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Introduction

KZ equations are linear differential equations satisfied by the
correlation functions of 2d CFT.

e Monodromy representation of KZ equations (braid groups,
braided monoidal category and quantum groups, affine Lie
algebras, hypergeometric functions, VOA, knot theory, ...)

e Cyclotomic KZ (cKZ) equations (braid groups of type B,
quantum homogeneous spaces); quantum KZ (qKZ)
equations (quantum affine Lie algebras, Yangians), ...

@ Monodromy of KZ, cKZ, qKZ resembles respectively the
Yang-Baxter, reflection, and Yang-Baxter equations with
spectral parameter.

@ A new viewpoint: to study the Stokes phenomenon of these
equations. (Advantage: isomonodromy deformation).
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o Linear systems of ODEs with irregular singularities, and
their Stokes matrices.
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o Linear systems of ODEs with irregular singularities, and
their Stokes matrices.

o Stokes matrices of KZ, cKZ, qKZ equations.

@ Possible relation with BV quantization of 2d CohFT, and
generalization to KZ 2-connections (in progress with Sheng
and Zhu).
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Resummation of formal power series

A procedure to obtain a finite result from a divergent sum.

e Borel resummation:

Suppose f(z) =2 k>0 fr2® with |fi| < C*k!. Formally

o) o0 oo(d) " Sk oo(d)
= Zf Z / th dt o _/0
k=0
o BSy(f) = L [ ez (Letk)dt.

Suppose f(z) =3 ;> e
o YR th =L (cmalytically contmued to t1< 0).
—dt==1.e% -T(0,3).

Tz

e the resummation is fo_ =
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ODEs with second order poles

Consider the linear system on z-plane

dF u V
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F(z) = ﬁ(z)e*%z[v],

where H(z) =Id, + Hyz + - - - is a formal sum of matrices.

5/21



ODEs with second order poles

Consider the linear system on z-plane

dF u V
(2L F
dz <22+z> ’

where F(z) € gl,,, u = diag(u!,...,u™) and V € gl,,(C).
Unique formal fundamental solution:

F(z) = H(z)e = 2V],
where H(z) =Id, + Hyz + - - - is a formal sum of matrices.

Problem: |Hy| ~ k!.
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Canonical solutions

e Borel resummation (along a direction d):

. 1 [ H
]B%Sd(H):/O e (Y k—ftk)dt.

z
k>0
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Canonical solutions

e Borel resummation (along a direction d):

) o(d)
BS,(H) = 1/0 = %tk)dt.

z
k>0

e Singular/Stokes directions d = arg(u; — u;).
e Stokes sectors are bounded by adjacent d’s.

Theorem

In each Stokes sector R,
Fr(z) := BSg(H)(z)e = 2V

is the unique (therefore canonical) holomorphic solution with
the asymptotics Fr(z) ~ F(z) at z = 0 within R.
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Stokes matrices
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Stokes matrices

Take two opposite sectors Ry, and corresponding solutions Fly.

The Stokes matrices Si of % = (“ + %) F are given by

22

F (z)=Fi(z)- St in R_, Fi(2)=F_(2)-S_in R;.

. @ _ i Ul 0 l tl b2
Consider - = Z2< 0w )—i— Z( by b >F
27rib2(u2—u1)t17t2 )

Then S4 = ( (1) F(1*>\1th1)111(1*>\2+1t1)
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Stokes phenomenon of KZ equations,
Yang-Baxter and reflection equations
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Summary

o Stokes matrix of /@% = (u® + HF

z
~ R-matrix of quantum groups;
(1)
o Stokes matrix of 4 = < M 4 hM) F

~ K-matrix of quantum symmetric pairs;
eY —u()

+ u)F(z)

z

@ Stokes matrix of F'(z + p) =
~ R-matrix of affine quantum groups.
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KZ equations

Stg gl,, Q= Zl<”<nEU®Eﬂ€U(1) , and take
= dia, (ul, . up) € gand V € Rep(gl,).
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KZ equations

Set g =gl,, Q=31 i<, Bij ® Eji € Ul(gl,)®?, and take
u = diag(uy, ...,u,) € g and V' € Rep(gl,,).

Definition
The KZ equation, for a function F(21,...,2,) € VO™, is

oOF ; - 9K
_ (%) 2
/18% = (u I E zi—z]')F’ i=1,...,n.

e Braid group B, " (C"\ {z; # z;}), has generators
by, ...,b,_1 and relations

bibi+1b; = bi11bibi11,
bibj = bjbi, |Z —j‘ > 1.
e Formal solution F at z = o0, whose resummation are different

F, in different zones D, = (Re(2,(1)) < ... < Re(24(ny))-
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Stokes matrices and Yang-Baxter equations

Figure: Monodromy along b; = Fy - F; 1 € End(V®"):

04,41
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Figure: Monodromy along b; = Fy - F; 1 € End(V®"):

04,41

L] L] L] .\/—\. L] L]
z1 ZiN__Ait1 Zn
Factorization: the computation reduces to
k— = (u —)F,
dz ( + z)

for z = 2,41 — 2.
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Figure: Monodromy along b; = Fy - F; 1 € End(V®"):

04,41
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z1 ZiN__Ait1 Zn
Factorization: the computation reduces to
k— = (u —)F,
dz ( + z)

for z = z;11 — 2;. It has solutions Fi with Fly ~ Fasz— +oo,
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Stokes matrices and Yang-Baxter equations

Figure: Monodromy along b; = Fy - F; 1 € End(V®"):

04,41

L] L] L] .\/—\. L] L]
z1 ZiN__Ait1 Zn
Factorization: the computation reduces to
k— = (u —)F,
dz ( + z)

for z = z;11 — 2;. It has solutions Fi with Fly ~ Fasz— +oo,
and has monodromy F_ = F, - S, for S, € End(V®?2).

Theorem

For any regular u, the Stokes matriz Sy € End(V®?) satisfies
Yang-Baxter equation S_li_QS_f’S23 = 5_2‘_35_1‘_35_13.

11/21



Example: simplest case

Let us take gls and the natural representation V', thus

dF hQ

= = F
o, = (ut —)F

where u = diag(u1, u1, ug, uz), and hQ) =

oo o>
o 0O 0o
oo O
SO OO
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Example: simplest case

Let us take gls and the natural representation V', thus

dF hQ
— =(u+ —)F
5, = (ut —)F
R 0 0 0
. 0 0 h O
where u = diag(u1,u1,u2,u2), and hQ=| o . o |
0 0 0 h
We get
el 0 0 0
g, — 0 1 0 0
+ = 0 2isin(wh) 1 0
0 0 0 e

It is the evaluation of the universal R-matrix of quantum gl, on
VeV.
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Cyclotomic KZ equations

o Set Qo = 31 j<n(Bij — Eji) ® (Bji — Eij) € U(s0,)®?,
Ce = 5 Y 1<ij<n(Bij — Eji)(Eji — Eij) € U(son) C U(gly,).
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Cyclotomic KZ equations

e Set 2 = %Zlgz’,jgn(Eij — Eji) ® (Eji — Eyj) € U(soy,)®?,

Ce = 5 2 1<i,j<n(Bij — Bji)(Eji — Eyj) € Uson) C U(gly).
e Take V € Rep(gl,,), W € Rep(soy,).
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Cyclotomic KZ equations

o Set Qo = 31 j<n(Bij — Eji) ® (Bji — Eij) € U(s0,)®?,

Ce = 5 2 1<i,j<n(Bij — Bji)(Eji — Eyj) € Uson) C U(gly).
e Take V € Rep(gl,,), W € Rep(soy,).

Definition
The cKZ equation, for a function F(z1,...,2,) € W @ VO s

aF_<u<")+mgwcf(i)+ Enj L Enj 200~ Oy,

K— =
821' 2
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Cyclotomic KZ equations

o Set Qp = %Zlgi,jgn(Elu = Ej') & (Ej‘ = Eij) € U(son)®2,

Ce = 5 2 1<i,j<n(Bij — Bji)(Eji — Eyj) € Uson) C U(gly).
e Take V € Rep(gl,,), W € Rep(soy,).

Definition
The cKZ equation, for a function F(z1,...,2,) € W @ VO s

OF o004 o nooQi N o0l _ Qi
= (4) et L =
B = (u + + ) + ) I3

JFLj=1 I A=

e The braid group on CX, 79" ((C*)" \ {z; # z;}), has
generators T, by, ..., b,_1 and relations

Tb17by = b17b17,  bibiy1b; = bip1bibiy1,
bibj:bjbi, ‘i*j‘>1, T = b1, 1> 2.
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Stokes matrices and reflection equations

4,2}\\\11’///%1 29 Z

Factorization: consider the equation for a W ® V-valued
function F(z)

dF 20, + CY
A oy 2G|
dz (u i z ) £,
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Stokes matrices and reflection equations

4,2}\\\11’///%1 29 Z

Factorization: consider the equation for a W ® V-valued
function F(z)

dF 20, + CY
A oy 2G|
dz (u i z ) £,

Theorem

For any u, K € End(W ® V) satisfies reflection equation
K126 13832 — SRKBSBRI2 ¢ Bnd(W oV @ V).
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Stokes matrices and reflection equations

4,2}\\\11’///%1 29 Z

Factorization: consider the equation for a W ® V-valued
function F(z)

F 20 + W
¢ _(u<1>+hg>.p’

dz z

Theorem

For any u, K € End(W ® V) satisfies reflection equation
K126 13832 — SRKBSBRI2 ¢ Bnd(W oV @ V).

e Monodromy of cKZ by Enriquez, Brochier,
De Commer-Neshveyev-Tuset-Yamashita,...
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Quantum KZ equations

e Set V € Rep(gl,) and R(z) = 1 + £ € End(V®2).
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e Set V € Rep(gl,) and R(z) = 1 + £ € End(V®2).

Definition (Frenkel-Reshetikhin)

The qKZ equation for a function F(z1,...,2,) € VE" is

F(Zly'-'azm +p77zn)
= R — oy ) B (o — 21 PR
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w(m)

where p and k are parameters, u € gl,, is diagonal.
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Quantum KZ equations

e Set V € Rep(gl,) and R(z) = 1 + £ € End(V®2).

Definition (Frenkel-Reshetikhin)
The qKZ equation for a function F(z1,...,2,) € VE" is

F(z1, s 2m + Dy ooy 2)
= Rm’m_l(zm — Zm—1+D) - Rm’l(zm —z21+pr Y

XR™™(2m — 2n) - - Rm’m+1(zm — Zm+1)F (21, .y 20),

(m)

where p and k are parameters, u € gl,, is diagonal.

Limit: set £ = " and F(y1, ..., yn) = F(y1/h, ..., yn/h).Then

~ gzkﬂn
F(Y1, s Ym + hp, oy yn) = (1+hnu(m)+hz — +0(h)>F-
T Ym — Yk

As h — 0, it turns to the KZ equation.
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Factorization: reduces to

F(z+p) = s "V R(2)F(2) = (F:““) +
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Factorization: reduces to

1
v
%

F(z+p) = s "V R(2)F(2) = (F:““) + )F(z).

. ey
Formal solution: F'(z) = (14 ;< sz_k)e_z“(l)log(”)z[” 9
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Factorization: reduces to
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v
%

F(z+p) = s "V R(2)F(2) = (F:““) + )F(z).

. ey
Formal solution: F'(z) = (14 ;< sz_k)e_zu(l)log(”)z[” 9

Proposition (Birkhoff)

(1) There are canonical solutions Fy(z) asymptotically equal to
F(z) as z = foo;
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Factorization: reduces to

1
v
%

F(z+p) = s "V R(2)F(2) = (F:““) + )F(z).

. ey
Formal solution: F'(z) = (14 ;< sz_k)e_zu(l)log(”)z[” 9

Proposition (Birkhoff)

(1) There are canonical solutions Fy(z) asymptotically equal to
F(z) as z = foo;
(2) the connection matriz S(z) = Fy(2) " F_(2) is of the form

S1
pET]

er”—1

S(Z) = S() —
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Connection matrices and Yang-Baxter equations

Theorem

The connection matriz S(z) = So — QM € End(V®?) of ¢KZ
P

equation satisfies Yang-Baxter equatwn wzth spectral parameter

512(21 — 22)513(21)S23(22) = 523(2’2)513(2’1)512(2’1 — 22).
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Connection matrices and Yang-Baxter equations

Theorem

S1

The connection matriz S(z) = So — 55— € End(V®?) of ¢KZ
e P "—1
equation satisfies Yang-Baxter equation with spectral parameter

512(2’1 — 22)513(21)S23(22) = 523(22)513(2’1)512(2’1 — 22).

In the limit the gKZ becomes the KZ equation

dF

i 14 2=
P = () + D)F. 1)

Furthermore, the Sy and So, = Sp + S1 in S(z) converge to the
Stokes matrices St of the equation (1) as h — 0.
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Connection matrices and Yang-Baxter equations

Theorem

The connection matriz S(z) = So — L;?i € End(V®?) of ¢KZ

e P "—1
equation satisfies Yang-Baxter equation with spectral parameter

512(2’1 — 22)513(21)S23(22) = 523(22)513(2’1)512(2’1 — 22).

In the limit the gKZ becomes the KZ equation

dF
i 14 2=
P = () + D)F. 1)

Furthermore, the Sy and So, = Sp + S1 in S(z) converge to the
Stokes matrices St of the equation (1) as h — 0.

Corollary

In particular, it implies that Sy satisfies the YB equation.
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Summary

o Sy of k% = (v + HF
~ (Algebraic) R-matrix of quantum groups;
1)

(
.K+Ofcg:< (1) 4 p 224G

~ (Algebraic) K-matrix of quantum symmetric pairs;

o 5(2) of F(z +p) = (™ + =5°2) F(2)

~ R-matrix of affine quantum groups.
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(]

+ of & = ( M 4 p F
~ (Algebraic) K-matrix of quantum symmetric pairs;
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Summary

o Sy of k% = (v + HF
~ (Algebraic) R-matrix of quantum groups;

QQg—i—C(D

(]

+ of & = ( M 4 p F
~ (Algebraic) K-matrix of quantum symmetric pairs;
—4(1)
S(z) of F(z+p) = (m_“(l) + %)F(z)

~ R-matrix of affine quantum groups.

o Stokes matrices of boundary KZ equations.

e In general, to find a Stokes phenomenon interpretation of
many objects in the theory of quantum algebras.
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Some words on higher structures

e Quantum 2d CohFT via BV formalism: Dotsenko, Sharon,
Vaintrob and Vallette arxiv:2006.01649.
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Some words on higher structures

e Quantum 2d CohFT via BV formalism: Dotsenko, Sharon,
Vaintrob and Vallette arxiv:2006.01649.

e It rises the question:

(2)
d— < 2 4 h2Q€+C )dz LN Quantum 2d CohFT

s.c.ll s.c.ll

d— (u + %)dz Dubroving o FT (Frobenius mfld)
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Some words on higher structures

e Following Bai-Sheng-Zhu, and Cirio-Martins, and in progress
with Sheng and Zhu.
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Some words on higher structures

e Following Bai-Sheng-Zhu, and Cirio-Martins, and in progress
with Sheng and Zhu.
e There is a notion of classical Yang-Baxter equation for a Lie
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Some words on higher structures

e Following Bai-Sheng-Zhu, and Cirio-Martins, and in progress
with Sheng and Zhu.

e There is a notion of classical Yang-Baxter equation for a Lie
2-algebra g = (d : g_1 — go). A solution is (r,p), where
rE€go®goand p € go®go®g-1 D go ® g1 ® go D g1 ® go ® go-

Then given a representation V', one has a flat 2-connection
(A, B) over C" x V&

A= Z uDdz; + Z rij(z)wij,
i i<j
B = Z (pjikwij A Wik + Pijrwi N ij)
i<j<k
where w;; := dlog(z; — z;).
e Problem: singularities.
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Thank you very much!
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