Field Theory

Do UMTC's classify 2d bosonic topo. orders?

- No! UMTC's classify {2d bosonic topological orders} {2d bosonic invertible topological orders}
- Stacking two topological phases a, b give rise to a third topological phase $c = a \otimes b \rightarrow$ The set of topological c-TOphases forms a monoid. a-TO - b-TO
- 1) A topo. order is **invertible** iff it has no non-trivial topo. excitations (but has a non-trivial domain wall (morphisms) to other topo. phases).
 2) A topo. order is invertible iff its **topo. partition function** are pure phases: Z_{top}(Mⁿ) ∈ U(1) → classify inv. topo. orders

H-type invertible topo. order Boson: Fermion:

> Kapustin arXiv:1403.1467; Kong Wen arXiv:1405. Kapustin Thorngren Turzillo Wang arXiv:1406.7329; Freed arXiv:1406.

Xiao-Gang Wen (MIT), Higher Structures and Field Theory

Introduction to topological order

<u>Do UMTC's classify 2d bosonic topo. orders?</u>

- No! UMTC's classify {2d bosonic topological orders} {2d bosonic invertible topological orders}
- Stacking two topological phases a, b give rise to a third topological phase $c = a \otimes b \rightarrow b$ a-TO The set of topological _{c-TO} phases forms a monoid. b-TO

• 1) A topo. order is **invertible** iff it has no non-trivial topo. excitations (but has a non-trivial domain wall (morphisms) to other topo. phases).

2) A topo. order is invertible iff its topo. partition function are pure phases: $Z_{top}(M^n) \in U(1) \rightarrow classify inv. topo. orders$

H-type invertible 1 + 1D 2 + 1D 3 + 1D 4 + 1D 5 + 1D 6 + 1Dtopo. order $\mathbb{Z}_{E_8} \quad 0 \quad \mathbb{Z}_2 \quad 0 \\ \mathbb{Z}_{P+ip} \quad 0 \quad 0 \quad 0$ Boson: $\mathbb{Z}_{2p-\text{wave}} \quad \mathbb{Z}_{p+ip}$ Fermion:

Kapustin arXiv:1403.1467; Kong Wen arXiv:1405.5858

0

 $\mathbb{Z} \oplus \mathbb{Z}$

 $\mathbb{Z} \oplus \mathbb{Z}$

Kapustin Thorngren Turzillo Wang arXiv:1406.7329; Freed arXiv:1406.7278 Xiao-Gang Wen (MIT), Higher Structures and Field Theory Introduction to topological order 39 / 61

Invertible topo. order (no fractionalized excitation)

- 2+1D: $Z_{top}(M^3) = e^{i\frac{2\pi c}{24}\int_{M^3}\omega_3(g_{\mu\nu})}$ where ω_3 is the grav. CS term: $d\omega_3 = p_1$ and p_1 is the first Pontryagin class.
- The quantization of the topo. term: $c = 8 \times \text{int.} \rightarrow \mathbb{Z}$ -class: $\int_{M} \omega_{3}(g_{\mu\nu}) = \int_{N,\partial N=M} p_{1} = \int_{N',\partial N'=M} p_{1} \mod 3,$ since $\int_{N_{\text{closed}}} p_{1} = 0 \mod 3.$
- 4+1D: $Z_{top}(M^5) = e^{i\pi \int_{M^5} w_2 w_3}$ where w_i is the i^{th} Stiefel-Whitney class $\rightarrow \mathbb{Z}_2$ -class. We find $\int_{M^5} w_2 w_3 = 1$ when $M^5 = \mathbb{C}P^2 \geq_{\varphi} S^1$ and $\varphi : \mathbb{C}P^2 \rightarrow (\mathbb{C}P^2)^*$
- 6+1D: Two independent gravitational Chern-Simons terms: $Z_{top}(M^7) = e^{2\pi i \int_{M^7} \left[k_1 \frac{\tilde{\omega}_7 - 2\omega_7}{5} + k_2 \frac{-2\tilde{\omega}_7 + 5\omega_7}{9} \right]}$ where $d\omega_7 = p_2$, $d\tilde{\omega}_7 = p_1 p_1 \rightarrow \mathbb{Z} \oplus \mathbb{Z}$ -class (k_1, k_2) .
- Topological order = UMTC + extra info (such as edge) UMTC = Topo.-orders/invertible-topo.-orders

Xiao-Gang Wen (MIT), Higher Structures and Field Theory

Introduction to topological order

UMTC: 2+1D bosonic topo. orders mod invertibles

Ç	$s_n^m = \frac{\sin(\pi (m+1)/(m+1))}{\sin(\pi / (m+2))}$	<u>r2</u> Rowell Stong Wang arXiv:0712.1377; Wen arXiv:1506.05768			
N_c^B	d_1, d_2, \cdots	s_1, s_2, \cdots wave func.	N _c ^B	d_1, d_2, \cdots	s_1, s_2, \cdots wave func.
$1_1^{\bar{B}}$	1	0			
2 ^B	1,1	$0, \frac{1}{4}$ semion $\prod (z_i - z_i)^2$	2^{B}_{-1}	1,1	$0, -\frac{1}{4} \prod (z_i^* - z_i^*)^2$
$2^{B}_{14/5}$	$1, \zeta_3^1$	$0, \frac{2}{5}$ chiral Fibonacci TO	$2^{B}_{-14/5}$	$1, \zeta_3^1$	$0, -\frac{2}{5}$ anti-chiral Fib.
3 ^B ₂	1, 1, 1	$0, \frac{1}{3}, \frac{1}{3}$ (221) double-layer	3^{B}_{-2}	1, 1, 1	$0, -\frac{1}{3}, -\frac{1}{3}$
$3_{8/7}^{B}$	$1, \zeta_5^1, \zeta_5^2$	$0, -\frac{1}{7}, \frac{2}{7}$	3 ^B -8/7	$1, \zeta_{5}^{1}, \zeta_{5}^{2}$	$0, \frac{1}{7}, -\frac{2}{7}$
$3^{B}_{1/2}$	$1, 1, \zeta_2^1$	$0, \frac{1}{2}, \frac{1}{16}$ Ising TO	$3^{B}_{-1/2}$	$1, 1, \zeta_2^1$	$0, \frac{1}{2}, -\frac{1}{16}$
$3^{B}_{3/2}$	$1, 1, \zeta_2^1$	$0, \frac{1}{2}, \frac{3}{16}$ $\mathcal{S}(220), \Psi_{Pfaffian}$	$3^{B}_{-3/2}$	$1, 1, \zeta_2^1$	$0, \frac{1}{2}, -\frac{3}{16}$
$3_{5/2}^{B}$	$1, 1, \zeta_2^1$	$0, \frac{1}{2}, \frac{5}{16} \qquad \Psi_{\nu=2}^2 SU(2)_2^f$	$3^{B}_{-5/2}$	$1, 1, \zeta_2^1$	$0, \frac{1}{2}, -\frac{5}{16}$
$3^{B}_{7/2}$	$1, 1, \zeta_2^1$	$0, \frac{1}{2}, \frac{7}{16}$	$3^{B}_{-7/2}$	$1, 1, \zeta_2^1$	$0, \frac{1}{2}, -\frac{7}{16}$
$4_0^{B,a}$	1, 1, 1, 1	$0, 0, 0, \frac{1}{2}$ (1, e, m, f) \mathbb{Z}_2 -gauge	4 ^B ₄	1, 1, 1, 1	$0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$
4 ^B ₁	1, 1, 1, 1	$0, \frac{1}{8}, \frac{1}{8}, \frac{1}{2}$ $\prod (z_i - z_j)^4$	4^{B}_{-1}	1, 1, 1, 1	$0, -\frac{1}{8}, -\frac{1}{8}, \frac{1}{2}$
4 ^B ₂	1, 1, 1, 1	$0, \frac{1}{4}, \frac{1}{4}, \frac{1}{2}$ (220) double-layer	4^{B}_{-2}	1, 1, 1, 1	$0, -\frac{1}{4}, -\frac{1}{4}, \frac{1}{2}$
4 ^{<i>B</i>} ₃	1, 1, 1, 1	$0, \frac{3}{8}, \frac{3}{8}, \frac{1}{2}$	4 ^B ₋₃	1, 1, 1, 1	$0, -\frac{3}{8}, -\frac{3}{8}, \frac{1}{2}$
40 ^{B, b}	1, 1, 1, 1	$0, 0, \frac{1}{4}, -\frac{1}{4}$ double semion	$4^{B}_{9/5}$	$1, 1, \zeta_3^1, \zeta_3^1$	$0, -\frac{1}{4}, \frac{3}{20}, \frac{2}{5}$
$4^{B}_{-9/5}$	$1, 1, \zeta_3^1, \zeta_3^1$	$0, \frac{1}{4}, -\frac{3}{20}, -\frac{2}{5}$	4 ^B _{19/5}	$1, 1, \zeta_3^1, \zeta_3^1$	$0, \frac{1}{4}, -\frac{7}{20}, \frac{2}{5}$
$4^{B}_{-19/5}$	$1, 1, \zeta_3^1, \zeta_3^1$	$0, -\frac{1}{4}, \frac{7}{20}, -\frac{2}{5} \Psi_{\nu=3}^2 SU(2)_3^f$	40 ^{B, c}	$1, \zeta_3^1, \zeta_3^1, \zeta_3^1 \zeta_3^1$	$0, \frac{2}{5}, -\frac{2}{5}, 0$ Fibonacci ²
$4^{B}_{12/5}$	$1, \zeta_3^1, \zeta_3^1, \zeta_3^1 \zeta_3^1$	$0, -\frac{2}{5}, -\frac{2}{5}, \frac{1}{5}$	$4^{B}_{-12/5}$	$1, \zeta_3^1, \zeta_3^1, \zeta_3^1\zeta_3^1$	$0, \frac{2}{5}, \frac{2}{5}, -\frac{1}{5}$
4 ^B _{10/3}	$1, \zeta_7^1, \zeta_7^2, \zeta_7^3$	$0, \frac{1}{3}, \frac{2}{9}, -\frac{1}{3}$	4 ^B _{-10/3}	$1, \zeta_7^1, \zeta_7^2, \zeta_7^3$	$0, -\frac{1}{3}, -\frac{2}{9}, \frac{1}{3}$
50 ^B	1, 1, 1, 1, 1	$0, \frac{1}{5}, \frac{1}{5}, -\frac{1}{5}, -\frac{1}{5}$ (223) DL	5 ^{<i>B</i>} ₄	1, 1, 1, 1, 1, 1	$0, \frac{2}{5}, \frac{2}{5}, -\frac{2}{5}, -\frac{2}{5}$
$5_2^{B,a}$	$1, 1, \zeta_4^1, \zeta_4^1, 2$	$0, 0, \frac{1}{8}, -\frac{3}{8}, \frac{1}{3}$	52 ^{B,b}	$1, 1, \zeta_4^1, \zeta_4^1, 2$	$0, 0, -\frac{1}{8}, \frac{3}{8}, \frac{1}{3}$
$5^{B,b}_{-2}$	$1, 1, \zeta_4^1, \zeta_4^1, 2$	$0, 0, \frac{1}{8}, -\frac{3}{8}, -\frac{1}{3}$	$5^{B,a}_{-2}$	$1, 1, \zeta_4^1, \zeta_4^1, 2$	$0, 0, -\frac{1}{8}, \frac{3}{8}, -\frac{1}{3}$
$5^{B}_{16/11}$	$1, \zeta_9^1, \zeta_9^2, \zeta_9^3, \zeta_9^4$	$0, -\frac{2}{11}, \frac{2}{11}, \frac{1}{11}, -\frac{5}{11}$	$5^{B}_{-16/11}$	$1, \zeta_{9}^{1}, \zeta_{9}^{2}, \zeta_{9}^{3}, \zeta_{9}^{4}$	$0, \frac{2}{11}, -\frac{2}{11}, -\frac{1}{11}, \frac{5}{11}$
с ^В ́	1 2 2 2 2 4	0 1 1 1 3	EB	4 - 2 - 2 - 2 - 1	01113

Classify *n*d topological orders via excitations

- Excitations in an *n*d topo. objects = codim-1 excitations orders are described by 1-morphisms = codim-2 excitations a fusion *n*-category (n-1)-morphisms = point excitations
 An example of fusion 2-category:
 - $s \rightarrow$ object (string excitation)
 - u
 ightarrow 1-morphisms (domain wall between strings)
 - $e \rightarrow 1$ -morphisms (domain wall between trivial string = point excitations)

- $c \rightarrow$ string connecting trivial string via a domain wall (condensation excitation or descendent excitation)
- \bullet Vertical and horizontal fusions \rightarrow braiding of particules

Which fusion n-cats correspond to topo. orders?

- Realizable topo. orders ^η→ unitary fusion *n*-categories Ker(η) = invertible topological orders. Img(η) = anomaly-free unitary fusion *n*-categories. A generic unitray fusion *n*-category may not realizable by any *n*d lattice models, and are called anomalous. Unitary defined in Kong Wen Zheng arXiv:1502.01690
- Anomaly-free fusion *n*-categories = ??? Define anomaly-free macroscopically (ie mathematically), instead of microscopically via realizable by lattice models.
- We have defined **Anomaly-free** via the E_2 -center $Z_2(C) = n$ Vec (*ie* via mutual statistics). But this approach is hard to understand for higher categories.

Try to define anomaly via boundary-bulk relation

- A UFC describes 1d topological excitations \rightarrow 1+1D locally consistent effective theory.
- It is not realizable \rightarrow not globally consistent
 - \rightarrow having gravitational anomaly

- Topolocally ordered state grav.
- A 1d UFC (locally consistent) can always be realized as a gapped boundry of a 2d topolgocal order (a UMTC)
- The Fibonacci fusion category $\phi \otimes \phi = \mathbf{1} \oplus \phi$ describe the 1d excitations at a gapped boundary of 2d string-net state (UMTC $i : (\mathbf{1}, \phi, \overline{\phi}, \phi \overline{\phi}), d_i : (\mathbf{1}, \gamma, \gamma, \gamma^2), s_i : (\mathbf{0}, \frac{2}{5}, -\frac{2}{5}, \mathbf{0})):$

$$\Phi_{\text{str}}\left(\bigotimes\right) = \gamma \Phi_{\text{str}}\left(\bigotimes\right) + \sqrt{\gamma} \Phi_{\text{str}}\left(\bigotimes\right)$$

$$\Phi_{\text{str}}\left(\bigotimes\right) = \sqrt{\gamma} \Phi_{\text{str}}\left(\bigotimes\right) - \gamma \Phi_{\text{str}}\left(\bigotimes\right)$$

$$UFC \xrightarrow{\text{effective theory}}_{\text{a boundary}} 1d \text{ excitations}$$

$$2d \text{ string-net state}$$
Non-trivial bulk topo, order \rightarrow gray, anomaly at boundary

Xiao-Gang Wen (MIT), Higher Structures and Field Theory
Generalization to higher dimensions

Up to invertible topologioca orders

- Potencially anomalous *n*d topological orders = boundary of (n + 1)d topological orders = fusion *n*-catgeories.
- Anomaly-free *nd* topological orders = boundary of (*n*+1)d trivial product state = realizable by *n*d lattice models = special fusion *n*-catgeories. *But which ones?*

Kong Wen arXiv:1405.5858; Kong Wen Zheng arXiv:1502.01690

• Holographic principle of topological order:

The boundary uniquely determines the bulk. A potentially anomalous topological order (a fusion

n-category \mathcal{C}^n) determines a unique bulk topological order (a braided fusion *n*-category \mathcal{M}^n): $Z_1(\mathcal{C}^n) = \mathcal{M}^n$

 Z_1 is the E_1 -center: $Z_1(\mathcal{C}^n) = \mathcal{M}^n$ a braided fusion *n*-category. • The bulk topological order \mathcal{M}^n is anomaly-free

Generalization to higher dimensions

Up to invertible topologioca orders

- Potencially anomalous *n*d topological orders = boundary of (n + 1)d topological orders = fusion *n*-catgeories.
- Anomaly-free *nd* topological orders = boundary of (*n*+1)d trivial product state = realizable by *n*d lattice models
 - = special fusion *n*-catgeories. But which ones?

Kong Wen arXiv:1405.5858; Kong Wen Zheng arXiv:1502.01690

 Holographic principle of topological order: The boundary uniquely determines the bulk. A potentially anomalous topological order (a fusion *n*-category Cⁿ) determines a unique bulk topological order (a braided fusion *n*-category Mⁿ): Z₁(Cⁿ) = Mⁿ

 Z_1 is the E_1 -center: $Z_1(\mathcal{C}^n) = \mathcal{M}^n$ a braided fusion *n*-category.

• The bulk topological order \mathcal{M}^n is anomaly-free $\mathcal{M}^{n+1} = \Sigma \mathcal{M}^n; \ Z_1(\mathcal{M}^{n+1}) = (n+1) \text{Vec}$

Anomaly and holographic principle \rightarrow Classification

- Gravitational anomally Kong Wen arXiv:1405.5858; Kong Wen Zheng
 = topological order in one higher dimension arXiv:1502.01690
 Symmetry (t' Hooft) anomally Wen arXiv:1303.1803
 - =SPT order in one higher dimension

Anomaly-free (realizable) nd topological orders (up to invertibles) are classified by unitary fusion n-categories C^n that satisfy $Z_1(C^n) = n$ Vec and include all condansation excitations. (nVec = trivial braided fusion n-category.)

> Kong Wen arXiv:1405.5858; Kong Wen Zheng arXiv:1502.01690 Gaiotto Johnson-Freyd arXiv:1905.09566; Johnson-Freyd 2003.06663

Graviational anomaly: an old point of view

• The action of a classical field theory

$$\mathcal{S}(\phi, \mathbf{v}_{\mu}) = \int \mathrm{d}^{n} x \sqrt{\det(g_{\mu
u})} \mathcal{L}(\phi, \mathbf{v}_{\mu}; g_{\mu
u})$$

diffeomorphism invariance $x^{\mu} \rightarrow \tilde{x}^{\mu}$

• But for the path integral that define quantum theory, the partition function

$$Z = \int D[\phi] D[v_\mu] \mathrm{e}^{-\mathcal{S}(\phi,v_\mu)}$$

is not invariant under the diffeomorphism transformation due to the Jacobian for the change of integration measure

- \rightarrow invertible graviational anomaly
- Jacobian = non-zero complex number \rightarrow The anomalies are **invertible**.

Anomaly: a modern point of view \rightarrow non-invertible

Anomaly-free = realizable by lattice model in the same dim Anomalous = realizable by a boundary of a gapped lattice model in one higher dimension.

• A quantum field theory with gravitational anomaly cannot be realized as the low energy effective theory of a lattice model in the same dimension. Wen arXiv:1303.1803; Kong Wen arXiv:1405.5858

Fiorenza Valentino arXiv:1409.5723; Monnier arXiv:1410.7442

But can be realized as the low energy effective theory of a boundary of a lattice model in one-higher dimension.

- Gravitational anomaly = Topological order in one higher dimension \rightarrow non-invertible gravitational anomaly
- Symmetry ('t Hooft) anomaly = SPT order in one higher dimension → invertible symmetry anomaly

Xiao-Gang Wen (MIT), Higher Structures and Field Theory

Introduction to topological order

Try to characterize/classify gapless CFTs via non-invertible gravitational anomalies

Unlike **invertible gravitational anomaly**, the **non-invertible gravitational anomaly** (*ie* the topological order in one higher dimension, also called **categorical symmetry**) contain a lot of information, that can be used to characterize (or even classify) gapless conformal field theories (CFT) (*ie* with linear dispertion relation $\omega = v|k|$).

CFTs are characterized (or even classified) by their maximal emergent categorical symmetries CFTs are characterized (or even classified) by their maximal emergent non-invertible gravitational anomalies

Understand degenerate ground states on torus

• Remember that 2+1D topological order is characterized by degenerate ground states on torus and the modular **matrices** S, T that generate the representations of the mapping class group of the torus.

Consider a spacetime evolution M^3 , $T^2 = \partial M^3$.

- The Euclidean spacetime evolution produce a ground state on the torus $T^2 = \partial M^3$
- Embeding the worldline of different types x^{*} of anyon gives rise to different degenerate ground states $|\Psi_i\rangle$ on torus. space So the degenerate ground states are labeled by anyon types *i*.
- Under the modular transformations S, T they transform as

 $|\Psi_i\rangle \rightarrow S_{ii}|\Psi_i\rangle, \qquad |\Psi_i\rangle \rightarrow T_{ii}|\Psi_i\rangle$

A 1+1D non-invertible anomaly (=1+1D categorical symmetry = 2+1D topo. order) is described by S, T

C/

type-i anyon

How to understand various 1+1D boundaries of a 2+1D topological order? Ji & Wen arXiv:1905.13279

- modular covariant $Z_i(\tau + 1) = T_{ij}Z_j(\tau)$, $Z_i(-\frac{1}{\tau}) = S_{ij}Z_j(\tau)$ S, *T*-matrices = the 2+1D bulk topo. order = 1+1D anomaly

Gapped boundaries of 2+1D topological order

 The partition functions for 1+1D gapped state are constant integer Z(τ) = Z ∈ Z. The gapped boundaries have partition functions that satisfy

 $Z_i = T_{ij}Z_j, \ Z_i = S_{ij}Z_j, \ Z_1 = 1.$ • For \mathbb{Z}_2 topological order,

we find two solutions

$$\begin{pmatrix} Z_1 \\ Z_e \\ Z_m \\ Z_f \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}_{e-\text{cond}}, \quad \begin{pmatrix} Z_1 \\ Z_e \\ Z_m \\ Z_f \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}_{m-\text{cond}}$$
where x is the two kinds of boundaries from e -condensation is the two kinds of boundaries from e -condensation.

Xiao-Gang Wen (MIT), Higher Structures and Field Theory

а

SI

View topo. order as **categorical symmetry**: New name \rightarrow new understanding and new results

- 2+1D topological order = 1+1D non-invertible gravitational anomaly can be viewed as symmetry, which is called 1+1D categorical symmetry (due to the conervation of 2+1D excitations as described by their fusion rule).
 For example: the 2+1D Z₂ topological order (with excitations 1, e, m, f) corresponds to categorycal symmetry Z₂^(e) ∨ Z₂^(m) from mod-2 conservation of e and m.
- Gapped boundaries spontaneously break part of the categorical symmetry.

e-condensed boundary: $\mathbb{Z}_{2}^{(e)} \vee \mathbb{Z}_{2}^{(m)} \to \mathbb{Z}_{2}^{(m)}$. *m*-condensed boundary: $\mathbb{Z}_{2}^{(e)} \vee \mathbb{Z}_{2}^{(m)} \to \mathbb{Z}_{2}^{(e)}$

Gapless boundaries of 2+1D topological order

- What is the gapless 1+1D CFT with a given non-invertible gravitational anomaly (=1+1D categorical symmetry = 2+1D topological order)? Ji Wen arXiv:1912.13492
- For example: The *e*-condensed gapped boundary and the *m*-condensed gapped boundary are separated by a gapless critical point, which is nothing but the 1+1D $\mathbb{Z}_2^{(e)}$ (or $\mathbb{Z}_2^{(m)}$) symmetry breaking critical point (the CFT of Ising model). The critical point has no *e* condensation nor *m* condensation, and thus has the full $\mathbb{Z}_2^{(e)} \vee \mathbb{Z}_2^{(m)}$ categorical symmetry.

The 2+1D Z₂ topological order (*ie* the 1+1D Z₂^(e) ∨ Z₂^(m) categorical symmetry) determines the 1+1D CFT, hinting categorical symmetry may be used to classify CFTs.

2+1D Z_2 topological order (*ie* 1+1D $\mathbb{Z}_2^{(e)} \vee \mathbb{Z}_2^{(m)}$ categorical symmetry) can determine 1+1D CFTs

The 2+1D Z₂ topological order (*ie* the Z₂^(e) ∨ Z₂^(m) categorical symmetry) has four types of excitations 1, *e*, *m*, *f* and is characterized by

- Its gapless boundary has 4-component partition function $Z_1(\tau)$, $Z_e(\tau)$, $Z_m(\tau)$, and $Z_f(\tau)$ that satisfy $Z_i(\tau+1) = T_{ij}Z_j(\tau)$, $Z_i(-1/\tau) = S_{ij}Z_j(\tau)$,
 - where i, j = 1, e, m, f.
- The above equations have many possible solutions with no condensation (ie $Z_i \neq 0$) and τ -dependence (thus gapless).

Categorical symmetries \rightarrow CFTs Non-invertible gravitational anomalies \rightarrow CFTs

$$\begin{array}{ll} \text{Ising CFT (minimal model (4,3)): } c = \bar{c} = \frac{1}{2} \\ \begin{pmatrix} Z_{1}(\tau,\bar{\tau}) \\ Z_{e}(\tau,\bar{\tau}) \\ Z_{m}(\tau,\bar{\tau}) \\ Z_{f}(\tau,\bar{\tau}) \end{pmatrix} = \begin{pmatrix} |\chi_{0}^{\text{ls}}(\tau)|^{2} + |\chi_{\frac{1}{2}}^{\text{ls}}(\tau)|^{2} \\ |\chi_{\frac{1}{16}}^{\text{ls}}(\tau)|^{2} \\ |\chi_{0}^{\text{ls}}(\tau)\bar{\chi}_{\frac{1}{2}}^{\text{ls}}(\bar{\tau}) + \chi_{\frac{1}{2}}^{\text{ls}}(\tau)\bar{\chi}_{0}^{\text{ls}}(\bar{\tau}) \end{pmatrix}, \end{array}$$

• Minimal model (5,4) **CFT**: $c = \bar{c} = \frac{7}{10}$

$$\begin{pmatrix} Z_1\\ Z_e\\ Z_m\\ Z_f \end{pmatrix} = \begin{pmatrix} |\chi_0^{m4}|^2 + |\chi_{\frac{1}{10}}^{m4}|^2 + |\chi_{\frac{3}{5}}^{m4}|^2 + |\chi_{\frac{3}{2}}^{m4}|^2\\ |\chi_{\frac{7}{16}}^{m4}|^2 + |\chi_{\frac{3}{20}}^{m4}|^2\\ |\chi_0^{m4}\bar{\chi}_{\frac{3}{2}}^{m4} + \chi_{\frac{1}{10}}^{m4}\bar{\chi}_{\frac{3}{5}}^{m4} + \chi_{\frac{3}{5}}^{m4}\bar{\chi}_{\frac{1}{10}}^{m4} + \chi_{\frac{3}{2}}^{m4}\bar{\chi}_{0}^{m4} \end{pmatrix}$$

The correspondence is not 1-to-1. We can improve it by considering CFTs with minimal number of excitations.
 A categorical symm. Z₂^(e) ∨ Z₂^(m) → the canonical minimal Ising CFT

Xiao-Gang Wen (MIT), Higher Structures and Field Theory

The canonical gapless boundary of topo. order

• A *n* + 1d gapped topological order has one (or more) canonical gapless CFT boundaries, that

(1) has no condensation of bulk excitations, and

- (2) has minimal amount of boundary excitations.
- Topological Wick rotation: Kong Zheng arXiv:1905.04924; 1912.01760 2+1D topo. orders (UMTCs) classify 1+1D CFTs

$\label{eq:cfts} \mathsf{CFTs} \to \mathsf{Categorical} \text{ symmetries} \\ \mathsf{CFTs} \to \mathsf{Non-invertible} \text{ gravitational anomalies} \\$

• The Ising CFT (minimal model (4,3)): $c = \bar{c} = \frac{1}{2}$ $\begin{pmatrix} Z_1(\tau,\bar{\tau}) \\ Z_e(\tau,\bar{\tau}) \\ Z_m(\tau,\bar{\tau}) \\ Z_f(\tau,\bar{\tau}) \end{pmatrix} = \begin{pmatrix} |\chi_0^{ls}(\tau)|^2 + |\chi_{\frac{1}{2}}^{ls}(\tau)|^2 \\ |\chi_{\frac{1}{16}}^{ls}(\tau)|^2 \\ |\chi_0^{ls}(\tau)\bar{\chi}_{\frac{1}{2}}^{ls}(\bar{\tau}) + \chi_{\frac{1}{2}}^{ls}(\tau)\bar{\chi}_{0}^{ls}(\bar{\tau}) \end{pmatrix},$

is a boundary of 2+1D \mathbb{Z}_2 topological order with 4 anyons.

• The Ising CFT actually have a larger emergent categorical symmetry $UMTC_{Ising} \otimes \overline{UMTC}_{Ising}$ with nine anyons (*ie* can be a boundary of the 2+1D double Ising topological order with more topological excitations or more total quantum dim). The nine component partition function is given by

 $Z_{ij}(\tau) = \chi_i^{\mathsf{ls}}(\tau) \bar{\chi}_j^{\mathsf{ls}}(\bar{\tau}), \quad i, j = 0, \ 1/2, \ 1/16.$

• A Ising CFT \rightarrow the canonical maximal categorical symm. UMTC_{Ising} \otimes UMTC_{Ising} Ji Wen arXiv:1912.13492

Xiao-Gang Wen (MIT), Higher Structures and Field Theory

Introduction to topological order

• The minimal model (5,4) CFT: $c = \overline{c} = \frac{7}{10}$

$$\begin{pmatrix} Z_1 \\ Z_e \\ Z_m \\ Z_f \end{pmatrix} = \begin{pmatrix} |\chi_0^{m4}|^2 + |\chi_{\frac{1}{10}}^{m4}|^2 + |\chi_{\frac{3}{5}}^{m4}|^2 + |\chi_{\frac{3}{2}}^{m4}|^2 \\ |\chi_{\frac{7}{16}}^{m4}|^2 + |\chi_{\frac{3}{80}}^{m4}|^2 \\ |\chi_{\frac{7}{16}}^{m4}|^2 + |\chi_{\frac{3}{80}}^{m4}|^2 \\ \chi_0^{m4}\bar{\chi}_{\frac{3}{2}}^{m4} + \chi_{\frac{1}{10}}^{m4}\bar{\chi}_{\frac{3}{5}}^{m4} + \chi_{\frac{3}{5}}^{m4}\bar{\chi}_{\frac{1}{10}}^{m4} + \chi_{\frac{3}{2}}^{m4}\bar{\chi}_{0}^{m4} \end{pmatrix}$$

is a boundary of 2+1D \mathbb{Z}_2 topological order with 4 anyons. • The (5,4) CFT actually have a larger emergent categorical symmetry: it is a boundary of 2+1D topo. order $(2^B_{-14/5} \otimes 3^B_{7/2}) \otimes (2^B_{14/5} \otimes 3^B_{-7/2})$. $(2^B_{14/5} \sim G(2)|_1$ CS theory)

The minimal model (5, 4) CFT has the maximal emergent categorical symmetry (maximal non-invertible gravitational anomaly) given by $(2^B_{-14/5} \otimes 3^B_{7/2}) \otimes (2^B_{14/5} \otimes 3^B_{-7/2})$.

• 1+1D rational CFTs $\stackrel{1-\text{to-1}}{\longleftrightarrow}$ Maximal emergent 1+1D categorical symmetries

Are *n*d gapless CFTs "classified" by their maximal emergent categorical symmetry?

- The CFT at n > 1d spontaneous G-symmetry breaking transition point has a G ∨ G⁽ⁿ⁻¹⁾ categorical symmetry (*ie* is a boundary of n + 1d topological order of G-gauge theory, where G is finite. Ji Wen arXiv:1912.13492
 Such a critical point has a 0-symmetry G, and has an
- algebraic (n-1)-symmetry $G^{(n-1)}$.

Kong Lan Wen Zhang Zheng arXiv:2003.08898; arXiv:2005.14178

The relation between the CFT and its categorical symmetry (*ie* topological order in one higher dimension) is similar to the AdS/CFT duality.

Categorical symmetry and AdS/CFT duality

- AdS/CFT duality: Maldacena hep-th/9711200; Witten hep-th/9802150 (1) A CFT with G-symmetry has a AdS bulk that contains G-gauge theory. (2) AdS bulk that contains G-gauge theory (and gravity) has a boundary CFT that contain a G-symmetry.
 - A more detailed proposal:

Pure G-gauge theory (w/ charge fluc. & gravity) in (n+1)d AdS space \sim a particular CFT that appears at the nd spontaneous G-symmetry breaking transition, not other CFT's with G-symmetry.

Ji Wen arXiv:1912.13492

