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Condensed matter physics and higher category

• Condensed matter systems:
defined by microscopic theoretical lattice models
probed by macroscopic experimental measurements
• Concepts in condensed matter systems

defined by microscopic lattice models
defined by macroscopic properties

- Superconductivity: (micro) electron-pair condensation.
(macro) zero resistance, vortex quantization
• Concepts in mathematics (in some areas)

defined by topological invariants = macroscopic properties
• We have a microscopic definition of gapped phases in

condensed matter. A full macroscopic characterization of
nd (n+1D) gapped phases → unitary fusion n-category
• We have a microscopic definition of gapless phases in

condensed matter. A full macroscopic characterization of
nd (n+1D) gapless quantum phases → ???
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A many-body quantum system (a lattice model)

• A quantum system is described by (VN ,HN)
VN : a Hilbert space with a tensor decomposition
VN = ⊗N

i=1Vi , where Vi has a finite dimension.
HN : a local Hamiltonian (hermitian operator) acting on VN :
HN =

∑
i Oi +

∑
ij O〈ij〉 + · · ·.

Oi hermitian operator acts on Vi ,
Oij hermitian operator acts on Vi ⊗ Vj

ε −> 0

∆

subspace
ground−state −>finite gap  0

1

.
• A gapped quantum system (a concept for N →∞ limit) =

a sequence of pairs, {(VN1 ,HN1); (VN2 ,HN2); (VN3 ,HN3); · · · },
where each HN has gapped eigenvalue spectrum: ∆N → ∆∞,
0 < ∆∞ <∞ and εN → 0, as N →∞
→ ground-state subspace Vgrnd (= gapped state in physics)
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Examples of gapped systems and gapped states

• The trivial state in 1d (space dim) ie 1+1D (spacetime dim)
VN = C⊗N

2 , C2 = spanC{| ↑〉, | ↓〉}. • • • • • • • •
HN =

∑
i Oi = −

∑
i Zi , where Zi | ↑〉i = | ↑〉i , Zi | ↓〉i = −| ↓〉i

→ 1-dim. ground-state subspace = spanC{| · · · ↑↑↑ · · ·〉} ,
where | · · · ↑↑↑ · · ·〉 = | ↑〉⊗N is a product state:

• Ising model: symmetry breaking state
VN = C⊗N

2 , C2 = {| ↑〉, | ↓〉}. HN =
∑

i Oi ,i+1 = −
∑

i ZiZi+1

→ 2-dim. ground-state subspace =
spanC{| · · · ↑↑↑ · · ·〉, | · · · ↓↓↓ · · ·〉}

- HN has a Z2 on-site symmetry generated by U = ⊗iXi

Xi | ↑〉i = | ↓〉i , Xi | ↓〉i = −| ↑〉i : UHNU
−1 = HN

Symmetry breaking state: A basis of ground-state subspace
|· ↑↑↑ ·〉 ± |· ↓↓↓ ·〉, that is symmetric (U |Ψ〉 = e iθ|Ψ〉) but
not product states. Another basis, |· ↑↑↑ ·〉, |· ↓↓↓ ·〉, that are
product states but not symmetric.
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Gapped phases of many-body quantum systems

ε −> 0

∆

subspace
ground−state −>finite gap  

.

• Two gapped systems, ie two sequences
{HN |N→∞} and {H ′N |N→∞}, are equivalent
if HN can smoothly deform into H ′N without
closing the gap ∆. The resulting equivalent classes are
gapped quantum phases of matter.

• Two symmetric gapped systems, ie two sequences symmetric
{HN |N→∞} and {H ′N |N→∞}, are equivalent if HN can smoothly
symmetrically deform into H ′N without closing the gap ∆. The
resulting equivalent classes are gapped quantum phases of
matter with symmetry.

• Trivial gapped phase: The unique ground states of
equivalent Hamiltonians are related by local unitary
transformations: a product state → a short-range entangled
(SRE) state:

|SRE state〉 = |product state〉
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More careful discussion of local unitary equivalence

• A gapped quantum phase: an equivalence class of gapped
quantum systems: Chen Gu Wen, arXiv:1004.3835

Def: {HNi
} ∼ {H ′Ni

}, if their ground-state
subspaces satisfy Ψ′Ni

= ULUΨNi
, where

ULU is a local unitary transformation:

ULU =
LU LU

’ ’

ψ

N1
ψ

N
ψ

N
ψ

N1 2

2

LU

’
N

ψ

N
ψ

3

3

LU

’
N

ψ

N
ψ

4

4

• A gapped quantum liquid phase:
Zeng Wen, arXiv:1406.5090

ΨNi+1

local addition−−−−−−−→ ΨNi
⊗ | ↑〉⊗(Ni+1−Ni )

• Trivial phase and
symmetry breaking
phases are examples of
Gapped liquid phases

’

LU LU

’
N1 N

NN1 2

2

gLU

LU

’
N

N

gLU

4

4

LU

’
N

N3

3

gLU

ψ

ψ ψ ψ

ψψψ

ψ

Generalized local unitary (gLU) trans,
k+1k kN NN

LULA

.
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Symmetry breaking phase: quantum point of view

In most textbooks, symmetry breaking phase is explained using
a classical point of view.

A A A

BB’
φ φ φ

g g c g’ε ε ε

The Hamitonian HN has a symmetry GH : UgHNU
−1
g = HN ,

where Ug form a representation of a group g ∈ GH .

ε −> 0

∆

subspace
ground−state −>finite gap  

.

• Symmetry breaking phase: The ground-state
subspace has a SRE basis, ie each basis vector
is local unitary equivalent to a product
state. Such a basis is not symmetric under Ug ∈ GH .
But the basis may be symmetric under the transformations in
a subgroup Ug ∈ GΨ ⊂ GH .
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Classify phases of quantum matter (T = 0 phases)

For a long time, we thought that Landau symmetry
breaking classify all phases of matter
• Symm. breaking phases are characterized by order

parameters and classified by a pair GΨ ⊂ GH

GH = symmetry group of the system.
GΨ = symmetry group of the ground states.

• 230 crystals from group theory
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Topological orders in quantum Hall effect

• Quantum Hall states Rxy = Vy/Ix = m
n

2π~
e2

vonKlitzing Dorda Pepper, PRL 45 494 (1980)

Tsui Stormer Gossard, PRL 48 1559 (1982)

.

• FQH states have different
phases even when there is no
symm. (GH = 1) and no symm.
breaking. (GΨ = GH)
• FQH liquids must contain

a new kind of order, named
as topological order
Wen, PRB 40 7387 (89); IJMP 4 239 (90)

• New equivalent classes of {HN} beyond symm. breaking phase
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Macroscopic characterization of topological order

• New equivalent classes → new topological invariants.
How to extract new topological invariants beyond symmetry
breaking from complicated many-body state
|Ψ〉 =

∑
x1,··· ,x1020

Ψ(x1, · · · , x1020)|x1, · · · , x1020〉

Put the gapped system on space with various
topologies, and measure the ground state degeneracy.

Wen PRB 40 7387 (89)

New topological invariant → Notion of topological order

g=2

Deg.=D Deg.=D1 2Deg.=1

g=0

g=1

ε −> 0

∆

subspace
ground−state −>finite gap  

Haldane PRL 51 605 (83); Tao-Wu, PRB 30 1097 (84)

Why ground state degeneracy is a topological invariant?
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The ground state degeneracy is topological

.

• The ground state degeneracies, in N →∞ limit, are
robust against any local perturbations that can break
any symmetries. The ground state degeneracies
have nothing to do with symmetry. We call such a
degeneracy as topological degeneracy Wen Niu PRB 41 9377 (90)

ε −> 0

∆

subspace
ground−state −>finite gap  

• The ground state degeneracies
can only vary by some large
changes of Hamiltonian
→ gap-closing phase transition.

EE

ε

∆
∆

g g

E E

g g
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Topological invariants that fully define topo. orders

The ground state degeneracy only partially characterize
topological order, not fully define it.
We conjectured that nd (ie n + 1D) topological order
can be completely defined via the following topological
property: Wen IJMPB 4, 239 (90); Keski-Vakkuri Wen IJMPB 7, 4227 (93)

• Vector bundle on the moduli space
i. Consider a closed 2-dim space Σg w/ metrics gij .
ii. Different diffeomorphic equivalent classes of metrics gij

form the moduli space MΣg .
iii. The moduli space is the space of Hamiltonians H(gij ).

We jumped here: discrete lattice → continuous manifold
The emergence of continuous geometry from discrete algebra

iv. The ground subspace Vgrnd(gij ) (an n-dim vector space) of
H(gij ) depends on the diffeomorphic equivalent classes of
the spacial metrics gij → a vector bundle over MΣg with
fiber Vgrnd(gij ).
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Topological invariants that fully define topo. orders

.

Vector bundle on the moduli space
is a U(n) bundle with SU(n) flat connection
(due to the topological degeneracy).

- Local U(1) curvature → gravitational

Chern-Simons term e−Seff = e i
2πc
24

∫
M2×S1 ω3

→ chiral central charge c
→ quantized thermal Hall conductance

- Flat SU(n) connection: π1(Mtorus) = SL(2,Z)
90◦ rotation |Ψα〉 → |Ψ′α〉 = Sαβ|Ψβ〉
Dehn twist: |Ψα〉 → |Ψ′α〉 = Tαβ|Ψβ〉

τ

1 .
S ,T → a proj. rep. of SL(2,Z): Wen IJMPB 4, 239 (90)

S2 = (ST )3e−2π i c
8 = C ,C 2 = 1 Keski-Vakkuri Wen IJMPB 7, 4227 (93)

X.-D. Wen & X.-G. Wen arXiv:1908.10381

Conjecture: The vector bundles on all MΣg (ie the data
(S ,T , c), ...) completely characterize the topo. orders
(S ,T , c) for torus almost fully characterize 2+1D topo. order
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The microscopic origin of topological degeneracy

• For a highly entangled many-body quantum systems:
knowing every parts still cannot determine the whole

- In other words, there are different
“wholes”, that their every local
parts are identical.

- Local Hamiltonians can only see the parts → those different
“wholes” (the whole quantum states) have the same energy.
• What is a “whole”?, what is “part”?

whole = many-body wave function |Ψ〉 = Ψ(m1,m2, · · · ,mN)
where mi label states on site-i
part = entanglement density matrix:

ρsite-1,2 = Trsite-3,··· ,N |Ψ〉〈Ψ|, 〈H1,2〉 = Tr(H1,2ρsite-1,2)

ρm1,m2;m′1,m
′
2

=
∑

m3,··· ,mN

Ψ∗(m1,m2,m3, · · · ,mN)Ψ(m′1,m
′
2,m3, · · · ,mN)
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The microscopic origin of topological orders

• Those kinds of many-body quantum systems have

topological entanglement entropy
Kitaev-Preskill hep-th/0510092

Levin Wen cond-mat/0510613

and long range quantum entanglement
Chen Gu Wen arXiv:1004.3835

Long range entanglement → Topo. degeneracy

Xiao-Gang Wen (MIT), Higher Structures and Field Theory Introduction to topological order 15 / 61



What is long-range entanglement?

Chen Gu Wen arXiv:1004.3835

• Define long range entanglement
via local unitary (LU) transformations
(ie local quantum circuit)

|LRE〉 6= |product state〉 = |SRE〉

local unitary
transformation

LRE
product

SRE
state

state

local unitary
transformation

LRE 1 LRE 2

local unitary
transformation

product
state

product
state

SRE SRE

g
1

2
g

SRE

LRE 1 LRE 2

phase

transition

topological order

.• All SRE states belong to the same trivial phase
• LRE states can belong to many different phases

= different patterns of long-range entanglements
= different topological orders Wen PRB 40 7387 (89)
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How to make long range entanglement?

• Short-range-entanglement (SRT) ∼ product state | ↑↑↑↑↑↑〉
• To make topological order, need to sum over many different

product states. But summing over everything with equal
weight

∑
all spin config. | ↑↓ ..〉 = (| ↑〉+ | ↓〉)⊗N → product state

• Sum over everything with phase factors∑
all spin config.

∏
i<j (z

↑
i − z↑j )m| ↑↓ ..〉

→ chiral spin liquid or FQH state.

.

• Sum over a subset of spin configurations:

|ΦZ2
loops〉 =

∑∣∣∣ 〉
|ΦDS

loops〉 =
∑

(−)# of loops
∣∣∣ 〉

• Can the above wavefunction be the
ground states of local Hamiltonians?
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Local dance rule → global dance pattern

2D

• Local rules of a string liquid (for ground state):
(1) Dance while holding hands (no open ends)

(2) Φstr

( )
= Φstr

( )
, Φstr

( )
= Φstr

( )
→ Global wave function of loops Φstr

( )
= 1

• There is a Hamiltonian H (the toric code model):
(1) Open ends cost energy
(2) string can hop and reconnect freely.
The ground state of H gives rise to the above
string lqiuid wave function. Kitaev quant-ph/9707021
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Local dance rule → global dance pattern

2D 3D

• Local rules of another string liquid (ground state):
(1) Dance while holding hands (no open ends)

(2) Φstr

( )
= Φstr

( )
,Φstr

( )
= −Φstr

( )
→ Global wave function of loops Φstr

( )
= (−)# of loops

• The second string liquid Φstr

( )
= (−)# of loops can exist

only in 2-dimensions.

The first string liquid Φstr

( )
= 1 can exist in both 2- and

3-dimensions.
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Knowing all the parts 6= knowing the whole

• Quantum entanglement →

• 4 locally indistinguishable
states on torus for both
liquids → topo. order

- Ground state degeneracy
cannot distinguish them.

e o

e e

e

o o

o

D
tor

=4
.
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Topological excitations

• Ends of strings behave
like point objects.
• They cannot be created

alone → topological

• Let us fix 4 ends of string on
a sphere S2. How many locally
indistinguishable states are there?

- There are 2 sectors → 2 states (?)
- In fact, there is only 1 sector → 1 state, due to the string

reconnection fluctuations Φstr

( )
= ±Φstr

( )
.

• In general, fixed 2N ends of string → 1 state. Each end of
string has no degeneracy → no internal degrees of freedom.

• Another type of topological excitation vortex at ×:

|m〉 =
∑

(−)# of loops around ×
∣∣∣ 〉
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Emergence of fractional spin (topological spin)

.• Ends of strings are point-like. Are they bosons or fermions?
Two ends = a single string = a boson, but each end can still
be a fermion. Fidkowski Freedman Nayak Walker Wang cond-mat/0610583

• Φstr

( )
= 1 string liquid Φstr

( )
= Φstr

( )
• End of string wave function: |end〉 = + c + c + · · ·

The string near the end is totally fixed, since the end is
determined by a trapping Hamiltonian δH which can be
chosen to fix the string. The string alway from the end is not
fixed, since they are determined by the bluk Hamiltonian H
which gives rise to a string liquid.

• 360◦ rotation: → and = → : R360◦ =
(

0 1
1 0

)
• We find two types of topological exitations

(1) |e〉 = + spin 0. (2) |f 〉 = − spin 1/2.
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Spin-statistics theorem:
Emergence of Fermi statistics

(a) (b) (c) (d) (e)

• (a) → (b) = exchange two string-ends.
• (d) → (e) = 360◦ rotation of a string-end.
• Amplitude (a) = Amplitude (e)
• Exchange two string-ends plus a 360◦ rotation of one of the

string-end generate no phase.

→ Spin-statistics theorem
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Z2 topological order and its physical properties

Φstr

( )
= 1 string liquid has Z2-topological order.

• 4 types of topological excitations: (f is a fermion)

(1) |e〉 = + spin 0. (2) |f = e ⊗m〉 = − spin 1/2.

(3) |m〉 = − spin 0. (4) |1〉 = + spin 0.
• The type-1 excitation is the tirivial excitation, that can be

created by local operators.
The type-e, type-m, and type-f excitations are non-tirivial
excitation, that cannot be created by local operators.
• 1, e, m are bosons and f is a fermion. e,m, and f have π

mutual statistics between them.
• Fusion rule:
e ⊗ e = 1; f ⊗ f = 1; m ⊗m = 1;
e ⊗m = f ; f ⊗ e = m; m ⊗ f = e;
1⊗ e = e; 1⊗m = m; 1⊗ f = f ;
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Topo. order and topological quantum field theory

Z2 topologica order is described by Z2 gauge theory
– a topological quantum field theory
Physical properties of Z2 gauge theory
= Physical properties of Z2 topological order
• Z2-charge → e, Z2-vortex → m, bound state → f .

• Z2-charge (a representatiosn of Z2) and Z2-vortex (π-flux) as
two bosonic point-like excitations.
• Z2-charge and Z2-vortex bound state → a fermion (f ),

since Z2-charge and Z2-vortex has a π mutual statistics
between them (charge-1 around flux-π).
• Z2-charge, Z2-vortex, and their bound state has a π mutual

statistics between them.
• Z2 gauge theory on torus also has 4 degenerate ground states
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Emergence of fractional spin and semion statistics

Φstr

( )
= (−)# of loops string liquid. Φstr

( )
= −Φstr

( )
• End of string wave function: |end〉 = + c − c + · · ·

• 360◦ rotation: → and = − → − : R360◦ =
(

0 −1
1 0

)
• Types of topological excitations: (s± are semions)

(1) |s+〉 = + i spin 1
4
. (2) |s− = s+ ⊗m〉 = − i spin −1

4

(3) |m〉 = − spin 0. (4) |1〉 = + spin 0.

• double-semion topo. order = U2(1) Chern-Simon gauge
theory L(aµ) = 2

4π
aµ∂νaλε

µνλ − 2
4π
ãµ∂ν ãλε

µνλ

• Two string lqiuids → Two topological orders:
Z2 topo. order Read Sachdev PRL 66, 1773 (91), Wen PRB 44, 2664 (91),

Moessner Sondhi PRL 86 1881 (01) and double-semion topo. order
Freedman etal cond-mat/0307511, Levin Wen cond-mat/0404617

Xiao-Gang Wen (MIT), Higher Structures and Field Theory Introduction to topological order 26 / 61



Emergence of fractional spin and semion statistics

Φstr

( )
= (−)# of loops string liquid. Φstr

( )
= −Φstr

( )
• End of string wave function: |end〉 = + c − c + · · ·

• 360◦ rotation: → and = − → − : R360◦ =
(

0 −1
1 0

)
• Types of topological excitations: (s± are semions)

(1) |s+〉 = + i spin 1
4
. (2) |s− = s+ ⊗m〉 = − i spin −1

4

(3) |m〉 = − spin 0. (4) |1〉 = + spin 0.

• double-semion topo. order = U2(1) Chern-Simon gauge
theory L(aµ) = 2

4π
aµ∂νaλε

µνλ − 2
4π
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String-net liquid

Levin Wen cond-mat/0404617.

Ground state:
• String-net liquid: allow three strings to join, but do

not allow a string to end Φstr

( )
• The dancing rule :

Φstr

( )
= Φstr

( )
Φstr

( )
= γΦstr

( )
+
√
γΦstr

( )
Φstr

( )
=
√
γΦstr

( )
− γΦstr

( )
γ = (

√
5− 1)/2
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Topological excitations in string-net liquid

• Topological excitations:
For fixed 4 ends of string-net on a sphere S2, how many
locally indistinguishable states are there? four states?

• In fact, there are only two linearly independent states.
This can be obtain using fusion rule: φ⊗ φ = 1⊕ φ.

φ⊗ φ means bound state of two φ-particles (fusion).
But what does 1⊕ φ means?
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A general theory of topological excitations

.• In a gapped system: H =
∑

x
Ôx ,

excitations = δHξi
gapped traps

H + δHξ1 + δHξ2 + δHξ3 →
gapped ground space Vexc(ξ, ξ′, · · · )

ξ

ξ

ξ
1

2

3

H H+
i
Σ δHξ

i

ε −> 0

∆

subspace
ground−state −>finite gap  

- Different excitations are labeled by
different trap Hamiltonians δHξ
• Topological types: Two excitations, δHξ

and δH̃ξ̃, are equivalent if δHξ and δH̃ξ̃ can
deform into each other without closing the gap.
The equivalent class of excitations [δHξ] ≡ type-α.
• Trivial type-1 if the corresponding equiv. class

[δHξ] 3 δHξ = 0
- It can be created by local Oξ: Vexc(ξ, ξ′, · · · ) = OξVexc(ξ′, · · · )
- It has trivial double braiding (mutual statistics) with all

excitations.
• Non-trivial type-α at ξ: [δHξ] 63 δHξ = 0

• With symmetry G → H , δHξ are symmetric operators:
UgHU

†
g = H , UgδHξU

†
g = δHξ, g ∈ G .
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Simple/composite excitation and fusion category

• simple excitation at ξ: The ground space V simple
exc (ξ, · · · ) is

robust against local perturbation near ξ → type i .
• composite excitation at ξ: The ground space
Vexc(ξ, · · · ) (the degeneracy) can be splitted
by local perturbation near ξ, ie contain
accidental degeneracy → type α = i ⊕ j .

iα

j

δ α δ βH H

• Excitations in 1d → Fusion cat. theory
- Excitations δHξ = objects
- Morphism = deformation δHα → δHβ: α→ i
- The object type-i = isomorphism classes of excitations δHξ.
- In 1D and above,
i ⊗ j = k ⊕ · · · ⊕ k︸ ︷︷ ︸

N ij
k copies

⊕ · · · = ⊕kN
ij
k k

i j

k

• Fusion space: Vexc(ξ1, ξ2, · · · ) = V(i1, i2, · · · )
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Consistent conditions on N ij
k

Consider two ways to compute i ⊗ j ⊗ k = ⊕lN
ijk
l l

(i ⊗ j)⊗ k = ⊕mN
ij
m m ⊗ k = ⊕m,lN

ij
mN

mk
l l

i ⊗ (j ⊗ k) = ⊕nN
jk
n n ⊗ k = ⊕n,lN

jk
n N in

l l

→ ∑
m,l

N ij
mN

mk
l =

∑
n,l

N jk
n N in

l

N1i
j = N i1

j = δij , N i j̄
1 = δij .

But N ij
k is not all the data to describe the fusion of excitations.

There is an additional data.
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The F -symbol: F ijk ;mαβ
l ;nχδ

• Consider the fusion i ⊗ j ⊗ k → l ⊕ · · · ⊕ l →
V(i , j , k ; · · · ) = V(l ; · · · )⊕ · · · ⊕ V(l ; · · · ), but the direct sum
⊕ decomposition is not unique (like different choices of basis)

- V(i , j , k ; · · · ) → ⊕m,α=1···N ij
m
Vα(m, k ; · · · )

→ ⊕m,α ⊕β,l Vα;m,β(l ; · · · ) = ⊕m,α;β,lVα;m,β(l ; · · · )
- V(i , j , k ; · · · ) → ⊕n,χ=1···N jk

n
Vχ(i , n; · · · )

→ ⊕n,χ ⊕δ,l Vχ;n,δ(l ; · · · ) = ⊕n,χ;δ,lVχ;n,δ(l ; · · · )
- Vα;m,β(l ; · · · ) and Vχ;n,δ(l ; · · · ) like two sets of basis that span

the same fusion space V(i , j , k ; · · · )
• The F -symbol is a unitary matrix that relate the two basis

Vχ;n,δ(l ; · · · )
χ

δ

i j k

l

n =
∑
mαβ

(F ijk
l )mαβ

nχδ Vα;m,β(l ; · · · )
α

β

ji k

m
l

i j k

l

n
jk

αn

α
in

l

i j k

αm

ij

αl

mk

l

m

l* l*

F
ijkl*

i(jk)l* (i(jk))l*(ij)kl*

ijkl*

((ij)k)l*~ll*

m

m’

m’’
n

n
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Consistent conditions for F ijk ;mαβ
l ;nχδ and UFC

Two different ways of fusion
α

β
χ

ji k l

m

p

n ,
φ

γ

δ
ji k l

p

q
s (two sets of

basis) are related via two different paths of F-moves:
α

β
χ

ji k l

m

p

n =
∑

q,δ,ε F
mkl ;nβχ
p;qδε

α δ

ε

ji k l

m

p

q =
∑

q,δ,ε;s,φ,γ F
mkl ;nβχ
p;qδε F ijq;mαε

p;sφγ

φ
γ

δ
ji k l

p

q
s ,

α
β

χ

ji k l

m

p

n =
∑

t,η,ϕ F
ijk;mαβ
n;tηϕ χ

η
ϕ

ji k l

p

n

t =
∑

t,η,ϕ;s,κ,γ F
ijk;mαβ
n;tηϕ F itl ;nϕχ

p;sκγ

η

κ

γ

ji k l

p

s
t

=
∑

t,η,κ;ϕ;s,κ,γ;q,δ,φ F
ijk;mαβ
n;tηϕ F itl ;nϕχ

p;sκγ F jkl ;tηκ
s;qδφ

φ
γ

δ
ji k l

p

q
s .

The two paths should lead to the same unitary trans.:∑
t,η,ϕ,κ F

ijk;mαβ
n;tηϕ F itl ;nϕχ

p;sκγ F jkl ;tηκ
s;qδφ =

∑
ε F

mkl ;nβχ
p;qδε F ijq;mαε

p;sφγ

Such a set of non-linear algebraic equations is the famous
pentagon identity. MacLane 63; Moore-Seiberg 89

(N ij
k ,F

ijk;mαβ
l ;nχδ ) → Unitary fusion category → theory of 1d excitations
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An example of UFC: Fibonacci fusion category

• A 1d topo. order described by a Fibonacci fusion category:
- Two types of topological excitations 1, φ.
- Fusion rule N ij

k : φ⊗ φ = 1⊕ φ.

- F-symbol F ijk;mαβ
l ;nχδ : F φφφφ =

(
γ γ1/2

γ1/2 −γ

)
, γ =

√
5−1
2

F φφφ1 = F 1φφ
φ = F φ1φ

φ = F φφ1
φ = · · · =

(
1 0
0 1

)
Relation to the 2d string-net wave function

Φstr

( )
= γΦstr

( )
+
√
γΦstr

( )
Φstr

( )
=
√
γΦstr

( )
− γΦstr

( )
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Internal degrees of freedom – quantum dimension

• Let Dn be the number of locally indistinguishable states for n
φ-particles on a sphere. The internal degrees of freedom of φ

– quantum dimension – d = limn→∞D
1/n
n

φ⊗ · · · ⊗ φ︸ ︷︷ ︸
n

= 1⊕ · · · ⊕ 1︸ ︷︷ ︸
Dn

⊕φ⊕ · · · ⊕ φ︸ ︷︷ ︸
Fn

Dn = Dim
(
Hom(φ⊗n, 1)

)
, Fn = Dim

(
Hom(φ⊗n, φ)

)
,

φ⊗ · · · ⊗ φ︸ ︷︷ ︸
n

⊗φ = 1⊕ · · · ⊕ 1︸ ︷︷ ︸
Fn

⊕φ⊕ · · · ⊕ φ︸ ︷︷ ︸
Fn+Dn

Dn+1 = Fn, Fn+1 = Fn + Dn = Fn + Fn−1, D1 = 0, F1 = 1.

The internal degrees of freedom of φ is (spin-1
2

electron d = 2)

d = lim
n→∞

F
1/n
n−1 =

1 +
√

5

2
= 1.61803398874989 · · · .
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Anomaly and the principle of remote detectablility

We say a UFC describes 1d excitations. But can we really find
a 1d local lattice model such that its excitations are described
by the UFC? Answer: No. This obstruction is called anomaly
How to tell if a theory for excitations is anomalous or not?
• Remotely detectable = Realizable (anomaly-free)

Every non-trivial topological excitation i can
be remotely detected by at least one topo.
excitation j via remote operations (such as
braiding) ↔ the topological order is realizable
in the same dimension. Levin arXiv:1301.7355, Kong Wen arXiv:1405.5858

.

• All non-tirival UFCs, as theory for 1d excitations, are
anomalous, ie not realizable by 1d lattice models
There is no non-trivial (anomaly-free/realizable)
topological order in 1d.

- 1+1D TQFT’s are all unstable and do not correspond to
1d (1+1D) topo. orders (gapped phases with no symm.).
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Theory of 2d excitations = braided fusion category

• Above 1D, particles can braid →
unitary braided fusion category
• Braiding requires that N ij

k = N ji
k .

• Braiding → R ij ;α
k;β

mutual statistics = double braiding:

R ij ;α
k;β R

ji ;β
k;γ = e iθ

(k)
ij δαγ

topological spin si : θ
(k)
ij = 2π(sk − si − sj )

k

i j

j i

R

i

kk k

j

γ β α

j i ij

R

.

• Hexagon identity:
R ik;φ

p;ε F
ikj ;pελ
l ;nηδ R jk;η

n;χ =∑
mαβ F

kij ;pφλ
l ;mαγ Rmk;γ

l ;β F ijk;mαβ
l ;nχδ

• Theory of unitary braided
fusion category (UBFC)
are fully characterized
by those (N ij

k ,F
ijk;mαβ
l ;nγλ ,R ij ;α

k;β )

i k

ll

l

l l

l
l

m n

m

m

n

p

p

ki

ki ki

ki

ki

j
ki j

j j

jj

j

α

β δ

χ
α

α

ε

γ
γ

λ δ

η

λ

φ

R F

R

FR

F

.
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Examples of UBFC (excitations in 2d topo. orders)

• Anomalous (degenerate) UBFC
- i : (1, e), di : (1, 1), si : (0, 0) (symm. fusion cat. Rep(Z2))

• Anomaly-free (non-degenerate) UBFC
- i : (1, s), di : (1, 1), si : (0, 1

4
). (ν = 1

2
bosonic FQH state)

- i : (1, φ), di : (1,
√

5+1
2

= γ), si : (0, 2
5
). (Fibonacci topo. order)

- i : (1, e,m, f ), di : (1, 1, 1, 1), si : (0, 0, 0, 1
2
).(Z2 gauge theory)

- i : (1, φ, φ̄, φφ̄), di : (1, γ, γ, γ2), si : (0, 2
5
,−2

5
, 0). (string-net)

• The E2-center (Müger center) of UBFC C = the set of
particles with trivial mutual statistics respecting to all others:

Z2(C) ≡ {i | θ(k)
ij = 0, ∀j , k}

Remote detectable ↔ Z2(C) = {1} (modular) ↔ Realizable
Excitations in an anomaly-free (realizable) 2d
topological order are described by an unitary modular
tenser category (UMTC)
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Do UMTC’s classify 2d bosonic topo. orders?

• No! UMTC’s classify {2d bosonic topological orders}
{2d bosonic invertible topological orders}

• Stacking two topological phases a, b give rise to a third
topological phase c = a ⊗ b →
The set of topological
phases forms a monoid.

c−TO
a−TO

b−TO

• 1) A topo. order is invertible iff it has no non-trivial topo.
excitations (but has a non-trivial domain wall (morphisms) to
other topo. phases).
2) A topo. order is invertible iff its topo. partition function
are pure phases: Ztop(Mn) ∈ U(1) → classify inv. topo. orders

H-type invertible
topo. order

1 + 1D 2 + 1D 3 + 1D 4 + 1D 5 + 1D 6 + 1D

Boson: 0 Z E8 0 Z2 0 Z⊕ Z
Fermion: Z2p-wave Z p+ip 0 0 0 Z⊕ Z

Kapustin arXiv:1403.1467; Kong Wen arXiv:1405.5858

Kapustin Thorngren Turzillo Wang arXiv:1406.7329; Freed arXiv:1406.7278
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Invertible topo. order (no fractionalized excitation)

• 2+1D: Ztop(M3) = e i 2πc
24

∫
M3 ω3(gµν) where ω3 is the grav. CS

term: dω3 = p1 and p1 is the first Pontryagin class.
• The quantization of the topo. term: c = 8× int. → Z-class:∫

M
ω3(gµν) =

∫
N,∂N=M

p1 =
∫

N′,∂N′=M
p1 mod 3,

since
∫

Nclosed
p1 = 0 mod 3.

• 4+1D: Ztop(M5) = e iπ
∫

M5 w2w3 where wi is the i th

Stiefel-Whitney class → Z2-class. We find
∫

M5 w2w3 = 1 when
M5 = CP2 hϕ S

1 and ϕ : CP2 → (CP2)∗

• 6+1D: Two independent gravitational Chern-Simons terms:

Ztop(M7) = e
2πi

∫
M7

[
k1
ω̃7−2ω7

5
+k2

−2ω̃7+5ω7
9

]
where dω7 = p2, dω̃7 = p1p1 → Z⊕ Z-class (k1, k2).

• Topological order = UMTC + extra info (such as edge)
UMTC = Topo.-orders/invertible-topo.-orders
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UMTC: 2+1D bosonic topo. orders mod invertibles

.
ζm

n = sin(π(m+1)/(n+2)
sin(π/(n+2)

Rowell Stong Wang arXiv:0712.1377; Wen arXiv:1506.05768
NB

c d1, d2, · · · s1, s2, · · · wave func. NB
c d1, d2, · · · s1, s2, · · · wave func.

1B
1 1 0

2B
1 1, 1 0, 1

4
semion

∏
(zi − zj )2 2B

−1 1, 1 0,− 1
4

∏
(z∗i − z∗j )2

2B
14/5 1, ζ1

3 0, 2
5

chiral Fibonacci TO 2B
−14/5 1, ζ1

3 0,− 2
5

anti-chiral Fib.

3B
2 1, 1, 1 0, 1

3
, 1

3
(221) double-layer 3B

−2 1, 1, 1 0,− 1
3
,− 1

3
3B

8/7 1, ζ1
5 , ζ

2
5 0,− 1

7
, 2

7
3B
−8/7 1, ζ1

5 , ζ
2
5 0, 1

7
,− 2

7
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2
, 1
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2
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2
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Classify nd topological orders via excitations

• Excitations in an nd topo. objects = codim-1 excitations
orders are described by 1-morphisms = codim-2 excitations
a fusion n-category (n-1)-morphisms = point excitations
An example of fusion 2-category:

cs

ew

u

.

s → object (string excitation)
u → 1-morphisms (domain wall between

strings)
e → 1-morphisms (domain wall between

trivial string = point excitations)
c → string connecting trivial string via a domain wall

(condensation excitation or descendent excitation)
• Vertical and horizontal fusions → braiding of particules
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Which fusion n-cats correspond to topo. orders?

.• Realizable topo. orders
η−→ unitary fusion n-categories

Ker(η) = invertible topological orders.
Img(η) = anomaly-free unitary fusion n-categories.
A generic unitray fusion n-category may not realizable by
any nd lattice models, and are called anomalous.

Unitary defined in Kong Wen Zheng arXiv:1502.01690

• Anomaly-free fusion n-categories = ???
Define anomaly-free macroscopically (ie mathematically),
instead of microscopically via realizable by lattice models.

• We have defined Anomaly-free via the E2-center
Z2(C) = nVec (ie via mutual statistics). But this approach is
hard to understand for higher categories.
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Try to define anomaly via boundary-bulk relation

.
theory
with

Topolocally
ordered

state
anomaly

grav.

- A UFC describes 1d topological excitations
→ 1+1D locally consistent effective theory.

- It is not realizable → not globally consistent
→ having gravitational anomaly
• A 1d UFC (locally consistent) can always be realized as a

gapped boundry of a 2d topolgocal order (a UMTC)
- The Fibonacci fusion category φ⊗ φ = 1⊕ φ describe the 1d

excitations at a gapped boundary of 2d string-net state
(UMTC i : (1, φ, φ̄, φφ̄), di : (1, γ, γ, γ2), si : (0, 2

5
,−2

5
, 0)):

Φstr

( )
= γΦstr

( )
+
√
γΦstr

( )
Φstr

( )
=
√
γΦstr

( )
− γΦstr

( )
UFC effective theory //

wave function,,
1d excitations

2d string-net state
a boundary

11

• Non-trivial bulk topo. order → grav. anomaly at boundary
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Generalization to higher dimensions

Up to invertible topologioca orders
- Potencially anomalous nd topological orders = boundary

of (n + 1)d topological orders = fusion n-catgeories.
- Anomaly-free nd topological orders = boundary of

(n + 1)d trivial product state = realizable by nd lattice models
= special fusion n-catgeories. But which ones?

Kong Wen arXiv:1405.5858; Kong Wen Zheng arXiv:1502.01690

.

• Holographic principle of topological order:
The boundary uniquely determines the bulk.
A potentially anomalous topological order (a fusion
n-category Cn) determines a unique bulk topological order (a
braided fusion n-category Mn):

Z1(Cn) = Mn

Z1 is the E1-center: Z1(Cn) = Mn a braided fusion n-category.
• The bulk topological order Mn is anomaly-free

Mn+1 = ΣMn; Z1(Mn+1) = (n + 1)Vec
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Anomaly and holographic principle→ Classification

• Gravitational anomally Kong Wen arXiv:1405.5858; Kong Wen Zheng

= topological order in one higher dimension arXiv:1502.01690

• Symmetry (t’ Hooft) anomally Wen arXiv:1303.1803

=SPT order in one higher dimension

theory
with

Topolocally
ordered

state
anomaly

grav.

SPT
state

symmetry
on−site
with

anomaly
(symm.)

gauge
with
theory

.
Anomaly-free (realizable) nd topological orders (up to invert-
ibles) are classified by unitary fusion n-categories Cn that sat-
isfy Z1(Cn) = nVec and include all condansation excitations.
(nVec = trivial braided fusion n-category.)

Kong Wen arXiv:1405.5858; Kong Wen Zheng arXiv:1502.01690

Gaiotto Johnson-Freyd arXiv:1905.09566; Johnson-Freyd 2003.06663
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Graviational anomaly: an old point of view

• The action of a classical field theory

S(φ, vµ) =

∫
dnx
√

det(gµν)L(φ, vµ; gµν)

diffeomorphism invariance xµ → x̃µ

• But for the path integral that define quantum theory, the
partition function

Z =

∫
D[φ]D[vµ]e−S(φ,vµ)

is not invariant under the diffeomorphism transformation due
to the Jacobian for the change of integration measure
→ invertible graviational anomaly
• Jacobian = non-zero complex number → The anomalies are

invertible.
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Anomaly: a modern point of view→ non-invertible

Anomaly-free = realizable by lattice model in the same dim
Anomalous = realizable by a boundary of a gapped lattice

model in one higher dimension.
• A quantum field theory with gravitational anomaly cannot be

realized as the low energy effective theory of a lattice model in
the same dimension. Wen arXiv:1303.1803; Kong Wen arXiv:1405.5858

Fiorenza Valentino arXiv:1409.5723; Monnier arXiv:1410.7442

theory
with

Topolocally
ordered

state
anomaly

grav.

SPT
state

symmetry
on−site
with with

theory

’t Hooft
anomaly

.

But can be realized as
the low energy effective
theory of a boundary
of a lattice model in
one-higher dimension.
• Gravitational anomaly = Topological order in one higher

dimension → non-invertible gravitational anomaly
• Symmetry (’t Hooft) anomaly = SPT order in one higher

dimension → invertible symmetry anomaly
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Try to characterize/classify gapless CFTs
via non-invertible gravitational anomalies

Unlike invertible gravitational anomaly, the non-invertible
gravitational anomaly (ie the topological order in one higher
dimension, also called categorical symmetry) contain a lot
of information, that can be used to characterize (or even
classify) gapless conformal field theories (CFT) (ie with linear
dispertion relation ω = v |k |).

CFTs are characterized (or even classified) by their
maximal emergent categorical symmetries
CFTs are characterized (or even classified) by their maximal
emergent non-invertible gravitational anomalies
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Understand degenerate ground states on torus

• Remember that 2+1D topological order is characterized by
degenerate ground states on torus and the modular
matrices S ,T that generate the representations of the
mapping class group of the torus.

x

y t

space S1

type−i anyon

Consider a spacetime evolution M3, T 2 = ∂M3.
• The Euclidean spacetime evolution produce

a ground state on the torus T 2 = ∂M3

• Embeding the worldline of different types
of anyon gives rise to different degenerate
ground states |Ψi〉 on torus.
So the degenerate ground states are labeled by anyon types i .
• Under the modular transformations S ,T they transform as

|Ψi〉 → Sij |Ψj〉, |Ψi〉 → Tij |Ψj〉

A 1+1D non-invertible anomaly (=1+1D categorical
symmetry = 2+1D topo. order) is described by S ,T
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How to understand various 1+1D boundaries
of a 2+1D topological order? Ji & Wen arXiv:1905.13279

τ

1

• The partition function of a 1+1D lattice model (or
boundary of 2+1D trivial gapped state) dependent on the
shape of the spacetime: Z (τ) = Tre−(Imτ)H+ i (Reτ)P , which is
modular invariant Z (τ) = Z (τ + 1), Z (τ) = Z (− 1

τ
)

- modular invariance → 1+1D anomaly free

x

t

y

boundary

S1

type−i anyon

.

• Boundary of 2d topo. order → 1d theory w/
non-inv. anomaly. Wen 1303.1803; Kong Wen 1405.5858

- 1d non-invertible anomalous theory has several
partition functions Zi (τ) labeled by the anyon
types i of the 2+1D bulk topo. order, and is

- modular covariant Zi (τ + 1) = TijZj (τ), Zi (− 1
τ

) = SijZj (τ)
S ,T -matrices = the 2+1D bulk topo. order = 1+1D anomaly
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Gapped boundaries of 2+1D topological order

.

• The partition functions for 1+1D gapped state
are constant integer Z (τ) = Z ∈ Z. The gapped
boundaries have partition functions that satisfy
Zi = TijZj , Zi = SijZj , Z1 = 1. Lan Wang Wen arXiv:1408.6514

• For Z2 topological order,

TZ2 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 , SZ2 =
1

2

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1


.

x

t

y

boundary

S1

type−i anyon

.

we find two solutionsZ1

Ze

Zm

Zf

 =

1
1
0
0


e-cond

,

Z1

Ze

Zm

Zf

 =

1
0
1
0


m-cond

.→ two kinds of boundaries from e-condensation
and m-condensation.
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View topo. order as categorical symmetry:
New name → new understanding and new results

• 2+1D topological order = 1+1D non-invertible
gravitational anomaly can be viewed as symmetry, which is
called 1+1D categorical symmetry (due to the conervation
of 2+1D excitations as described by their fusion rule).
For example: the 2+1D Z2 topological order (with excitations

1, e,m, f ) corresponds to categorycal symmetry Z(e)
2 ∨ Z(m)

2

from mod-2 conservation of e and m.

• Gapped boundaries spontaneously break part of the categorical
symmetry.

e-condensed boundary: Z(e)
2 ∨ Z(m)

2 → Z(m)
2 .

m-condensed boundary: Z(e)
2 ∨ Z(m)

2 → Z(e)
2
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Gapless boundaries of 2+1D topological order

• What is the gapless 1+1D CFT with a given non-invertible
gravitational anomaly (=1+1D categorical symmetry = 2+1D
topological order)? Ji Wen arXiv:1912.13492

.

• For example: The e-condensed gapped boundary and the
m-condensed gapped boundary are separated by a gapless

critical point, which is nothing but the 1+1D Z(e)
2 (or Z(m)

2 )
symmetry breaking critical point (the CFT of Ising model).
The critical point has no e condensation nor m condensation,

and thus has the full Z(e)
2 ∨ Z(m)

2 categorical symmetry.

• The 2+1D Z2 topological order (ie the 1+1D Z(e)
2 ∨ Z(m)

2

categorical symmetry) determines the 1+1D CFT, hinting
categorical symmetry may be used to classify CFTs.
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2+1D Z2 topological order (ie 1+1D Z(e)
2 ∨ Z(m)

2

categorical symmetry) can determine 1+1D CFTs

• The 2+1D Z2 topological order (ie the Z(e)
2 ∨ Z(m)

2 categorical
symmetry) has four types of excitations 1, e,m, f and is
characterized by

TZ2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 , SZ2 =
1

2


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1


• Its gapless boundary has 4-component partition function
Z1(τ), Ze(τ), Zm(τ), and Zf (τ) that satisfy

Zi (τ + 1) = TijZj (τ), Zi (−1/τ) = SijZj (τ),

where i , j = 1, e,m, f .
• The above equations have many possible solutions with no

condensation (ie Zi 6= 0) and τ -dependence (thus gapless).
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Categorical symmetries → CFTs
Non-invertible gravitational anomalies → CFTs

• Ising CFT (minimal model (4, 3)): c = c̄ = 1
2Z1(τ, τ̄)

Ze(τ, τ̄)
Zm(τ, τ̄)
Zf (τ, τ̄)

 =


|χIs

0 (τ)|2 + |χIs
1
2

(τ)|2

|χIs
1

16

(τ)|2

|χIs
1

16

(τ)|2

χIs
0 (τ)χ̄Is

1
2

(τ̄) + χIs
1
2

(τ)χ̄Is
0 (τ̄)

 ,

.• Minimal model (5, 4) CFT: c = c̄ = 7
10Z1

Ze

Zm

Zf

 =


|χm4

0 |2 + |χm4
1

10

|2 + |χm4
3
5

|2 + |χm4
3
2

|2

|χm4
7

16

|2 + |χm4
3

80

|2

|χm4
7

16

|2 + |χm4
3

80

|2

χm4
0 χ̄m4

3
2

+ χm4
1

10

χ̄m4
3
5

+ χm4
3
5

χ̄m4
1

10

+ χm4
3
2

χ̄m4
0


.• The correspondence is not 1-to-1. We can improve it by
considering CFTs with minimal number of excitations.

A categorical symm. Z(e)
2 ∨ Z(m)

2 → the canonical minimal Ising CFT
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The canonical gapless boundary of topo. order

• A n + 1d gapped topological order has one (or more)
canonical gapless CFT boundaries, that
(1) has no condensation of bulk excitations, and
(2) has minimal amount of boundary excitations.

- Topological Wick rotation: Kong Zheng arXiv:1905.04924; 1912.01760

.

2+1D topo. orders (UMTCs) classify 1+1D CFTs

Xiao-Gang Wen (MIT), Higher Structures and Field Theory Introduction to topological order 57 / 61



CFTs → Categorical symmetries
CFTs → Non-invertible gravitational anomalies

• The Ising CFT (minimal model (4, 3)): c = c̄ = 1
2Z1(τ, τ̄)

Ze(τ, τ̄)
Zm(τ, τ̄)
Zf (τ, τ̄)

 =


|χIs

0 (τ)|2 + |χIs
1
2

(τ)|2

|χIs
1

16

(τ)|2

|χIs
1

16

(τ)|2

χIs
0 (τ)χ̄Is

1
2

(τ̄) + χIs
1
2

(τ)χ̄Is
0 (τ̄)

 ,

.
is a boundary of 2+1D Z2 topological order with 4 anyons.
• The Ising CFT actually have a larger emergent categorical

symmetry UMTCIsing ⊗ UMTCIsing with nine anyons (ie can be
a boundary of the 2+1D double Ising topological order with
more topological excitations or more total quantum dim).
The nine component partition function is given by

Zij (τ) = χIs
i (τ)χ̄Is

j (τ̄), i , j = 0, 1/2, 1/16.

• A Ising CFT → the canonical maximal categorical symm.
UMTCIsing ⊗ UMTCIsing Ji Wen arXiv:1912.13492
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• The minimal model (5, 4) CFT: c = c̄ = 7
10Z1

Ze

Zm

Zf

 =


|χm4

0 |2 + |χm4
1

10

|2 + |χm4
3
5

|2 + |χm4
3
2

|2

|χm4
7

16

|2 + |χm4
3

80

|2

|χm4
7

16

|2 + |χm4
3

80

|2

χm4
0 χ̄m4

3
2

+ χm4
1

10

χ̄m4
3
5

+ χm4
3
5

χ̄m4
1

10

+ χm4
3
2

χ̄m4
0


.
is a boundary of 2+1D Z2 topological order with 4 anyons.
• The (5, 4) CFT actually have a larger emergent categorical

symmetry: it is a boundary of 2+1D topo. order
(2B
−14/5 ⊗ 3B

7/2)⊗ (2B
14/5 ⊗ 3B

−7/2). (2B
14/5 ∼ G (2)|1 CS theory)

The minimal model (5, 4) CFT has the maximal emergent
categorical symmetry (maximal non-invertible gravitational
anomaly) given by (2B

−14/5 ⊗ 3B
7/2)⊗ (2B

14/5 ⊗ 3B
−7/2).

• 1+1D rational CFTs
1-to-1←→ Maximal emergent 1+1D

categorical symmetries
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Are nd gapless CFTs “classified” by their maximal
emergent categorical symmetry?

• The CFT at n > 1d spontaneous G -symmetry breaking
transition point has a G ∨ G (n−1) categorical
symmetry (ie is a boundary of n + 1d topological order

of G -gauge theory, where G is finite. Ji Wen arXiv:1912.13492

- Such a critical point has a 0-symmetry G , and has an
algebraic (n − 1)-symmetry G (n−1).

Kong Lan Wen Zhang Zheng arXiv:2003.08898; arXiv:2005.14178

The relation between the CFT and its categorical symmetry
(ie topological order in one higher dimension) is similar to the
AdS/CFT duality.
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Categorical symmetry and AdS/CFT duality

in n+1 dim. space

G symm. breaking trans. CFT in n dim. G symmetric CFT in n dim. space G symm. breaking trans. CFT in n dim. 
(n−1) (n−1)

with G      G     categorical symmetry with G      G     categorical symmetry

in n+1 dim. AdS space in n+1 dim. AdS space

Contain G gauge theory

in n+1 dim. space

G gauge theory
G gauge theory

G gauge theory

.• AdS/CFT duality: Maldacena hep-th/9711200; Witten hep-th/9802150

(1) A CFT with G -symmetry has a AdS bulk
that contains G -gauge theory.
(2) AdS bulk that contains G -gauge theory (and
gravity) has a boundary CFT that contain a G -symmetry.

• A more detailed proposal: Ji Wen arXiv:1912.13492

Pure G -gauge theory (w/ charge fluc. & gravity) in
(n + 1)d AdS space ∼ a particular CFT that appears
at the nd spontaneous G -symmetry breaking transition,
not other CFT’s with G -symmetry.
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