Stokes phenomenon and Knizhnik–Zamolodchikov (KZ) equations

Xiaomeng Xu Peking University

Higher Structures and Field Theory, ESI, Vienna 17-21 Aug 2020

Xiaomeng Xu Peking University Stokes phenomenon and Knizhnik–Zamolodchikov (K

• Monodromy representation of KZ equations (braid groups, braided monoidal category and quantum groups, affine Lie algebras, hypergeometric functions, VOA, knot theory, ...)

- Monodromy representation of KZ equations (braid groups, braided monoidal category and quantum groups, affine Lie algebras, hypergeometric functions, VOA, knot theory, ...)
- Cyclotomic KZ (cKZ) equations (braid groups of type B, quantum homogeneous spaces); quantum KZ (qKZ) equations (quantum affine Lie algebras, Yangians), ...

イロト イロト イヨト イヨト 三日

- Monodromy representation of KZ equations (braid groups, braided monoidal category and quantum groups, affine Lie algebras, hypergeometric functions, VOA, knot theory, ...)
- Cyclotomic KZ (cKZ) equations (braid groups of type B, quantum homogeneous spaces); quantum KZ (qKZ) equations (quantum affine Lie algebras, Yangians), ...
- Monodromy of KZ, cKZ, qKZ resembles respectively the Yang-Baxter, reflection, and Yang-Baxter equations with spectral parameter.

イロト イロト イヨト イヨト 三日

- Monodromy representation of KZ equations (braid groups, braided monoidal category and quantum groups, affine Lie algebras, hypergeometric functions, VOA, knot theory, ...)
- Cyclotomic KZ (cKZ) equations (braid groups of type B, quantum homogeneous spaces); quantum KZ (qKZ) equations (quantum affine Lie algebras, Yangians), ...
- Monodromy of KZ, cKZ, qKZ resembles respectively the Yang-Baxter, reflection, and Yang-Baxter equations with spectral parameter.
- A new viewpoint: to study the Stokes phenomenon of these equations.

- Monodromy representation of KZ equations (braid groups, braided monoidal category and quantum groups, affine Lie algebras, hypergeometric functions, VOA, knot theory, ...)
- Cyclotomic KZ (cKZ) equations (braid groups of type B, quantum homogeneous spaces); quantum KZ (qKZ) equations (quantum affine Lie algebras, Yangians), ...
- Monodromy of KZ, cKZ, qKZ resembles respectively the Yang-Baxter, reflection, and Yang-Baxter equations with spectral parameter.
- A new viewpoint: to study the Stokes phenomenon of these equations. (Advantage: isomonodromy deformation).

• Linear systems of ODEs with irregular singularities, and their Stokes matrices.

- Linear systems of ODEs with irregular singularities, and their Stokes matrices.
- Stokes matrices of KZ, cKZ, qKZ equations.

イロト イヨト イヨト イヨト 三日

- Linear systems of ODEs with irregular singularities, and their Stokes matrices.
- Stokes matrices of KZ, cKZ, qKZ equations.
- Possible relation with BV quantization of 2d CohFT, and generalization to KZ 2-connections (in progress with Sheng and Zhu).

・ロト ・母ト ・ヨト ・ヨト

A procedure to obtain a finite result from a divergent sum.

A procedure to obtain a finite result from a divergent sum.

• Borel resummation:

Suppose $\hat{f}(z) = \sum_{k \ge 0} f_k z^k$ with $|f_k| \le C^k k!$. Formally

$$\hat{f} = \sum_{k=0}^{\infty} f_k z^k = \sum_{k=0}^{\infty} f_k \left(\int_0^{\infty(d)} e^{-t} t^k dt \right) \frac{z^k}{k!} = \int_0^{\infty(d)} e^{-t} \sum_{k=0}^{\infty} f_k \frac{(tz)^k}{k!} dt.$$

A procedure to obtain a finite result from a divergent sum.

• Borel resummation:

Suppose $\hat{f}(z) = \sum_{k \ge 0} f_k z^k$ with $|f_k| \le C^k k!$. Formally

$$\hat{f} = \sum_{k=0}^{\infty} f_k z^k = \sum_{k=0}^{\infty} f_k \left(\int_0^{\infty(d)} e^{-t} t^k dt \right) \frac{z^k}{k!} = \int_0^{\infty(d)} e^{-t} \sum_{k=0}^{\infty} f_k \frac{(tz)^k}{k!} dt$$

• $\mathbb{BS}_d(\hat{f}) = \frac{1}{z} \int_0^{\infty(d)} e^{-\frac{t}{z}} (\frac{f_k}{k!} t^k) dt.$

A procedure to obtain a finite result from a divergent sum.

• Borel resummation:

Suppose $\hat{f}(z) = \sum_{k \ge 0} f_k z^k$ with $|f_k| \le C^k k!$. Formally

$$\hat{f} = \sum_{k=0}^{\infty} f_k z^k = \sum_{k=0}^{\infty} f_k \left(\int_0^{\infty(d)} e^{-t} t^k dt \right) \frac{z^k}{k!} = \int_0^{\infty(d)} e^{-t} \sum_{k=0}^{\infty} f_k \frac{(tz)^k}{k!} dt.$$

•
$$\mathbb{BS}_d(\hat{f}) = \frac{1}{z} \int_0^{\infty(d)} e^{-\frac{t}{z}} (\frac{f_k}{k!} t^k) dt.$$

Example

Suppose $f(z) = \sum_{k\geq 0} k! z^k$: • $\sum_{k=0}^{\infty} t^k = \frac{1}{1-t}$ (analytically continued to $t \leq 0$). • the resummation is $\int_0^{-\infty} \frac{e^{-t}}{1-tz} dt = \frac{-1}{z} \cdot e^{\frac{-1}{z}} \cdot \Gamma\left(0, \frac{-1}{z}\right)$.

イロト 不得 とくほと 不良 とうほ

ODEs with second order poles

Consider the linear system on z-plane

$$\frac{dF}{dz} = \left(\frac{u}{z^2} + \frac{V}{z}\right)F,$$

where $F(z) \in gl_n$, $u = diag(u^1, ..., u^n)$ and $V \in gl_n(\mathbb{C})$.

Consider the linear system on z-plane

$$\frac{dF}{dz} = \left(\frac{u}{z^2} + \frac{V}{z}\right)F,$$

where $F(z) \in gl_n$, $u = diag(u^1, ..., u^n)$ and $V \in gl_n(\mathbb{C})$.

Unique formal fundamental solution:

$$\hat{F}(z) = \hat{H}(z)e^{-\frac{u}{z}}z^{[V]},$$

where $\hat{H}(z) = \mathrm{Id}_n + H_1 z + \cdots$ is a formal sum of matrices.

Consider the linear system on z-plane

$$\frac{dF}{dz} = \left(\frac{u}{z^2} + \frac{V}{z}\right)F,$$

where $F(z) \in gl_n$, $u = diag(u^1, ..., u^n)$ and $V \in gl_n(\mathbb{C})$.

Unique formal fundamental solution:

$$\hat{F}(z) = \hat{H}(z)e^{-\frac{u}{z}}z^{[V]},$$

where $\hat{H}(z) = \mathrm{Id}_n + H_1 z + \cdots$ is a formal sum of matrices. **Problem:** $|H_k| \sim k!$.

Canonical solutions

• Borel resummation (along a direction d):

$$\mathbb{BS}_d(\hat{H}) = \frac{1}{z} \int_0^{\infty(d)} e^{-\frac{t}{z}} (\sum_{k>0} \frac{H_k}{k!} t^k) dt.$$

Canonical solutions

• Borel resummation (along a direction d):

$$\mathbb{BS}_d(\hat{H}) = \frac{1}{z} \int_0^{\infty(d)} e^{-\frac{t}{z}} (\sum_{k \ge 0} \frac{H_k}{k!} t^k) dt.$$

- Singular/Stokes directions $d = \arg(u_i u_j)$.
- Stokes sectors are bounded by adjacent d's.

Canonical solutions

• Borel resummation (along a direction d):

$$\mathbb{BS}_d(\hat{H}) = \frac{1}{z} \int_0^{\infty(d)} e^{-\frac{t}{z}} (\sum_{k \ge 0} \frac{H_k}{k!} t^k) dt.$$

- Singular/Stokes directions $d = \arg(u_i u_j)$.
- Stokes sectors are bounded by adjacent d's.

Theorem

In each Stokes sector R,

$$F_R(z) := \mathbb{BS}_R(\hat{H})(z)e^{-\frac{u}{z}}z^{[V]}$$

is the unique (therefore canonical) holomorphic solution with the asymptotics $F_R(z) \sim \hat{F}(z)$ at z = 0 within R.

イロト イロト イヨト イヨト 三日

Take two opposite sectors R_{\pm} , and corresponding solutions F_{\pm} .

Take two opposite sectors R_{\pm} , and corresponding solutions F_{\pm} .

Definition

The Stokes matrices S_{\pm} of $\frac{dF}{dz} = \left(\frac{u}{z^2} + \frac{V}{z}\right)F$ are given by $F_{-}(z) = F_{+}(z) \cdot S_{+}$ in R_{-} , $F_{+}(z) = F_{-}(z) \cdot S_{-}$ in R_{+} . Take two opposite sectors R_{\pm} , and corresponding solutions F_{\pm} .

Definition

The Stokes matrices S_{\pm} of $\frac{dF}{dz} = \left(\frac{u}{z^2} + \frac{V}{z}\right)F$ are given by $F_{-}(z) = F_{+}(z) \cdot S_{+}$ in R_{-} , $F_{+}(z) = F_{-}(z) \cdot S_{-}$ in R_{+} .

Example

Consider
$$\frac{dF}{dz} = \frac{1}{z^2} \begin{pmatrix} u_1 & 0 \\ 0 & u_2 \end{pmatrix} + \frac{1}{z} \begin{pmatrix} t_1 & b_2 \\ b_1 & t_2 \end{pmatrix} F.$$

Then $S_+ = \begin{pmatrix} 1 & \frac{2\pi i b_2 (u_2 - u_1)^{t_1 - t_2}}{\Gamma(1 - \lambda_1 + t_1)\Gamma(1 - \lambda_2 + t_1)} \\ 0 & 1 \end{pmatrix}.$

Part II

Stokes phenomenon of KZ equations, Yang-Baxter and reflection equations

- Stokes matrix of $\kappa \frac{dF}{dz} = (u^{(1)} + \frac{\Omega}{z})F$ \approx R-matrix of quantum groups;
- Stokes matrix of $\frac{dF}{dz} = \left(u^{(1)} + h\frac{2\Omega_{\mathfrak{k}} + C_{\mathfrak{k}}^{(1)}}{z}\right) \cdot F$ \approx K-matrix of quantum symmetric pairs;
- Stokes matrix of $F(z+p) = \left(\kappa^{-u^{(1)}} + \frac{\kappa^{-u^{(1)}}\Omega}{z}\right)F(z)$ \approx R-matrix of affine quantum groups.

Set $\mathfrak{g} = \mathfrak{gl}_n$, $\Omega = \sum_{1 \leq i,j \leq n} E_{ij} \otimes E_{ji} \in U(\mathfrak{gl}_n)^{\otimes 2}$, and take $u = \operatorname{diag}(u_1, ..., u_n) \in \mathfrak{g}$ and $V \in \operatorname{Rep}(\mathfrak{gl}_n)$.

Set $\mathfrak{g} = \mathfrak{gl}_n$, $\Omega = \sum_{1 \leq i,j \leq n} E_{ij} \otimes E_{ji} \in U(\mathfrak{gl}_n)^{\otimes 2}$, and take $u = \operatorname{diag}(u_1, ..., u_n) \in \mathfrak{g}$ and $V \in \operatorname{Rep}(\mathfrak{gl}_n)$.

Definition

The KZ equation, for a function $F(z_1, ..., z_n) \in V^{\otimes n}$, is

$$\kappa \frac{\partial F}{\partial z_i} = \left(u^{(i)} + \sum_{j \neq i, j=1}^n \frac{\Omega^{ij}}{z_i - z_j} \right) F, \quad i = 1, ..., n.$$

Set $\mathfrak{g} = \mathfrak{gl}_n$, $\Omega = \sum_{1 \leq i,j \leq n} E_{ij} \otimes E_{ji} \in U(\mathfrak{gl}_n)^{\otimes 2}$, and take $u = \operatorname{diag}(u_1, ..., u_n) \in \mathfrak{g}$ and $V \in \operatorname{Rep}(\mathfrak{gl}_n)$.

Definition

The KZ equation, for a function $F(z_1, ..., z_n) \in V^{\otimes n}$, is

$$\kappa \frac{\partial F}{\partial z_i} = \left(u^{(i)} + \sum_{j \neq i, j=1}^n \frac{\Omega^{ij}}{z_i - z_j} \right) F, \quad i = 1, ..., n.$$

• Braid group B_n , $\pi_1^{S_n}(\mathbb{C}^n \setminus \{z_i \neq z_j\})$, has generators $b_1, ..., b_{n-1}$ and relations

$$b_i b_{i+1} b_i = b_{i+1} b_i b_{i+1},$$

 $b_i b_j = b_j b_i, \ |i-j| > 1.$

10/21

Set $\mathfrak{g} = \mathfrak{gl}_n$, $\Omega = \sum_{1 \leq i,j \leq n} E_{ij} \otimes E_{ji} \in U(\mathfrak{gl}_n)^{\otimes 2}$, and take $u = \operatorname{diag}(u_1, ..., u_n) \in \mathfrak{g}$ and $V \in \operatorname{Rep}(\mathfrak{gl}_n)$.

Definition

The KZ equation, for a function $F(z_1, ..., z_n) \in V^{\otimes n}$, is

$$\kappa \frac{\partial F}{\partial z_i} = \left(u^{(i)} + \sum_{j \neq i, j=1}^n \frac{\Omega^{ij}}{z_i - z_j} \right) F, \quad i = 1, ..., n.$$

• Braid group B_n , $\pi_1^{S_n}(\mathbb{C}^n \setminus \{z_i \neq z_j\})$, has generators $b_1, ..., b_{n-1}$ and relations

$$b_i b_{i+1} b_i = b_{i+1} b_i b_{i+1},$$

 $b_i b_j = b_j b_i, \ |i-j| > 1.$

• Formal solution \hat{F} at $z = \infty$,

Set $\mathfrak{g} = \mathfrak{gl}_n$, $\Omega = \sum_{1 \leq i,j \leq n} E_{ij} \otimes E_{ji} \in U(\mathfrak{gl}_n)^{\otimes 2}$, and take $u = \operatorname{diag}(u_1, ..., u_n) \in \mathfrak{g}$ and $V \in \operatorname{Rep}(\mathfrak{gl}_n)$.

Definition

The KZ equation, for a function $F(z_1, ..., z_n) \in V^{\otimes n}$, is

$$\kappa \frac{\partial F}{\partial z_i} = \left(u^{(i)} + \sum_{j \neq i, j=1}^n \frac{\Omega^{ij}}{z_i - z_j} \right) F, \quad i = 1, ..., n.$$

• Braid group B_n , $\pi_1^{S_n}(\mathbb{C}^n \setminus \{z_i \neq z_j\})$, has generators $b_1, ..., b_{n-1}$ and relations

$$b_i b_{i+1} b_i = b_{i+1} b_i b_{i+1},$$

 $b_i b_j = b_j b_i, |i - j| > 1.$

• Formal solution \hat{F} at $z = \infty$, whose resummation are different F_{σ} in different zones $D_{\sigma} = (\operatorname{Re}(z_{\sigma(1)}) \ll ... \ll \operatorname{Re}(z_{\sigma(n)})).$

Figure: Monodromy along $b_i = F_1 \cdot F_{\sigma_{i,i+1}}^{-1} \in \text{End}(V^{\otimes n})$:

Figure: Monodromy along $b_i = F_1 \cdot F_{\sigma_{i,i+1}}^{-1} \in \text{End}(V^{\otimes n})$:

Factorization: the computation reduces to

$$\kappa \frac{dF}{dz} = (u^{(1)} + \frac{\Omega}{z})F,$$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三回 めへで

11/21

for $z = z_{i+1} - z_i$.

Figure: Monodromy along $b_i = F_1 \cdot F_{\sigma_{i,i+1}}^{-1} \in \text{End}(V^{\otimes n})$:

Factorization: the computation reduces to

$$\kappa \frac{dF}{dz} = (u^{(1)} + \frac{\Omega}{z})F,$$

for $z = z_{i+1} - z_i$. It has solutions F_{\pm} with $F_{\pm} \sim \hat{F}$ as $z \to \pm \infty$, and has monodromy $F_- = F_+ \cdot S_+$, for $S_+ \in \text{End}(V^{\otimes 2})$.

イロト イロト イヨト イヨト 三日

Figure: Monodromy along $b_i = F_1 \cdot F_{\sigma_{i,i+1}}^{-1} \in \text{End}(V^{\otimes n})$:

Factorization: the computation reduces to

$$\kappa \frac{dF}{dz} = (u^{(1)} + \frac{\Omega}{z})F,$$

for $z = z_{i+1} - z_i$. It has solutions F_{\pm} with $F_{\pm} \sim \hat{F}$ as $z \to \pm \infty$, and has monodromy $F_{-} = F_{+} \cdot S_{+}$, for $S_{+} \in \text{End}(V^{\otimes 2})$.

Theorem

For any regular u, the Stokes matrix $S_+ \in \text{End}(V^{\otimes 2})$ satisfies Yang-Baxter equation $S_+^{12}S_+^{13}S_+^{23} = S_+^{23}S_+^{13}S_+^{12}$.

Example: simplest case

Let us take gl_2 and the natural representation V, thus

$$\frac{dF}{dz} = (u + \frac{h\Omega}{z})F,$$

where $u = \text{diag}(u_1, u_1, u_2, u_2)$, and $h\Omega = \begin{pmatrix} h & 0 & 0 & 0\\ 0 & 0 & h & 0\\ 0 & h & 0 & 0\\ 0 & 0 & 0 & h \end{pmatrix}.$

<ロト < 部ト < 言ト < 言ト 言 の < で 12 / 21 Let us take gl_2 and the natural representation V, thus

$$\frac{dF}{dz} = (u + \frac{h\Omega}{z})F$$

where
$$u = \operatorname{diag}(u_1, u_1, u_2, u_2)$$
, and $h\Omega = \begin{pmatrix} h & 0 & 0 & 0 \\ 0 & 0 & h & 0 \\ 0 & h & 0 & 0 \\ 0 & 0 & 0 & h \end{pmatrix}$.

We get

$$S_{+} = \begin{pmatrix} e^{h} & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 2i\sin(\pi h) & 1 & 0\\ 0 & 0 & 0 & e^{h} \end{pmatrix}.$$

It is the evaluation of the universal R-matrix of quantum gl_2 on $V\otimes V.$

• Set
$$\Omega_{\mathfrak{k}} = \frac{1}{2} \sum_{1 \leq i,j \leq n} (E_{ij} - E_{ji}) \otimes (E_{ji} - E_{ij}) \in U(\mathrm{so}_n)^{\otimes 2}$$
,
 $C_{\mathfrak{k}} = \frac{1}{2} \sum_{1 \leq i,j \leq n} (E_{ij} - E_{ji}) (E_{ji} - E_{ij}) \in U(\mathrm{so}_n) \subset U(\mathrm{gl}_n)$.

• Set
$$\Omega_{\mathfrak{k}} = \frac{1}{2} \sum_{1 \leq i,j \leq n} (E_{ij} - E_{ji}) \otimes (E_{ji} - E_{ij}) \in U(\mathrm{so}_n)^{\otimes 2}$$
,
 $C_{\mathfrak{k}} = \frac{1}{2} \sum_{1 \leq i,j \leq n} (E_{ij} - E_{ji}) (E_{ji} - E_{ij}) \in U(\mathrm{so}_n) \subset U(\mathrm{gl}_n)$.
• Take $V \in \operatorname{Rep}(\mathrm{gl}_n)$, $W \in \operatorname{Rep}(\mathrm{so}_n)$.

• Set
$$\Omega_{\mathfrak{k}} = \frac{1}{2} \sum_{1 \leq i,j \leq n} (E_{ij} - E_{ji}) \otimes (E_{ji} - E_{ij}) \in U(\mathrm{so}_n)^{\otimes 2}$$
,
 $C_{\mathfrak{k}} = \frac{1}{2} \sum_{1 \leq i,j \leq n} (E_{ij} - E_{ji}) (E_{ji} - E_{ij}) \in U(\mathrm{so}_n) \subset U(\mathrm{gl}_n)$.
• Take $V \in \operatorname{Rep}(\mathrm{gl}_n)$, $W \in \operatorname{Rep}(\mathrm{so}_n)$.

Definition

The cKZ equation, for a function $F(z_1,...,z_n) \in W \otimes V^{\otimes n}$, is

$$\kappa \frac{\partial F}{\partial z_i} = \left(u^{(i)} + \frac{2\Omega_{\mathfrak{k}}^{0i} + C_{\mathfrak{k}}^{(i)}}{z_i} + \sum_{j \neq i, j=1}^n \frac{\Omega^{ij}}{z_i - z_j} + \sum_{j \neq i, j=1}^n \frac{2\Omega_{\mathfrak{k}}^{ij} - \Omega^{ij}}{z_i + z_j} \right) F.$$

・ロト ・四ト ・ヨト ・ヨト

• Set
$$\Omega_{\mathfrak{k}} = \frac{1}{2} \sum_{1 \leq i,j \leq n} (E_{ij} - E_{ji}) \otimes (E_{ji} - E_{ij}) \in U(\mathrm{so}_n)^{\otimes 2}$$
,
 $C_{\mathfrak{k}} = \frac{1}{2} \sum_{1 \leq i,j \leq n} (E_{ij} - E_{ji}) (E_{ji} - E_{ij}) \in U(\mathrm{so}_n) \subset U(\mathrm{gl}_n)$.
• Take $V \in \operatorname{Rep}(\mathrm{gl}_n)$, $W \in \operatorname{Rep}(\mathrm{so}_n)$.

Definition

The cKZ equation, for a function $F(z_1,...,z_n) \in W \otimes V^{\otimes n}$, is

$$\kappa \frac{\partial F}{\partial z_i} = \left(u^{(i)} + \frac{2\Omega_{\mathfrak{k}}^{0i} + C_{\mathfrak{k}}^{(i)}}{z_i} + \sum_{j \neq i, j=1}^n \frac{\Omega^{ij}}{z_i - z_j} + \sum_{j \neq i, j=1}^n \frac{2\Omega_{\mathfrak{k}}^{ij} - \Omega^{ij}}{z_i + z_j} \right) F.$$

• The braid group on \mathbb{C}^{\times} , $\pi_1^{S_n}((\mathbb{C}^{\times})^n \setminus \{z_i \neq z_j\})$, has generators $\tau, b_1, ..., b_{n-1}$ and relations

$$\tau b_1 \tau b_1 = b_1 \tau b_1 \tau, \quad b_i b_{i+1} b_i = b_{i+1} b_i b_{i+1}, \\ b_i b_j = b_j b_i, \ |i - j| > 1, \quad \tau b_i = b_i \tau, \ i \ge 2.$$

Stokes matrices and reflection equations

Factorization: consider the equation for a $W \otimes V$ -valued function F(z)

$$\frac{dF}{dz} = \left(u^{(1)} + h\frac{2\Omega_{\mathfrak{k}} + C_{\mathfrak{k}}^{(1)}}{z}\right) \cdot F,$$

< □ > < 個 > < 注 > < 注 > ... 注

Stokes matrices and reflection equations

Factorization: consider the equation for a $W \otimes V$ -valued function F(z)

$$\frac{dF}{dz} = \left(u^{(1)} + h\frac{2\Omega_{\mathfrak{k}} + C_{\mathfrak{k}}^{(1)}}{z}\right) \cdot F,$$

Theorem

For any $u, K_+ \in \text{End}(W \otimes V)$ satisfies reflection equation $K_+^{12}S_+^{32}K_+^{13}S_+^{32} = S_+^{32}K_+^{13}S_+^{23}K_+^{12} \in \text{End}(W \otimes V \otimes V).$

Stokes matrices and reflection equations

Factorization: consider the equation for a $W \otimes V$ -valued function F(z)

$$\frac{dF}{dz} = \left(u^{(1)} + h\frac{2\Omega_{\mathfrak{k}} + C_{\mathfrak{k}}^{(1)}}{z}\right) \cdot F,$$

Theorem

For any $u, K_+ \in \text{End}(W \otimes V)$ satisfies reflection equation $K_+^{12}S_+^{32}K_+^{13}S_+^{32} = S_+^{32}K_+^{13}S_+^{23}K_+^{12} \in \text{End}(W \otimes V \otimes V).$

• Monodromy of cKZ by Enriquez, Brochier, De Commer-Neshveyev-Tuset-Yamashita,...

• Set $V \in \operatorname{Rep}(\operatorname{gl}_n)$ and $R(z) = 1 + \frac{\Omega}{z} \in \operatorname{End}(V^{\otimes 2})$.

• Set $V \in \operatorname{Rep}(\operatorname{gl}_n)$ and $R(z) = 1 + \frac{\Omega}{z} \in \operatorname{End}(V^{\otimes 2})$.

Definition (Frenkel-Reshetikhin)

The qKZ equation for a function $F(z_1,...,z_n) \in V^{\otimes n}$ is

$$F(z_1, ..., z_m + p, ..., z_n)$$

= $R^{m,m-1}(z_m - z_{m-1} + p) \cdots R^{m,1}(z_m - z_1 + p) \kappa^{-u^{(m)}}$
 $\times R^{m,n}(z_m - z_n) \cdots R^{m,m+1}(z_m - z_{m+1}) F(z_1, ..., z_n),$

where p and κ are parameters, $u \in gl_n$ is diagonal.

• Set $V \in \operatorname{Rep}(\operatorname{gl}_n)$ and $R(z) = 1 + \frac{\Omega}{z} \in \operatorname{End}(V^{\otimes 2})$.

Definition (Frenkel-Reshetikhin)

The qKZ equation for a function $F(z_1,...,z_n) \in V^{\otimes n}$ is

$$F(z_1, ..., z_m + p, ..., z_n)$$

= $R^{m,m-1}(z_m - z_{m-1} + p) \cdots R^{m,1}(z_m - z_1 + p) \kappa^{-u^{(m)}}$
 $\times R^{m,n}(z_m - z_n) \cdots R^{m,m+1}(z_m - z_{m+1}) F(z_1, ..., z_n),$

where p and κ are parameters, $u \in gl_n$ is diagonal.

Limit: set $\kappa = e^{h\eta}$ and $\tilde{F}(y_1, ..., y_n) = F(y_1/h, ..., y_n/h)$.

• Set $V \in \operatorname{Rep}(\operatorname{gl}_n)$ and $R(z) = 1 + \frac{\Omega}{z} \in \operatorname{End}(V^{\otimes 2})$.

Definition (Frenkel-Reshetikhin)

The qKZ equation for a function $F(z_1,...,z_n) \in V^{\otimes n}$ is

$$F(z_1, ..., z_m + p, ..., z_n)$$

= $R^{m,m-1}(z_m - z_{m-1} + p) \cdots R^{m,1}(z_m - z_1 + p) \kappa^{-u^{(m)}}$
 $\times R^{m,n}(z_m - z_n) \cdots R^{m,m+1}(z_m - z_{m+1}) F(z_1, ..., z_n),$

where p and κ are parameters, $u \in gl_n$ is diagonal.

Limit: set $\kappa = e^{h\eta}$ and $\tilde{F}(y_1, ..., y_n) = F(y_1/h, ..., y_n/h)$. Then $\tilde{F}(y_1, ..., y_m + hp, ..., y_n) = \left(1 + h\eta u^{(m)} + h\sum_{k \neq m} \frac{\Omega^{k,m}}{y_m - y_k} + o(h)\right) \tilde{F}.$

As $h \to 0$, it turns to the KZ equation.

$$F(z+p) = \kappa^{-u^{(1)}} R(z) F(z) = \left(\kappa^{-u^{(1)}} + \frac{\kappa^{-u^{(1)}}\Omega}{z}\right) F(z).$$

$$F(z+p) = \kappa^{-u^{(1)}} R(z) F(z) = \left(\kappa^{-u^{(1)}} + \frac{\kappa^{-u^{(1)}}\Omega}{z}\right) F(z).$$

Formal solution: $\hat{F}(z) = (1 + \sum_{k>0} H_k z^{-k}) e^{-z u^{(1)} \log(\kappa)} z^{[\kappa^{-u^{(1)}}\Omega]}.$

$$F(z+p) = \kappa^{-u^{(1)}} R(z) F(z) = \left(\kappa^{-u^{(1)}} + \frac{\kappa^{-u^{(1)}}\Omega}{z}\right) F(z).$$

Formal solution: $\hat{F}(z) = (1 + \sum_{k>0} H_k z^{-k}) e^{-z u^{(1)} \log(\kappa)} z^{[\kappa^{-u^{(1)}}\Omega]}.$

Proposition (Birkhoff)

(1) There are canonical solutions $F_{\pm}(z)$ asymptotically equal to $\hat{F}(z)$ as $z \to \pm \infty$;

$$F(z+p) = \kappa^{-u^{(1)}} R(z) F(z) = \left(\kappa^{-u^{(1)}} + \frac{\kappa^{-u^{(1)}}\Omega}{z}\right) F(z).$$

Formal solution: $\hat{F}(z) = (1 + \sum_{k>0} H_k z^{-k}) e^{-z u^{(1)} \log(\kappa)} z^{[\kappa^{-u^{(1)}}\Omega]}.$

Proposition (Birkhoff)

(1) There are canonical solutions $F_{\pm}(z)$ asymptotically equal to $\hat{F}(z)$ as $z \to \pm \infty$; (2) the connection matrix $S(z) = F_{+}(z)^{-1}F_{-}(z)$ is of the form $S(z) = S_{0} - \frac{S_{1}}{2^{\frac{2\pi i}{2}}z - 1}.$

Connection matrices and Yang-Baxter equations

Theorem

The connection matrix $S(z) = S_0 - \frac{S_1}{e^{\frac{2\pi i}{p}z} - 1} \in \operatorname{End}(V^{\otimes 2})$ of qKZ equation satisfies Yang-Baxter equation with spectral parameter

$$S^{12}(z_1 - z_2)S^{13}(z_1)S^{23}(z_2) = S^{23}(z_2)S^{13}(z_1)S^{12}(z_1 - z_2).$$

Connection matrices and Yang-Baxter equations

Theorem

The connection matrix $S(z) = S_0 - \frac{S_1}{e^{\frac{2\pi i}{p}z} - 1} \in \text{End}(V^{\otimes 2})$ of qKZ equation satisfies Yang-Baxter equation with spectral parameter

$$S^{12}(z_1 - z_2)S^{13}(z_1)S^{23}(z_2) = S^{23}(z_2)S^{13}(z_1)S^{12}(z_1 - z_2).$$

In the limit the qKZ becomes the KZ equation

$$p\frac{dF}{dz} = (\eta u^{(1)} + \frac{\Omega}{z})F.$$
(1)

Furthermore, the S_0 and $S_{\infty} = S_0 + S_1$ in S(z) converge to the Stokes matrices S_{\pm} of the equation (1) as $h \to 0$.

イロト イロト イヨト イヨト 三日

Connection matrices and Yang-Baxter equations

Theorem

The connection matrix $S(z) = S_0 - \frac{S_1}{e^{\frac{2\pi i}{p}z} - 1} \in \text{End}(V^{\otimes 2})$ of qKZ equation satisfies Yang-Baxter equation with spectral parameter

$$S^{12}(z_1 - z_2)S^{13}(z_1)S^{23}(z_2) = S^{23}(z_2)S^{13}(z_1)S^{12}(z_1 - z_2).$$

In the limit the qKZ becomes the KZ equation

$$p\frac{dF}{dz} = (\eta u^{(1)} + \frac{\Omega}{z})F.$$
(1)

Furthermore, the S_0 and $S_{\infty} = S_0 + S_1$ in S(z) converge to the Stokes matrices S_{\pm} of the equation (1) as $h \to 0$.

Corollary

In particular, it implies that S_+ satisfies the YB equation.

Summary

Summary

• Stokes matrices of boundary KZ equations.

E

イロト イロト イヨト イヨト

Summary

- S₊ of κ dF/dz = (u⁽¹⁾ + Ω/z)F ≈ (Algebraic) R-matrix of quantum groups;
 K₊ of dF/dz = (u⁽¹⁾ + h^{2Ω_ℓ+C⁽¹⁾_ℓ}/z) · F ≈ (Algebraic) K-matrix of quantum symmetric pairs;
 S(z) of F(z + p) = (κ^{-u⁽¹⁾} + κ^{-u⁽¹⁾Ω}/z)F(z) ≈ R-matrix of affine quantum groups.
- Stokes matrices of boundary KZ equations.
 - In general, to find a Stokes phenomenon interpretation of many objects in the theory of quantum algebras.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = つ

• Quantum 2d CohFT via BV formalism: Dotsenko, Sharon, Vaintrob and Vallette arxiv:2006.01649.

- Quantum 2d CohFT via BV formalism: Dotsenko, Sharon, Vaintrob and Vallette arxiv:2006.01649.
- It rises the question:

$$\begin{aligned} d - \left(u^{(2)} + h \frac{2\Omega_{\mathfrak{k}} + C_{\mathfrak{k}}^{(2)}}{z}\right) dz & \xrightarrow{?} \qquad Quantum \ 2d \ CohFT \\ s.c.l \downarrow & s.c.l \downarrow \\ d - \left(u + \frac{V}{z}\right) dz & \xrightarrow{Dubrovin} \ CohFT \ (Frobenius \ mfld) \end{aligned}$$

・ロト ・四ト ・ヨト ・ヨト

Some words on higher structures

• Following Bai-Sheng-Zhu, and Cirio-Martins, and in progress with Sheng and Zhu.

Some words on higher structures

• Following Bai-Sheng-Zhu, and Cirio-Martins, and in progress with Sheng and Zhu.

• There is a notion of classical Yang-Baxter equation for a Lie 2-algebra $\mathfrak{g} = (d : \mathfrak{g}_{-1} \to \mathfrak{g}_0)$. A solution is (r, p), where

 $r \in \mathfrak{g}_0 \otimes \mathfrak{g}_0$ and $p \in \mathfrak{g}_0 \otimes \mathfrak{g}_0 \otimes \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \otimes \mathfrak{g}_{-1} \otimes \mathfrak{g}_0 \oplus \mathfrak{g}_{-1} \otimes \mathfrak{g}_0 \otimes \mathfrak{g}_0$.

Some words on higher structures

• Following Bai-Sheng-Zhu, and Cirio-Martins, and in progress with Sheng and Zhu.

• There is a notion of classical Yang-Baxter equation for a Lie 2-algebra $\mathfrak{g} = (d : \mathfrak{g}_{-1} \to \mathfrak{g}_0)$. A solution is (r, p), where $r \in \mathfrak{g}_0 \otimes \mathfrak{g}_0$ and $p \in \mathfrak{g}_0 \otimes \mathfrak{g}_0 \otimes \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \otimes \mathfrak{g}_{-1} \otimes \mathfrak{g}_0 \oplus \mathfrak{g}_{-1} \otimes \mathfrak{g}_0 \otimes \mathfrak{g}_0$.

Then given a representation V, one has a flat 2-connection (A,B) over $\mathbb{C}^n\times V^{\otimes n}$

$$A = \sum_{i} u^{(i)} dz_i + \sum_{i < j} r^{ij}(z) \omega_{ij},$$
$$B = \sum_{i < j < k} \left(p_{jik} \omega_{ij} \wedge \omega_{ik} + p_{ijk} \omega_{ij} \wedge \omega_{jk} \right)$$

where $\omega_{ij} := d\log(z_i - z_j)$. • Problem: singularities.

イロト イロト イヨト イヨト 三日

Thank you very much!