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Condensed matter physics and higher category

e Condensed matter systems:
defined by microscopic theoretical lattice models
probed by macroscopic experimental measurements
e Concepts in condensed matter systems
defined by microscopic lattice models
defined by macroscopic properties
- Superconductivity: (micro) electron-pair condensation.
(macro) zero resistance, vortex quantization
e Concepts in mathematics (in some areas)
defined by topological invariants = macroscopic properties
e We have a microscopic definition of gapped phases in
condensed matter. A full macroscopic characterization of
nd (n+1D) gapped phases — unitary fusion n-category
e We have a microscopic definition of gapless phases in
condensed matter. A full macroscopic characterization of
nd (n+1D) gapless quantum phases — 777
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A many-body quantum system (a lattice model)

e A quantum system is described by (Vy, Hy)
Vn: a Hilbert space with a tensor decomposition
VN = ®,N:1V,-, where V; has a finite dimension.
Hy: a local Hamiltonian (hermitian operator) acting on Vy:
HN:ZiOi+ZUO<U>+”"
O; hermitian operator acts on V;,
Ojj hermitian operator acts on V; ® V;

ground—state A—>finite gap
subspace e—>0

.
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A many-body quantum system (a lattice model)

e A quantum system is described by (Vy, Hy)
Vn: a Hilbert space with a tensor decomposition
VN = ®,N:1V,-, where V; has a finite dimension.
Hy: a local Hamiltonian (hermitian operator) acting on Vy:
HN:ZiOi+ZUO<U>+”"
O; hermitian operator acts on V;,
Ojj hermitian operator acts on V; ® V;

ground—state A—>finite gap
subspace e—>0

.

e A gapped quantum system (a concept for N — oo limit) =
a sequence of pairs, {(Vn,. Hny )i (Vno: Hn, )i (Vns, Has )i -+
where each H)y has gapped eigenvalue spectrum: Ay — A,
0< A <ooandey —0,as N —

— ground-state subspace V4 (= gapped state in physics)
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Examples of gapped systems and gapped states

e The trivial state in 1d (space dim) je 1+1D (spacetime dim)
Yy =C5" Co=spanc{|1).[])}. e e eeeeee
Hy =3, 0i = =%, Z;, where Z;| 1); = [ 1);, Zi| L)i = —| 1)
— 1-dim. ground-state subspace = spanq{|--- 111 ---)},
where |- M1 ) = | 1)®N is a product state:
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Examples of gapped systems and gapped states

e The trivial state in 1d (space dim) je 1+1D (spacetime dim)
Yy =C5" Co=spanc{|1).[])}. e e eeeeee
Hy =3, 0i = =%, Z;, where Z;| 1); = [ 1);, Zi| L)i = —| 1)
— 1-dim. ground-state subspace = spanq{|--- 111 ---)},
where |- M1 ) = | 1)®N is a product state:

e Ising model: symmetry breaking state

Vn = C?Nv Cy = {’ T): ’ ¢>} Hy = Z/ Oi,i+1 = Z; ZiZitq
— 2-dim. ground-state subspace =

spanc{|--- M1, - W)}
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Examples of gapped systems and gapped states

e The trivial state in 1d (space dim) je 1+1D (spacetime dim)
Yy =C5" Co=spanc{|1).[])}. e e eeeeee
Hy =3, 0i = =%, Z;, where Z;| 1); = [ 1);, Zi| L)i = —| 1)
— 1-dim. ground-state subspace = spanq{|--- 111 ---)},
where |- M1 ) = | 1)®N is a product state:

e Ising model: symmetry breaking state

Vn = C?Nv Cy = {’ T): ’ ¢>} Hy = Z/ Oi,i+1 = Z; ZiZitq
— 2-dim. ground-state subspace =

spanc{| - P11 -+, |- L))
- Hy has a Z, on-site symmetry generated by U = ©@;X;

Xil 1= 14 Xil b)i=—1)ir  UHyU™! = Hy
Symmetry breaking state: A basis of ground-state subspace
|- M1 ) £ |- L +), that is symmetric (U|V) = e!?|V)) but
not product states. Another basis, |- 111 ), |- [l] -), that are
product states but not symmetric.
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Gapped phases of many-body quantum systems

e Two gapped systems, ie two sequences .
{Hn|n=oo} and {Hy|n—oo b, are equivalent  gounaosae | A—>finite gap
if Hy can smoothly deform into H}, without >t g->0
closing the gap A. The resulting equivalent classes are
gapped quantum phases of matter.
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Gapped phases of many-body quantum systems

e Two gapped systems, ie two sequences .
{Hn|n=oo} and {Hy|n—oo b, are equivalent  gounaosae | A—>finite gap
if Hy can smoothly deform into H}, without >t g->0
closing the gap A. The resulting equivalent classes are
gapped quantum phases of matter.

e Two symmetric gapped systems, ie two sequences symmetric
{Hn|n-o0} and {Hy N0}, are equivalent if Hy can smoothly
symmetrically deform into H}, without closing the gap A. The
resulting equivalent classes are gapped quantum phases of
matter with symmetry.

i
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Gapped phases of many-body quantum systems

e Two gapped systems, ie two sequences .
{Hn|n=oo} and {Hy|n—oo b, are equivalent  gounaosae | A—>finite gap
if Hy can smoothly deform into H}, without >t g->0
closing the gap A. The resulting equivalent classes are
gapped quantum phases of matter.

e Two symmetric gapped systems, ie two sequences symmetric
{Hn|n-o0} and {Hy N0}, are equivalent if Hy can smoothly
symmetrically deform into H}, without closing the gap A. The
resulting equivalent classes are gapped quantum phases of
matter with symmetry.

e Trivial gapped phase: The unique ground states of
equivalent Hamiltonians are related by local unitary
transformations: a product state — a short-range entangled

(SRE) state:
|SRE state) = %%%%mroduct state)
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More careful discussion of local unitary equivalence

e A gapped quantum phase: an equivalence class of gapped
quantum systems: Chen Gu Wen, arXiv:1004.3835 1
Def: {Hy,} ~ {Hp,}, if their ground-state
subspaces satisfy V), = U yWy;,, where
ULy is a local unitary transformation: \|IJN1 \%Nz \%N? \IEM

‘ LU LU LU LU
Uy = BB bemEEE Y

WNI \I’N2 \I’M \I’M

ILU LU LU ILU
’

Wy, Yy, Wy, Wy,
83 s
(& =P e ttifan
, S| g4
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More careful discussion of local unitary equivalence

e A gapped quantum phase: an equivalence class of gapped
quantum systems: Chen Gu Wen, arXiv:1004.3835 1
Def: {Hy,} ~ {Hp,}, if their ground-state
subspaces satisfy V), = U yWy;,, where
ULy is a local unitary transformation: \|IJN1 \%Nz Wy, \IEM

[ 1 1 1 | LU LU LU LU
Uy = BB bemEEE Y

e A gapped quantum liquid phase: WN] WNZ WN: WM

Zeng Wen, arXiv:1406.5090 ILU Ly Ly ILU

’ ’ ’ ’
Yy, Wy, W,

Wy, local addition Wy @ | ) B(Ni1=N;) Yy,
.. Generalized local unitary (gLU) trans,
e Trivial phase and N N News
symmetry breaking TR
phases are examples of § ?‘_J Co| ¢ sessl)>
Gapped liquid phases I =g8 SRR
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Symmetry breaking phase: quantum point of view

In most textbooks, symmetry breaking phase is explained using
a classical point of view.

&
&
L

B e 5| B9
"‘, (XX X J . e XXX XXX X
#£edp 4444 e 0% %" lececcees
arew ”” :.a.'.’ XX XXX
seme 449 o *% et [sceccsss

The Hamitonian Hy has a symmetry Gy: UgHNUgl = Hy,
where U, form a representation of a group g € Gy.

e Symmetry breaking phase: The ground-state
subspace has a SRE basis, ie each basis vectorgmund_stme A—>finite gap
is local unitary equivalent to a product subspace v o _ ()
state. Such a basis is not symmetric under U, € ﬁ
But the basis may be symmetric under the transformat|ons in
a subgroup U, € Gy C Gy.
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Classify phases of quantum matter (T = 0 phases)

For a long time, we thought that Landau symmetry
breaking classify all phases of matter
e Symm. breaking phases are characterized by order
parameters and classified by a pair Gy C Gy
Gy = symmetry group of the system.
Gy = symmetry group of the ground states.
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Topological orders in quantum Hall effect

27k
e Quantum Hall states R,, = V, /I, = ne

&2
vonKlitzing Dorda Pepper, PRL 45 494 (1980)
Tsui Stormer Gossard, PRL 48 1559 (1982)

e FQH states have dlfferent
phases even when there is no
symm. (Gy = 1) and no symm.
breaking. (Gy = Gp)

13

Magnetic Field (T)
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Topological orders in quantum Hall effect

e Quantum Hall states R,, = V, /I, = 222k

vonKlitzing Dorda Pepper, PRL 45 494 (1980)
Tsui Stormer Gossard, PRL 48 1559 (1982)

e FQH states have dlfferent
phases even when there is no
symm. (Gy = 1) and no symm.
breaking. (Gy = Gp)

e FQH liquids must contain
a new kind of order, named
as topological order Mot Fekt 1)

Wen, PRB 40 7387 (89); IJMP 4 239 (90)
e New equivalent classes of { Hy} beyond symm. breaking phase

13
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Macroscopic characterization of topological order

e New equivalent classes — new topological invariants.
How to extract new topological invariants beyond symmetry
breaking from complicated many-body state

V) = les“v"mzo W(xg, -+, xq00)[X1, -+, Xg0)

ground—state A—>finite gap
subspace e >0
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Macroscopic characterization of topological order

e New equivalent classes — new topological invariants.
How to extract new topological invariants beyond symmetry
breaking from complicated many-body state

V) = les“v"mzo W(xg, -+, xq00)[X1, -+, Xg0)

Put the gapped system on space with various

topologies, and measure the ground state degeneracy.
Wen PRB 40 7387 (89)

New topological invariant — Notion of topological order

e ground—state A—>finite gap
subspace

e—>0
Deg.=1 Deg.=D; Deg.=D,

Haldane PRL 51 605 (83); Tao-Wu, PRB 30 1097 (84)

.

Why ground state degeneracy is a topological invariant?
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The ground state degeneracy is topological

e The ground state degeneracies, in N — oo limit, are
robust against any local perturbations that can break
any symmetries. The ground state degeneracies
have nothing to do with symmetry. We call such a 1
degeneracy as topological degeneracy wen Niu PRB 41 9377 (90)

ground—state A—>finite gap
subspace >0

il
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The ground state degeneracy is topological

e The ground state degeneracies, in N — oo limit, are
robust against any local perturbations that can break
any symmetries. The ground state degeneracies
have nothing to do with symmetry. We call such a ‘
degeneracy as topological degeneracy wen Niu PRB 41 9377 (90)

e The ground state degeneracies

can only vary by some large groundstate | A—>finite gap
changes of !—Iamiltonian N subspace v o _ )
— gap-closing phase transition. i

E E
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Topological invariants that fully define topo. orders

The ground state degeneracy only partially characterize

topological order, not fully define it.

We conjectured that nd (ie n + 1D) topological order

can be completely defined via the following topological

property: Wen 1JMPB 4, 239 (90); Keski-Vakkuri Wen IJMPB 7, 4227 (93)

e Vector bundle on the moduli space

i. Consider a closed 2-dim space ¥, w/ metrics gj;.

ii. Different diffeomorphic equivalent classes of metrics gj
form the moduli space My, .

iii. The moduli space is the space of Hamiltonians H(g;).
We jumped here: discrete lattice — continuous manifold
The emergence of continuous geometry from discrete algebra

iv. The ground subspace V,n4(gj) (an n-dim vector space) of
H(g;;) depends on the diffeomorphic equivalent classes of
the spacial metrics gj; — a vector bundle over My _ with

fiber Vgrna(gij)-
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Topological invariants that fully define topo. orders

Vector bundle on the moduli space
is a U(n) bundle with SU(n) flat connection
(due to the topological degeneracy).

- Local U(1) curvature — gravitational
Chern-Simons term ¢S — ¢! 2 Ji2xst 3
— chiral central charge ¢
— quantized thermal Hall conductance

Tangent bundle on a 2-sphere
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Topological invariants that fully define topo. orders

Vector bundle on the moduli space
is a U(n) bundle with SU(n) flat connection
(due to the topological degeneracy).

- Local U(1) curvature — gravitational
Chern-Simons term ¢S — ¢! 2 Ji2xst 3
— chiral central charge ¢
— quantized thermal Hall conductance

- Flat SU(n) connection: 1 (Mions) = SL(2,7)

90° rotation |V,) — ]\Iﬂ> = Sas|Vp)

Dehn twist: |W,) — (W)= T\ [ | /] // 7=~

S, T — a proj. rep. of SL(2,7Z): Wen 1JMPB 4, 239 (90)

S2=(ST)%e 25 = C,C?> =1 Keski-Vakkuri Wen IJMPB 7, 4227 (93)
X.-D. Wen & X.-G. Wen arXiv:1908.10381

Conjecture: The vector bundles on all M5, (ie the data

(S, T,c), ...) completely characterize the topo. orders

S, T,c) for torus almost fully characterize 2+-1D topo. order

Tangent bundle on a 2-sphere

Xiao-Gang Wen (MIT), Higher Structures and Field Theory Introduction to topological order



The microscopic origin of topological degeneracy

e For a highly entangled many-body quantum systems:
knowing every parts still cannot determine the whole

- In other words, there are different 7
“wholes”, that their every local WHOLE = Zpah‘s *
parts are identical. L/

- Local Hamiltonians can only see the parts — those different
“wholes” (the whole quantum states) have the same energy.
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The microscopic origin of topological degeneracy

e For a highly entangled many-body quantum systems:
knowing every parts still cannot determine the whole

- In other words, there are different
“wholes”, that their every local WHOLE = Zpah‘s * 7
parts are identical. L/

- Local Hamiltonians can only see the parts — those different
“wholes” (the whole quantum states) have the same energy.

e What is a “whole”?, what is “part”?
whole = many-body wave function |V) = W(my, my, -+, my)
where m; label states on site-/
part = entanglement density matrix:

Psite-1,2 = Trsite-3,~--,N’w><w‘> <H1,2> = TT(Hl,zpsite-1,2)

pm17m2§mismé

- Z W*(m17m27m37”' 7mN)W(m/17m/27m37”. 7mN)

Introduction to topological order



The microscopic origin of topological orders
WHOLE = 3 pars + ?
®

e Those kinds of many-body quantum systems have

topological entanglement entropy
Kitaev-Preskill hep-th/0510092
Levin Wen cond-mat/0510613

and long range quantum entanglement
Chen Gu Wen arXiv:1004.3835
Long range entanglement — Topo. degeneracy
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What is long-range entanglement?

Chen Gu Wen arXiv:1004.3835
e Define long range entanglement
via local unitary (LU) transformations
(ie local quantum circuit)

ILRE) # %%%%mroduct state) = |SRE)

g |
2 topological order
local unitary local unitary local unitary LRE 1 . LRE2
transformation transformation transformation
LRE  SRE RE SRE LRE1 LRE2 " phase
state  product product product transition
state state state SRE

8

Introduction to topological order

Xiao-Gang Wen (MIT), Higher Structures and Field Theory



What is long-range entangleme

Chen Gu Wen arXiv:1004.3835
e Define long range entanglement
via local unitary (LU) transformations
(ie local quantum circuit)

ILRE) # %%%%mroduct state) = |SRE)

g |
2 topological order
local unitary local unitary local unitary LRE 1 . LRE2
transformation transformation transformation
LRE  SRE RE SRE LRE1 LRE2 " phase
state  product product product " transition
state state state SRE
e All SRE states belong to the same trivial phase 8,

e LRE states can belong to many different phases
= different patterns of long-range entanglements
= different topological orders wen PRB 40 7387 (89)
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How to make long range entanglement?

e Short-range-entanglement (SRT) ~ product state | T117711)
e To make topological order, need to sum over many different
product states. But summing over everything with equal

weight 3" i consie, | T4 ) = ([ 1) +11))%" — product state

®
OOOOD
® ®
OPPOOD

g PN
RS
<
SNEN
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How to make long range entanglement?

e Short-range-entanglement (SRT) ~ product state | T117711)
e To make topological order, need to sum over many different
product states. But summing over everything with equal

weight 3" i consie, | T4 ) = ([ 1) +11))%" — product state

e Sum over everything with phase factors ®
Zall spin config. H:<J(Z — 4 ) ’ Ti > @ @ CD @
—s chiral spin liquid or FQH state, ® @®

OPPOOD

& P NRERLARYy
RS

SNLN
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How to make long range entanglement?

e Short-range-entanglement (SRT) ~ product state | T117711)
e To make topological order, need to sum over many different
product states. But summing over everything with equal

weight 3" i consie, | T4 ) = ([ 1) +11))%" — product state

e Sum over everything with phase factors ®
Zall spin config. H:<J(Z — 4 ) ’ Ti > @ @ CD @
—s chiral spin liquid or FQH state, ® @®

e Sum over a subset of spin configurations: OP®DODOOD®

Pletps) §)
o ) s\\/\/\ N y
-l <2<> i\{(/%ﬁ%@

Ioops
£l
|q)loops> - Z(i)# o oops
e Can the above wavefunction be the
ground states of local Hamiltonians?

SNLN
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Local dance rule — global dance pattern

D
DOOPD

! ><> [>

o st O

e Local rules of a string liquid (for ground state):
(1) Dance while holding hands (no open ends)

2) ¢u (W) = 00, (), 0, (B> W) = 0,,, (HW)

<

— Global wave function of loops ®;, (\ <><) =1
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Local dance rule — global dance pattern

D
DOOPD

! ><> [>

o st O

e Local rules of a string liquid (for ground state):
(1) Dance while holding hands (no open ends)

2) ¢u (W) = 00, (), 0, (B> W) = 0,,, (HW)

— Global wave function of loops ®.;, (1 &) =1

e There is a Hamiltonian H (the toric code model):
(1) Open ends cost energy
(2) string can hop and reconnect freely.
The ground state of H gives rise to the above
string Iqiuid wave function. Kitaev quant-ph/9707021
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Local dance rule — global dance pattern
®

e O b f><> DO

® @@@

e Local rules of another strmg liquid (ground state):
(1) Dance while holding hands (no open ends)

(2) ®ar (1) = 0 (1), 0 (I W) =~ (W)

— Global wave function of loops ®.;, (l &) = (—)# of loops
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Local dance rule — global dance pattern

ODOD %

SO RN
® @@@ O

e Local rules of another strmg liquid (ground state):
(1) Dance while holding hands (no open ends)

(2)¢St,( ]):%( ﬁ),cbstr( > ¢ ):—cbm( ] )

— Global wave function of loops ®.;, (l &) = (—)# of loops

o The second string liquid ®., (1 %) = (—)# o oops can exist
only in 2-dimensions.
The first string liquid @, (i &) — 1 can exist in both 2- and
3-dimensions.
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Knowing all the parts # knowing the whole

e Quantum entanglement —
WHOLE =  parts +

states on torus for both €

e 4 locally indistinguishable <O >
liquids — topo. order

- Ground state degeneracy

cannot distinguish them. G\O/ O[O Dtor_4
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Topological excitations
e Ends of strings behave
like point objects.
e They cannot be created
alone — topological

e Let us fix 4 ends of string on
a sphere S2. How many locally
indistinguishable states are there?
- There are 2 sectors — 2 states (7)

> <
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Topological excitations

e Ends of strings behave

like point objects.
e They cannot be created

alone — topological

e Let us fix 4 ends of string on
a sphere S2. How many locally U
indistinguishable states are there?
- There are 2 sectors — 2 states (7) \ ﬂ
- In fact, there is only 1 sector — 1 state, due to the string

reconnection fluctuations @, ( D> < ) = +Pg, < [ |

e In general, fixed 2/V ends of string — 1 state. Each end of
string has no degeneracy — no internal degrees of freedom.
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Topological excitations
e Ends of strings behave
like point objects.
e They cannot be created
alone — topological

e Let us fix 4 ends of string on
a sphere S2. How many locally
indistinguishable states are there?
- There are 2 sectors — 2 states (7)
- In fact, there is only 1 sector — 1 state, due to the string

reconnection fluctuations Cbstr( > < ) = icbstr( [ | )

e In general, fixed 2/V ends of string — 1 state. Each end of
string has no degeneracy — no internal degrees of freedom.

e Another type of topological excitation vortex at x:
|m> — Z(_)# of loops around X ;\?®<
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Emergence of fractional spin (topological spin)

e Ends of strings are point-like. Are they bosons or fermions?
Two ends = a single string = a boson, but each end can still
be a fermion. Fidkowski Freedman Nayak Walker Wang cond-mat/0610583

o O, <>\ &) = 1 string liquid ®.,, ( > < > = Oy, ( || )

e End of string wave function: |end) = T+ c@ + c[? + -
The string near the end is totally fixed, since the end is
determined by a trapping Hamiltonian 6 H which can be
chosen to fix the string. The string alway from the end is not
fixed, since they are determined by the bluk Hamiltonian H
which gives rise to a string liquid.

e 360° rotation: | — @ and [’? = @ =1 Ragoe = (2 é)
e We find two types of topological exitations

(1) ]e)z“—@spin 0. (2) |f) = @spm 1/2.
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Spin-statistics theorem:
Emergence of Fermi statistics

e (a) — (b) = exchange two string-ends.

e (d) — (e) = 360° rotation of a string-end.

e Amplitude (a) = Amplitude (e)

e Exchange two string-ends plus a 360° rotation of one of the
string-end generate no phase.

— Spin-statistics theorem
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Z.» topological order and its physical properties

(O <&O&> = 1 string liquid has Z,-topological order.
e 4 types of topological excitations: (f is a fermion)
(1)|e>:T+@spin0. (2) |f =e®@m) = C"25p|n1/2

(3) [m) = —©spin0. (4)[1) = * +© spin 0.

e The type-1 excitation is the tirivial excitation, that can be
created by local operators.
The type-e, type-m, and type-f excitations are non-tirivial
excitation, that cannot be created by local operators.

e 1, e, m are bosons and f is a fermion. e,m, and f have 7
mutual statistics between them.

e Fusion rule:
eRe=1, fRFf=1, mem=1;
e@m=f fRe=m, mf=c¢
lwe=¢ 1l@m=m 1&f=f,
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Topo. order and topological quantum field theory

7, topologica order is described by 7, gauge theory
— a topological quantum field theory
Physical properties of Z, gauge theory
= Physical properties of 7Z, topological order
e /,-charge — e,  Zp-vortex — m, bound state — f.

e Z»-charge (a representatiosn of Z,) and Z,-vortex (7-flux) as
two bosonic point-like excitations.

e 7,-charge and Z,-vortex bound state — a fermion (f),
since Zy-charge and Z,-vortex has a m mutual statistics
between them (charge-1 around flux-7).

e 7»-charge, Z»-vortex, and their bound state has a 7 mutual
statistics between them.

e 7, gauge theory on torus also has 4 degenerate ground states
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Emergence of fractional spin and semion statistics

Dy, (S8) = (—)7 °F °°P= string liquid. <I>Str (B @) = -0, ()
e End of string wave function: |end) = T+ C@ — CC? +-

e 360° rotation: — @ and @ = —@ — — : Ra600 = ((1) 51>

e Types of topological excitations: (s+ are semions)
(1) [s.) =T+ i@ spin 7. (2) |[s- =s, @m) = T— i[’? spin —
(3) |m) = * —©spin 0. (4) [1) = * +© spin 0.

e double-semion topo. order = U?(1) Chern-Simon gauge
theory L(a,) = =a,0,a e — 25,0,8,¢"*
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Emergence of fractional spin and semion statistics

Dy, (S8) = (—)7 °F °°P= string liquid. <I>Str (B @) = -0, ()
e End of string wave function: |end) = T+ C@ — CC? +-

e 360° rotation: — @ and @ = —@ — — : Ra600 = ((1) 51>

e Types of topological excitations: (s+ are semions)
(1) [s.) =T+ i@ spin 7. (2) |[s- =s, @m) = T— i[’? spin —
(3) |m) = * —©spin 0. (4) [1) = * +© spin 0.

e double-semion topo. order = U?(1) Chern-Simon gauge
theory L(a,) = =a,0,a e — 25,0,8,¢"*

e Two string Iqiuids — Two topological orders:
Z2 tOpO. order Read Sachdev PRL 66, 1773 (91), Wen PRB 44, 2664 (91),
Moessner Sondhi PRL 86 1881 (01) and double-semion topo. order
Freedman etal cond-mat/0307511, Levin Wen cond-mat/0404617
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String-net liquid

Ground state:
e String-net liquid: allow three strings to join, but do

not allow a string to end &, %/%}? :
Levin Wen cond-mat/0404617

e The dancing rule :

Xiao-Gang Wen (MIT), Higher Structures and Field Theory Introduction to topological order



Topological excitations in string-net liquid

e Topological excitations:
For fixed 4 ends of string-net on a sphere S, how many
locally indistinguishable states are there?

0% A 09 A
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Topological excitations in string-net liquid

e Topological excitations:
For fixed 4 ends of string-net on a sphere S, how many
locally indistinguishable states are there?  four states?

%70 0% o7

Xiao-Gang Wen (MIT), Higher Structures and Field Theory Introduction to topological order



Topological excitations in string-net liquid

e Topological excitations:
For fixed 4 ends of string-net on a sphere S, how many
locally indistinguishable states are there?  four states?

0% A 09 A

e In fact, there are only two linearly independent states.
This can be obtain using fusion rule: ¢ @ ¢ = 1@ ¢.

¢ ® ¢ means bound state of two ¢-particles (fusion).
But what does 1 & ¢ means?

Xiao-Gang Wen (MIT), Higher Structures and Field Theory Introduction to topological order



A general theory of topological excitations

e In a gapped system: H =) Oy,
excitations = dH,, gapped traps
H + 5H§1 + 5H52 -+ 6H£3 —
gapped ground space Ve,(&,&, )
- Different excitations are labeled by H
different trap Hamiltonians 0 H, -
e Topological types: Two excitations, 0Hs uoud-sue | A—>finite gap
and 5/:I§~, are equivalent if 0H; and (5/:/5~ can =t e—>0
deform into each other without closing the gap.
The equivalent class of excitations [0 H;] = type-a.
e Trivial type-1 if the corresponding equiv. class
[0H:] 2 6H; =0
- It can be created by local O:: Ve (€,€, ) = OVexe (€, )
- It has trivial double braiding (mutual statistics) with all

H+;8H§_

]

excitations.
e Non-trivial type-a at &: [0H:] Z 0H: =0

Introduction to topological order
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Simple/composite excitation and fusion category

e simple excitation at &: The ground space VSmPe(¢ -+ ) is

robust against local perturbation near £ — type /. -
e composite excitation at & The ground space —
Vexc(&, -+ - ) (the degeneracy) can be splitted —
by local perturbation near &, ie contain —

accidental degeneracy — type oo = | @ .
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Simple/composite excitation and fusion category

e simple excitation at £: The ground space VSmPle(¢ .. +)
robust against local perturbation near £ — type /.
e composite excitation at & The ground space
Vexc(&, -+ - ) (the degeneracy) can be splitted
by local perturbation near &, ie contain

accidental degeneracy — type oo = | @ .

1
e,

e Excitations in 1d — Fusion cat. theory _
- Excitations dH; = objects OHy =
- Morphism = deformation 0H, — 0Hz: o — |

- The object type-i = isomorphism classes of excitations dH;.
- In 1D and above,

=Y
X

iQj=k® ®k® = BNk o oo o
%,—/ k
NEcopies @ @ <> -

e Fusion space: Ve, (&1,&, ) = V(i oy -+ +)

Xiao-Gang Wen (MIT), Higher Structures and Field Theory
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Consistent conditions on N,g

Consider two ways to compute i © j @ k = @&,N’/

(i®))®k=OnN, m®k=®mnNIN™ |
i®(®k) =& N n®k =@, NN

S NN = S W
m,/ n,l
NY =N =065 N =0y

But N,’;j is not all the data to describe the fusion of excitations.
There is an additional data.

Xiao-Gang Wen (MIT), Higher Structures and Field Theory Introduction to topological order



The F-symbol: £/

e Consider the fusion i @ j @ k =& - B —
V(i,j ki )=V(;---)@---@V(I;---), but the direct sum
¢ decomposition is not unique (like different choices of basis)
- V(Iv./a k; e ) — EBmﬂ:l...N,"{an(ma k; T )
— @m,a 695,/ Vu;m,ﬁ(/; o ) - @m,a;ﬁ,lvu;m,ﬁ(/; t )
-V(i,j, ki) — @mx:lm,\ﬂn-kvx(i, n )
— @n,x @(U Vx;n,&(/; e ) - @n,x;é,lvx;n,é(/; o )
- Vamp(l -+ ) and Yy (/5 - -+ ) like two sets of basis that span
the same fusion space V(i,j, k;--+)
e The F-symbol i |s a umtary matrix that relate the two basis

i j ok
Uk mo/)’
Xn5 \?/ § nxé am,ﬁ(l )\KP/
: meB ke ((ij)k)1~10% i(jk)l*l(i(jk))l*

i j w 7 - o
F 2 ijkl 5 Gkl*  m  —
v UZY% — n -
o, o |:‘> o 1 m - — | R
I ' -_—= =
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Consistent conditions for F,':j,fgaﬁ and UFC

i jok i j kI
Two different ways of fusion W W two sets of

basis) are related via two dlfferent paths of F-moves:

i i 1 i k1
mk/ ;nBx mk/ inBX Cijg;moe 9
\ZE?/ > abe Fogse <" = D qsson Frase oo o
P
ik
Z Uk maﬂ ‘P, Z Uk maf Fitlinpx
t,n,p folp ”x t,1,0;8,K,7Y ntmp pisk7y 7:
P
ijok_ 1
_ ijkimaB Fitlnex piklitns 9
- Zt,n,&;g&;sw,’y;qﬁé,@ F” tny FP SKY FS qog o
»

The two paths should lead to the same unitary trans.:

Uk maf3 Eitl;npx Eiklitne _ mkl;nBx Cijg;mae
th@n n;tne Fpsn'y quéqﬁ _2 quée quw

Such a set of non-linear algebraic equations is the famous
pentagon identity. MacLane 63; Moore-Seiberg 89

(N, F,’;{f;(’;aﬁ) — Unitary fusion category — theory of 1d excitations
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An example of UFC: Fibonacci fusion category

e A 1d topo. order described by a Fibonacci fusion category:
- Two types of topological excitations 1, ¢.
- Fusion rule N/: ¢ @ ¢ =1 @ ¢.

1/2
- F-symbol F,”fx’gaﬁ F‘wd’ <,\17/2 7_7> ,y:f 1

Fpoo = F1o0 = po1e _ pool ((1) (1)>

Relation to the 2d string-net wave function

60 (©) =294 (D) + V700 (D)
60 () = V34w (©) 180 (@)

Xiao-Gang Wen (MIT), Higher Structures and Field Theory Introduction to topological order



Internal degrees of freedom — quantum dimension

e Let D, be the number of locally indistinguishable states for n
¢-particles on a sphere. The internal degrees of freedom of ¢

. . . 1
— quantum dimension - d = lim, .., D}/"

¢®...®¢:1@...@1@¢@...@¢

-

n Dn Fn

D, = Dim(Hom(¢®",1)), F, = Dim(Hom(¢®",¢)),

¢®...®¢®¢:1@...@l@¢@...@¢
S— ~~
n Fn Fn+Dp

Dn+1:Fna Fn+1:Fn+Dn:Fn+Fn—17 DIZO; Fl:]-

The internal degrees of freedom of ¢ is (spin—% electron d = 2)
1
d— fim Fl/o 11 V5

n—o00 2

= 1.61803398874989 - - - .
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Anomaly and the principle of remote detectablility

We say a UFC describes 1d excitations. But can we really find
a 1d local lattice model such that its excitations are described

by the UFC?

4
D

)

o

Introduction to topological order
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Anomaly and the principle of remote detectablility

We say a UFC describes 1d excitations. But can we really find
a 1d local lattice model such that its excitations are described
by the UFC? Answer: No. This obstruction is called anomaly
How to tell if a theory for excitations is anomalous or not?

H :
: - Y

)
all b

oo
N

o

1
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Anomaly and the principle of remote detectablility

We say a UFC describes 1d excitations. But can we really find
a 1d local lattice model such that its excitations are described
by the UFC? Answer: No. This obstruction is called anomaly
How to tell if a theory for excitations is anomalous or not?

e Remotely detectable = Realizable (anomaly-free)
Every non-trivial topological excitation / can
be remotely detected by at least one topo. :
excitation j via remote operations (such as X
braiding) <> the topological order is realizable “
in the same dimension. Levin arXiv:1301.7355, Kong Wen arXiv:1405.5858

oo
N

o
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Anomaly and the principle of remote detectablility

We say a UFC describes 1d excitations. But can we really find

a 1d local lattice model such that its excitations are described

by the UFC? Answer: No. This obstruction is called anomaly

How to tell if a theory for excitations is anomalous or not?
e Remotely detectable = Realizable (anomaly-free)

Every non-trivial topological excitation / can

be remotely detected by at least one topo.

excitation j via remote operatlons such as

braiding) <> the topological order is realizable

in the same dimension. Levin arXiv:1301.7355, Kong Wen arXiv:1405.5858
e All non-tirival UFCs, as theory for 1d excitations, are D)

anomalous, ie not realizable by 1d lattice models I\

There is no non-trivial (anomaly-free/realizable) 2

topological order in 1d. |
- 141D TQFT's are all unstable and do not correspond to

1d (141D) topo. orders (gapped phases with no symm.).

I 1’;
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Theory of 2d excitations = braided fusion category

e Above 1D, particles can braid —
unitary braided fusion category

e Braiding requires that N/ = N/,

e Braiding — R” o
mutual statlstlcs = double braiding:

REGRIY = el 5,

topological spin s;: ijk) = 2m(sk — Si — jsj)

Xiao-Gang Wen (MIT), Higher Structures and Field Theory Introduction to topological order



Theory of 2d excitations = braided fusion category

e Above 1D, particles can braid —
unitary braided fusion category
e Braiding requires that N/ = N/
e Braiding — R,’;j;‘g
mutual statist(ig:s = double braiding:
R/Lj;’/? R{!;’Vﬁ - elaij 504‘/
(k) _

topological spin s;: 0;;

e Hexagon identity:
ik;p LK PEN pjkin
F\’[’Je‘?ﬁF’”’E R/ =

I;nné n;x
kij;ppA pmk;y —ijk;ma
Zma{)’ Fl;mom/ RI;B Fl;nx<5

e Theory of unitary braided
fusion category (UBFC)
are fully characterized

if ijk;ma if;cx
by those (Nkj* Fl;an\ B? Rkj;,@)

Xiao-Gang Wen (MIT), Higher Structures and Field Theory



Examples of UBFC (excitations in 2d topo. orders)

e Anomalous (degenerate) UBFC
-i:(1,e), d:(1,1),s:(0,0) (symm. fusion cat. Rep(Z,))

o Anomaly-free (non-degenerate) UBFC
o (1,s), d; 1 (1,1), 5: (0, 3). (v = % bosonic FQH state)
( 0), di : (1, Y52 =), 5 (0, 2). (Fibonacci topo. order)
-i:(1,e,m, f) d; : (1 1,1,1), s .(O7 0,0, 3).(Z> gauge theory)
= )

1,0,0,00), di: (17,77 ) (0,2, —2,0). (string-net
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Examples of UBFC (excitations in 2d topo. orders)

e Anomalous (degenerate) UBFC
-i:(1,e), d:(1,1),s:(0,0) (symm. fusion cat. Rep(Z,))

o Anomaly-free (non-degenerate) UBFC

o (1,s), d; 1 (1,1), 5: (0, 3). (v = % bosonic FQH state)
( 0), di : (1, Y52 =), 5 (0, 2). (Fibonacci topo. order)

-i:(1,e,m, f) di - (1,1,1,1), 5,: (0,0,0, 3).(Z> gauge theory)
= )

1,0.0,00), di: (1,7,7.7%), s : (0,2,—2,0). (string-net

e The E>-center (Miiger center) of UBFC C = the set of
particles with trivial mutual statlstlcs respecting to all others:
2,(C) = {i | 69 = 0, ), k}
Remote detectable «» Z,(C) = {1} (modular) <+ Realizable
Excitations in an anomaly-free (realizable) 2d
topological order are described by an unitary modular
tenser category (UMTC)
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Do UMTC's classify 2d bosonic topo. orders?

e No!

a-TO
b-TO

c-TO
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Do UMTC's classify 2d bosonic topo. orders?

I ) . {2d bosonic topological orders}
e No! UMTC's CIaSSIfy {2d bosonic invertible topological orders}

e Stacking two topological phases a, b give rise to a third
topological phase c = a® b —
The set of topological ._q a-TO
phases forms a monoid. b-TO

e 1) A topo. order is invertible iff it has no non-trivial topo.
excitations (but has a non-trivial domain wall (morphisms) to
other topo. phases).

2) A topo. order is invertible iff its topo. partition function
are pure phases: Z,,,(M") € U(1) — classify inv. topo. orders

H-type invertible 1+1D 24+1D 3+1D 4+1D 5+1D 6+1D

topo. order
Boson: 0 7 g, 0 Lo 0 7 & 7
Fermion: Lppwave L ptip 0 0 0 7 ® 7

Kapustin arXiv:1403.1467; Kong Wen arXiv:1405.5858
Kapustin Thorngren Turzillo Wang arXiv:1406.7329; Freed arXiv:1406.7278
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Invertible topo. order (no fractionalized excitation)

® 2+1D: Z,,(M?) = € % Jus ws(&) where w3 is the grav. CS
term: dws = p; and p; is the first Pontryagin class.
e The quantization of the topo. term: ¢ = 8 x int. — Z-class:

f/\/] w3(guu) - fNﬁN:M pl - fN’,ON’:M pl mOd 3:
since [, p1=0mod 3.

e 4+1D: Z,,,(M®) = e™Jws *2s where w; is the /"
Stiefel-Whitney class — Z,-class. We find [, , wows = 1 when
M> = CP? X, S* and ¢ : CP? — (CP?)*

e 6+1D: Two independent gravitational Chern-Simons terms:

i /M7 |:k1 @77529.)7 ko 7242'79+5w71|
e

ZtOP(M7) -
where dw; = po, d@7 = p1p1 = Z @ Z~class (ky, k).

e Topological order = UMTC + extra info (such as edge)
UMTC = Topo.-orders/invertible-topo.-orders
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UMTC: 2+1D bosonic topo. orders mod invertibles

— sin(r(m+1)/(n+2) Rowell Stong Wang arXiv:0712.1377; Wen arXiv:1506.05768

ao-Gang Wen (

dy, do, -%Irﬂﬂ (a2 S1, 80, * wave func. NCB dy,do, - - - S1,8, -+ wave func.

1

1,1 0, 1 semion [[(z; — z)? 2B 1,1 0,—1 TIGz

1, (% 0, £ chiral Fibonacci TO 2’514 5 1, C; 0, 7% anti-chiral Fib.

1,1,1 0,1,1 (221) double-layer 3B, 1,1,1 0,-1,-1

1.63.63 0.-%.% oy | 1G.G 0.7, -%

11,63 0.1, L Ising TO 3‘51/2 1,163 01, -%

1,1,¢3 0,3, % S(220) Vpgitian || 3%5 | 1L1G 0.1 -3

L1G 0.4, % v, su@)b || 3B, | L1d 01,2

1,1,¢ 0,3, & 3., 1,1,¢3 0,3, -%

1,1,1,1 0,0,0,1 (1,e,m, f) Zy-gauge 4B 1,1,1,1 0,4,1,1

1,1,1,1 03,33 [z — z)* 45 1,1,1,1 0,-1,-%1,1

1,1,1,1 0,1,1,1 (220) double-layer 48, 1,1,1,1 0,—1,-11

1,1,1,1 02,31 4B, 1,1,1,1 0,-3,-3.1

1,1,1,1 0,01 -1 double semion 45/5 1,1,¢,¢ 0,-1,3,2

1L1,63,¢ 0.3 —% —% o5 | LLGG 0, % —% 3

1,1,¢, ¢ 0,-3 L, -2 v . su@2)f 45” 1,¢, ¢, dd 0,2, —2,0 Fibonacci

166G | 0-3,-%% s | 18,363 | 0,3.3,-%

LG ¢t ¢ 053 -3 s | 166G 0-3.-%3

1,1,1,1,1 03,3, -1, -1 (223)DL 58 1,1,1,1,1 0,2,2,-%2,-2

1,1,¢k,¢k,2 0,01,-31 55:b 1,1,¢,¢,2 0,0-%,3,1

1,1,¢L,¢k,2 0,01,-3,-1 552 1,1,¢k,¢k,2 0,0-1,3,-1

1,45,¢5,¢8.¢8 | O -F ff 11 Z6m | 16:65.6.¢ | & —h 1w
2 2 2 4 1 1 1 3 2 2 2 4 1 1 3

o
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Classify nd topological orders via excitations

e Excitations in an nd topo. objects = codim-1 excitations
orders are described by 1-morphisms = codim-2 excitations
a fusion n-category (n-1)-morphisms = point excitations

An example of fusion 2-category:

s — object (string excitation)

u — 1-morphisms (domain wall between
strings) w e“

e — 1-morphisms (domain wall between !
trivial string = point excitations) l

¢ — string connecting trivial string via a domain wall
(condensation excitation or descendent excitation)

e Vertical and horizontal fusions — braiding of particules

()
<
)

Xiao-Gang Wen (MIT), Higher Structures and Field Theory Introduction to topological order



Which fusion n-cats correspond to topo. orders?

o Realizable topo. orders - unitary fusion n-categories
Ker(n) = invertible topological orders.
Img(n) = anomaly-free unitary fusion n-categories.
A generic unitray fusion n-category may not realizable by

any nd lattice models, and are called anomalous.
Unitary defined in Kong Wen Zheng arXiv:1502.01690

e Anomaly-free fusion n-categories = 777
Define anomaly-free macroscopically (ie mathematically),
instead of microscopically via realizable by lattice models.

e We have defined Anomaly-free via the E,-center
Z,(C) = nVec (ie via mutual statistics). But this approach is
hard to understand for higher categories.
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Try to define anomaly via boundary-bulk relation

- A UFC describes 1d topological excitations
— 141D locally consistent effective theory. [ Topolocally | ..
- It is not realizable — not globally consistent ordered ) with
— having gravitational anomaly anomaly
e A 1d UFC (locally consistent) can always be realized as a
gapped boundry of a 2d topolgocal order (a UMTC)
- The Fibonacci fusion category ¢ ® ¢ = 1 & ¢ describe the 1d

excitations at a gapped boundary of 2d string—net state
(UMTC i: (1,9,9.¢0), d; : (1,7,7.7%), s : (0,2, —2,0)):

00 () 190 (©) + 0w ()
¢str(>_<) :\/:/q)str< X > _’Yq)str( I)

UFC ffective theory: 1d excitations

wave function _a boundary

2d string-net state
e Non-trivial bulk topo. order — grav. anomaly at boundary

Xiao-Gang Wen (MIT), Higher Structures and Field Theory Introduction to topological order



Generalization to higher dimensions

Up to invertible topologioca orders

- Potencially anomalous nd topological orders = boundary
of (n+ 1)d topological orders = fusion n-catgeories.

- Anomaly-free nd topological orders = boundary of
(n+ 1)d trivial product state = realizable by nd lattice models
= special fusion n-catgeories. But which ones?

BTy

Xiao-Gang Wen (MIT), Higher Structures and Field Theory Introduction to topological order



Generalization to higher dimensions

Up to invertible topologioca orders
- Potencially anomalous nd topological orders = boundary
of (n+ 1)d topological orders = fusion n-catgeories.
- Anomaly-free nd topological orders = boundary of
(n+ 1)d trivial product state = realizable by nd lattice models
= special fusion n-catgeories. But which ones?
Kong Wen arXiv:1405.5858; Kong Wen Zheng arXiv:1502.01690

e Holographic principle of topological order: ﬁ
The boundary uniquely determines the bulk. iy
A potentially anomalous topological order (a fusion

n-category C") determines a unique bulk topological order
braided fusion n-category M"):
Bory M) 7 emy =

Zy is the Ej-center: Z;(C") = M" a braided fusion n-category.
e The bulk topological order M" is anomaly-free
M =M™ Z (M) = (n+ 1)Vec

Xiao-Gang Wen (MIT), Higher Structures and Field Theory Introduction to topological order



Anomaly and holographic principle — Classification

e Gravitational anomally Kong Wen arXiv:1405.5858; Kong Wen Zheng
= topological order in one higher dimension arxiv:1502.01690

e Symmetry (t’ Hooft) anomally Wen arXiv:1303.1803
=SPT order in one higher dimension

Topolocally theory
. ith &=
ordered e gv;hge =&
Symmetry (symm.) o

anomaly a2

Anomaly-free (realizable) nd topological orders (up to invert-
ibles) are classified by unitary fusion n-categories C” that sat-
isfy Z;(C") = nVec and include all condansation excitations.
(nVec = trivial braided fusion n-category.)

Kong Wen arXiv:1405.5858; Kong Wen Zheng arXiv:1502.01690
Gaiotto Johnson-Freyd arXiv:1905.09566; Johnson-Freyd 2003.06663
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Graviational anomaly: an old point of view

e The action of a classical field theory

S(v,) = / 0"\ [det(g) L6, Vi &)

diffeomorphism invariance x* — X"
e But for the path integral that define quantum theory, the
partition function

Z~ [ DIl e

is not invariant under the diffeomorphism transformation due
to the Jacobian for the change of integration measure
— invertible graviational anomaly

e Jacobian = non-zero complex number — The anomalies are
invertible.
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Anomaly: a modern point of view — non-invertible

Anomaly-free = realizable by lattice model in the same dim
Anomalous = realizable by a boundary of a gapped lattice
model in one higher dimension.
e A quantum field theory with gravitational anomaly cannot be
realized as the low energy effective theory of a lattice model in

the same dimension. Wen arXiv:1303.1803; Kong Wen arXiv:1405.5858
Fiorenza Valentino arXiv:1409.5723; Monnier arXiv:1410.7442

But can be realized as
the low energy effective Topolocally
theory of a boundary ordered
of a lattice model in
one-higher dimension.

e Gravitational anomaly = Topological order in one higher
dimension — non-invertible gravitational anomaly

e Symmetry ('t Hooft) anomaly = SPT order in one higher
dimension — invertible symmetry anomaly
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Try to characterize/classify gapless CFTs

via non-invertible gravitational anomalies

Unlike invertible gravitational anomaly, the non-invertible
gravitational anomaly (Je the topological order in one higher
dimension, also called categorical symmetry) contain a lot
of information, that can be used to characterize (or even
classify) gapless conformal field theories (CFT) (ie with linear
dispertion relation w = v|k|).

CFTs are characterized (or even classified) by their
maximal emergent categorical symmetries

CFTs are characterized (or even classified) by their maximal
emergent non-invertible gravitational anomalies

Xiao-Gang Wen (MIT), Higher Structures and Field Theory Introduction to topological order



Understand degenerate ground states on torus

e Remember that 2+1D topological order is characterized by
degenerate ground states on torus and the modular
matrices S, T that generate the representations of the
mapping class group of the torus.

Consider a spacetime evolution M3, T? = OM3. Yot

e The Euclidean spacetime evolution produce
a ground state on the torus 72 = OM?>

e Embeding the worldline of different types
of anyon gives rise to different degenerate .
ground states |V;) on torus. space Y
So the degenerate ground states are labeled by anyon types i.

e Under the modular transformations S, T they transform as

(Vi) — SylVy), Vi) — T;[V;)

A 141D non-invertible anomaly (=1+1D categorical
symmetry = 241D topo. order) is described by S, T

Xiao-Gang Wen (MIT), Higher Structures and Field Theory
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How to understand various 1+1D boundaries

of a 2-+1D topological order? Ji & Wen arxiv:1905.13279

/ / /1 =

e The partition function of a 141D lattice model (or
boundary of 2-+1D trivial gapped state) dependent on the
shape of the spacetime: Z(7) = Tre~(MmMH+TI(ReT)P “\which is
modular invariant Z(7) = Z(7 + 1), Z(7) = Z(-1%)

- modular invariance — 141D anomaly free

y 1
e Boundary of 2d topo. order — 1d theory w/ ‘ /
non-inv. anomaly. Wen 1303.1803; Kong Wen 1405.5858 ~
. . type—1 anyon
- 1d non-invertible anomalous theory has several ~
partition functions Z;(7) labeled by the anyon b‘oundar)

types / of the 2+1D bulk topo. order, and is
- modular covariant Z;(7 + 1) = T;Zi(7), Z(—%) = S;Z(7)
S, T-matrices = the 2+1D bulk topo. order = 1+1D anomaly
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Gapped boundaries of 2+1D topological order

e The partition functions for 141D gapped state
are constant integer Z(7) = Z € 7. The gapped
boundaries have partition functions that satisfy

Z,‘ = T,'J'Zj./ Z,‘ = S,JZJ, Zl =1. Lan Wang Wen arXiv:140.'6514 A
e For 7, topological order,
1 0 0 O 1 1 1 1
1 1 _
Tz = 8 (13 (1) 8 5z =5 1 f11 11 i
0 0 0 -1 1 -1 -1 1
we find two solutions y 7
Z 1 Z 1 t »
Ze _ 1 Ze _ 0 type—i anyon
Zm 0 ’ Zn 1 I~
Zs 0/ . cond Zy 0/ 1 cond b\‘oundary

— two kinds of boundaries from e-condensation ——x
and m-condensation.
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View topo. order as categorical symmetry:

New name — new understanding and new results

e 241D topological order = 141D non-invertible
gravitational anomaly can be viewed as symmetry, which is
called 141D categorical symmetry (due to the conervation
of 2+1D excitations as described by their fusion rule).

For example: the 241D Z, topological order (with excitations
1,e, m, ) corresponds to categorycal symmetry de) V ng)
from mod-2 conservation of e and m.

e Gapped boundaries spontaneously break part of the categorical
symmetry.

e-condensed boundary: Z%) v z{™ — 7{™.
m-condensed boundary: Z{% v Z{™ — 7%
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Gapless boundaries of 241D topological order

e What is the gapless 141D CFT with a given non-invertible
gravitational anomaly (=1+1D categorical symmetry = 241D
topological order)? Ji Wen arXiv:1912.13492

e For example: The e-condensed gapped boundary and the
m-condensed gapped boundary are separated by a gapless
critical point, which is nothing but the 1+1D Z{”(or Z{™)
symmetry breaking critical point (the CFT of Ising model).
The critical point has no e condensation nor m condensation,
and thus has the full Z{¥ v Z{™ categorical symmetry.

o The 2+1D 7, topological order (e the 1+1D Z{* v Z{™
categorical symmetry) determines the 1+1D CFT, hinting
categorical symmetry may be used to classify CFTs.
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2+1D Z, topological order (ie 141D de) v ng)

categorical symmetry) can determine 1+1D CFTs

o The 2+1D Z, topological order (ie the Z\ v Z!{™ categorical
symmetry) has four types of excitations 1, e, m, f and is
characterized by
1 1 1
1 -1 -1

-1 1 -1

-1 -1 1

N
S G G W

e Its gapless boundary has 4-component partition function
Zi(7), Ze(7), Zm(7), and Z¢(7) that satisfy
Zi(t+1) = TZ(7), Zi(=1/7) = 5;Z(7),
where /,j =1 e, m,f.
e The above equations have many possible solutions with no
condensation (ie Z; # 0) and 7-dependence (thus gapless).
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Categorical symmetries — CFTs

Non-invertible gravitational anomalies — CFTs

e Ising CFT (minimal model (4,3)): c=¢ =3
Z(r.7) Xe (T2 + X5 (7)1°
Zo(r7) | X5 (7
Zin(7,7) X5 (7)?
Zf(T,7_')

X (ORER) + X5 ()
e Minimal model (5,4) CFT: c =¢ = -

10
Zl ‘X6n4‘2 + ‘XI%4‘2 + |Xr%n4‘2 4 |XI%714|2
z\|_ X+ X
Zn | PP+ X2
Zf m4 =mé ; mé4 —mé

XX+ XTI X’g”ﬂi’%“ + X7

3
0 5

e The correspondence is not 1-to-1. We can improve it by
considering CFTs with minimal number of excitations.

A categorical symm. de) \Y% ng) — the canonical minimal Ising CFT
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The canonical gapless boundary of topo. order

e A n+ 1d gapped topological order has one (or more)
canonical gapless CFT boundaries, that
(1) has no condensation of bulk excitations, and
(2) has minimal amount of boundary excitations.

- Topological Wick rotation: Kong Zheng arXiv:1905.04924; 1912.01760
2+1D topo. orders (UMTCs) classify 1+1D CFTs m
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CFTs — Categorical symmetries

CFTs — Non-invertible gravitational anomalies

e The Ising CFT (minimal model (4,3)): c =¢ = 3
)

Zi(r,7) |X55(T)|? + |X'2§(T 2
z(r7) | (0
Zn(r7) |~ WP
“ D)\ ERE + EOBE)

is a boundary of 241D Z, topolog|cal order with 4 anyons.

e The Ising CFT actually have a larger emergent categorical
symmetry UMTCygng @ UMTCgn with nine anyons (ie can be
a boundary of the 2+1D double Ising topological order with
more topological excitations or more total quantum dim).

The nine component partition function is given by
Zy(1) = x; (N7 (7),  i.j =0, 1/2, 1/16.

e A Ising CFT — the canonical maximal categorical symm.

UMTCyipe ® UMTCq Ji Wen arXiv:1912.13492
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e The minimal model (5,4) CFT: c =¢ = &

7 X+ T+ X+ I
1 2

Z\|_ X + T2
Zm - ‘Xm4‘2 + ‘Xm4‘2
Zf Xm4Xm4 + Xm4Xm4 + X RX + Xm4Xm4

is a boundary of 2+1D Z, topological order with 4 anyons.

e The (5,4) CFT actually have a larger emergent categorical
symmetry: it is a boundary of 2+1D topo. order
(28145 ©3%),) @ (25,5 ® 3%, 5)- (25,5 ~ G(2)]1 CS theory)

The minimal model (5,4) CFT has the maximal emergent
categorical symmetry (maximal non-invertible gravitational

anomaly) given by (28 Clas ® 37/2) (2534/5 ® 357/2).

e 141D rational CFTs 1t<—°§ Maximal emergent 1+1D

categorical symmetries
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Are nd gapless CFTs “classified” by their maximal

emergent categorical symmetry?

e The CFT at n > 1d spontaneous G-symmetry breaking .
transition point has a G \V G("~1) categorical
symmetry (ie is a boundary of n+ 1d topological order
of G-gauge theory, where G is finite. Ji Wen arXiv:1912.13492

- Such a critical point has a 0-symmetry G, and has an
algebraic (n — 1)-symmetry G("1).

Kong Lan Wen Zhang Zheng arXiv:2003.08898; arXiv:2005.14178

The relation between the CFT and its categorical symmetry

(/e topological order in one higher dimension) is similar to the
AdS/CFT duality.
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Categorical symmetry and AdS/CFT duality
ontaj au eor G gallge.theory
'C tldi?n_gAdsM in n+1 dim. space

G symmetric CFT in n dim. space G symm. breaking trans. CFT in ndim. G symm. breaking trans. CFT in n dim.
n—1 n—
with G V G )categorical symmetry withG V G 'Ealegorical symmetry

e AdS/CFT duality: Maldacena hep-th/9711200; Witten hep-th/9802150
(1) A CFT with G-symmetry has a AdS bulk
that contains G-gauge theory.

(2) AdS bulk that contains G-gauge theory (and
gravity) has a boundary CFT that contain a G-symmetry.

e A more detailed proposal: Ji Wen arXiv:1912.13492

Pure G-gauge theory (w/ charge fluc. & gravity) in
(n+ 1)d AdS space ~ a particular CFT that appears
at the nd spontaneous G-symmetry breaking transition,
not other CFT's with G-symmetry.
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