Skew-product systems over infinite interval exchange transformations

Olga Lukina Leiden University

Joint work with Henk Bruin, University of Vienna

April 24, 2025

<ロト < 部ト < 書ト < 書ト 書 の Q () 1/26

Problem:

Study the dynamics and ergodic properties of skew-product extensions of infinite interval exchange transformations.

Motivation:

First return maps of flows on translation surfaces with wild singularities.

Methods:

- Symbolic dynamics.
- Theory of essential values.

Results:

- Non-ergodicity criteria.
- Estimates for discrepancy and diffusion coefficients.

The talk is based on:

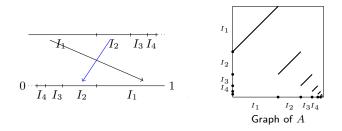
H. Bruin, O. Lukina, *Skew-product systems over infinite interval exchange transformations*, preprint.

<u>H. Bruin, O. Lukina</u>, *Rotated odometers*, J. Lond. Math. Soc., 107 (2023), 1983–2024.

<u>H. Bruin and O. Lukina</u>, *Rotated odometers and actions on rooted trees*, Fundam. Math. **260** (2023), 233-249.

Von Neumann-Kakutani map (the dyadic odometer)

Let I = [0, 1). The von Neumann-Kakutani map $A : I \rightarrow I$ $A(x) = x - (1 - 3 \cdot 2^{1-n}) \qquad \text{if } x \in [1 - 2^{1-n}, 1 - 2^{-n}), \ n \ge 1,$ is an infinite IET.

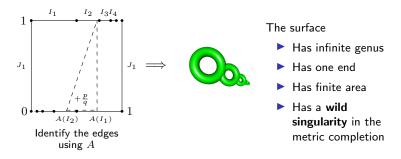


The map A has a countable number of discontinuities at the points

$$\{1 - 2^{-n} \mid n \ge 1\}.$$

Flows on Loch Ness monsters

A surface of infinite genus and a wild singularity **out of a square**:



The first return map of a flow of rational slope is described by an exchange of infinite number of subintervals in I = [0, 1), called a **rotated odometer**.

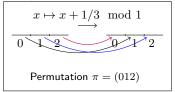
Rotated odometers

Let $q \ge 2$, and consider a rotation: $x \mapsto x + p/q \mod 1$. This induces: - a permutation π , - a finite IET $R_{\pi} : I \to I$.

Given any permutation π of q symbols, the rotated odometer is an IET

$$F_{\pi} = A \circ R_{\pi} : I \to I.$$

Example:



Theorem (Bruin, Lukina 2023)

Any rotated odometer can be realized as the first return map of a flow of rational slope on a translation surface with a wild singularity and possibly a finite number of cone angle singularities.

Dynamics of rotated odometers

Let π be a permutation of q symbols, and consider a rotated odometer

$$F_{\pi} = A \circ R_{\pi} : I \to I.$$

Some results (Bruin and Lukina 2023)

- A rotated odometer (I, F_{π}) may have intervals of periodic points (up to a countable number of periods).

- There is a unique aperiodic subsystem (I_{np}, F_{π}) with at most q invariant ergodic measures.

- (I_{np}, F_{π}) has the unique minimal set (I_{min}, F_{π}) which is uniquely ergodic.

- (I_{min},F_{π}) and (I_{np},F_{π}) may or may not have the dyadic odometer as a maximal equicontinuous factor.

Methods: Renormalization

Let $N = \min\{n \mid 2^{-n} < q^{-1}\},\$ and consider sections $L_k = [0, 2^{-kN}), L_0 = I.$

Theorem (Bruin, Lukina 2023)

Let $F_{\pi,k}: L_k \to L_k$, $k \ge 1$ be the first return maps. For $k \ge 1$:

- 1. There exist permutations π_k of q symbols,
- 2. and finite IET $R_{\pi,k}: L_k \to L_k$ such that

$$F_{\pi,k} = A_k \circ R_{\pi,k},$$

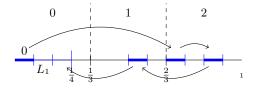
where A_k is a scaled copy of the von Neumann-Kakutani map A,

$$A_k(x) = \frac{1}{2^{kN}} A\left(2^{kN} x\right).$$

3. Moreover, the sequence $(\pi_k)_{k\geq 1}$ is pre-periodic.

Methods: Coding of orbits

Partition L_k into q intervals of equal length, call this partition $\mathcal{P}_{q,k}$. Number the sets in $\mathcal{P}_{3,0}$ and in $\mathcal{P}_{3,1}$ from left to right.



Follow the orbit of a set of $\mathcal{P}_{3,1}$ in L_1 and record the number of the set in $\mathcal{P}_{3,0}$ visited by the orbit. This gives *substitution words*, for instance (see the picture)

 $0 \mapsto 0221$

Methods: S-adic systems

For each $k \ge 1$, recording the set of $\mathcal{P}_{q,k-1}$ in L_{k-1} visited by the orbit of an interval in $\mathcal{P}_{q,k}$ under F_{k-1} , we obtain substitutions

 $\chi_k(i), 0 \leq i \leq q-1$ with alphabet $\mathcal{A} = \{0, 1, \dots, q-1\}.$

Lemma

The sequence $\{\chi_k\}_{k\geq 1}$ is eventually periodic.

Thus we can pass to an eventually constant sequence of substitutions, and restrict to the study of *stationary* sequences, i.e.

 $\chi_k = \chi_1 = \chi$ for all $k \ge 1$.

イロン イロン イヨン イヨン 一日

10 / 26

Substitution

A substitution $\chi : \mathcal{A} \to \mathcal{A}^*$ assigns to every $a \in \mathcal{A}$ are word $\chi(a) \in \mathcal{A}^*$.

This extends to \mathcal{A}^* and Σ by concatenation:

$$\chi(b_1\cdots b_r)=\chi(b_1)\chi(b_2)\cdots\chi(b_r).$$

Example: $A = \{0, 1, 2\},\$

$$\chi(0) = 0221, \quad \chi(1) = 0221, \quad \chi(2) = 0011.$$

The associated matrix of χ is

$$M = \left(\begin{array}{rrrr} 1 & 1 & 2 \\ 1 & 1 & 2 \\ 2 & 2 & 0 \end{array}\right)$$

Remark: For many rotated odometers, M is not primitive, and so there is no fixed point for χ . However, we can still use substitution words to code the dynamics of arbitrary long pieces of orbits.

Skew-products over rotated odometers

Let $F_{\pi}:I\rightarrow I$ be a rotated odometer, and let μ be an ergodic invariant measure.

Define a skew-function by

$$\psi(x) = \begin{cases} 1, & 0 \le x < \frac{1}{2}, \\ -1, & \frac{1}{2} \le x < 1. \end{cases}$$

The skew-product of F_{π} and ψ is given by

 $T_{\pi}: I \times \mathbb{Z} \to I \times \mathbb{Z}, \qquad (x, n) \mapsto (F_{\pi}(x), n + \psi(x)),$

with invariant measure $\mu \otimes \nu$, where ν is the counting measure on \mathbb{Z} .

Then $(I \times \mathbb{Z}, T_{\pi}, \mu \otimes \nu)$ is the first return map for a lifted flow (or rational slope) on a staircase, which is a \mathbb{Z} -to-one cover of the infinite genus surface of finite area that we considered earlier.

Results (Bruin and Lukina, 2024):

- 1. Two criteria for non-ergodicity of the skew-product $(I \times \mathbb{Z}, T_{\pi}, \operatorname{Leb} \otimes \nu).$
- 2. An estimate on the discrepancy of the orbit of a typical point of (I, F_{π}, Leb) .
- 3. An estimate on the diffusion coefficient of $(I \times \mathbb{Z}, T_{\pi}, \text{Leb} \otimes \nu)$.

To answer 1, we use theory of essential values, see:

<u>K. Schmidt</u>, *Cocycles on ergodic transformation groups*. Macmillan Lectures in Mathematics, **Vol. 1**. Macmillan Co. of India, Ltd., Delhi, 1977.

Cocycles and essential values

Given a rotated odometer (I, F_{π}, μ) , and a skew-function $\psi: X \to \mathbb{Z}$, define a function $\Psi: X \times \mathbb{Z} \to \mathbb{Z}$ by

$$\Psi(x,n) = \begin{cases} \psi(F_{\pi}^{n-1}x) + \dots + \psi(F_{\pi}(x)) + \psi(x), & n \ge 1\\ 0, & n = 0, \\ -\psi(F_{\pi}^{n}(x)) - \dots - \psi(F_{\pi}^{-1}(x)), & n \le -1. \end{cases}$$

Then Ψ is a *cocycle*, i.e. it satisfies:

For every
$$n_1, n_2 \in \mathbb{Z}$$
 and every $x \in X$:

$$\Psi(x, n_1 + n_2) = \Psi(F_{\pi}^{n_2}(x), n_1) + \Psi(n_2, x).$$
(1)

$$\blacktriangleright \ \mu\left(\bigcup_{n\in\mathbb{Z}}\left(\{x:F_{\pi}^{n}(x)=x\}\cap\{\Psi(x,n)\neq 0\}\right)\right)=0.$$

<ロト<合ト<Eト<Eト 差 のQで 14/26 Denote the partial unweighted ergodic sums by

$$S_n \psi(x) = \sum_{i=0}^{n-1} \psi(F_{\pi}^i(x)).$$

Definition (Essential values)

The element $e \in \mathbb{Z}$ is an *essential value* of the cocycle Ψ if and only if for every positive measure Borel set A there exists an $n \in \mathbb{Z}$ such that

$$u\left(A \cap F_{\pi}^{-n}(A) \cap \{x \in X : S_n \psi(x) = e\}\right) > 0.$$
(2)

Remark: 0 is always an essential value, with n = 0.

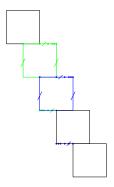
0 may also be a non-trivial essential value if the above definition holds for all positive measure sets with $n \neq 0$, n depending on a set.

Recurrence

We are interested in the dynamics of the flow on the staircase:

- Do all flow lines go to infinity, or do they stay within a bounded subsurface on the staircase?
- If the lines go to infinity, do they ever return to where they started, and how often?

So we may ask if the system $(I \times \mathbb{Z}, T_{\pi}, \mu \otimes \nu)$ is *recurrent* to the section $I \times \{0\}$.



Since the measure $\mu \otimes \nu$ is infinite, the Poincaré Recurrence Theorem does not apply; instead, one asks if 0 is a **non-trivial** essential value of (I, F_{π}, μ) .

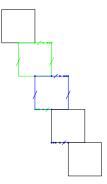
Transience

To formally describe trajectories escaping to infinity, consider the one-point compactification

$$\mathbb{Z}^* = \mathbb{Z} \cup \{\infty\}.$$

Then ∞ is an essential value for the cocycle Ψ (with associated skew-function ψ) if for every $N \in \mathbb{N}$, and every positive Borel measure set A there exists an $n \in \mathbb{Z}$ such that

$$\mu \left(A \cap F^{-n}(A) \cap \{ x \in X : |S_n \psi(x)| \ge N \} \right) > 0.$$



3

17 / 26

イロト イヨト イヨト イヨト

Ergodicity of skew-products

Denote by $E^*(\Psi) \subseteq \mathbb{Z}^*$ the set of essential values for cocycle Ψ .

We will use the following theorem which is well-known:

Theorem

Let $F: X \to X$ be an ergodic transformation with probability measure μ , and let Ψ be a cocycle for the skew-product T. Then:

18 / 26

- 1. $E^*(\Psi)$ is a closed non-empty subset of \mathbb{Z}^* ,
- 2. $E(\Psi) = E^*(\Psi) \cap \mathbb{Z}$ is a closed subgroup of \mathbb{Z} ,
- 3. T is ergodic if and only if $E(\Psi) = \mathbb{Z}$.

Recurrence of rotated odometers

We will concentrate on the case when a rotated odometer (I, F_{π}) has no periodic points, and so Lebesgue measure Leb is ergodic.

In this case recurrence follows from the result of Atkinson 1976:

Theorem

Let (X,F) be an ergodic transformation with ergodic probability measure $\mu.$ Then the skew-function $\psi:X\to\mathbb{Z}$ has integral $\int_X\psi\,d\mu=0$ if and only if the corresponding skew-product is recurrent.

Corollary: Let (I, F_{π}, Leb) be a rotated odometer with ergodic Lebesgue measure. Then 0 is a non-trivial essential value of the skew-product $(I \times \mathbb{Z}, T_{\pi}, \text{Leb} \otimes \nu)$ with skew-function ψ as above.

Criteria for non-ergodicity

Theorem (Bruin, Lukina 2024)

Let (I, F_{π}, Leb) be a rotated odometer with ergodic Lebesgue measure, and consider the skew-product $(I \times \mathbb{Z}, T_{\pi}, \text{Leb} \otimes \nu)$ with skew-function ψ as before.

Let χ be the associated substitution with alphabet $\mathcal{A} = \{0, \ldots, q\}$, and

$$\mathbf{d} := \gcd\{\psi(\chi(a)) : a \in \mathcal{A}\}.$$

Then the subgroup $E(\Psi)$ of essential values is contained in $d\mathbb{Z}$. In particular, if d > 1, then 1 is not an essential value.

Remark: Criteria for non-ergodicity of \mathbb{Z}^d -extensions of finite IETs appear, for instance, in <u>Fraczek and Hubert 2018</u>, Fraczek and Ulcigrai 2014.

Example:

$\pi = (1, 7, 4)(2, 5)(3, 6)$ $q = 9$ $\#\{\text{ergodic measures}\} = 1$ $E^*(\Psi) \subset 2\mathbb{Z} \cup \{\infty\}$	M =	$ \left(\begin{array}{c} 4\\ 3\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 3 \end{array}\right) $	$ \begin{array}{r} 3 \\ 6 \\ 2 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 3 \\ \end{array} $	$egin{array}{c} 1 \\ 3 \\ 3 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \end{array}$	$2 \\ 3 \\ 3 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	$egin{array}{c} 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ \end{array} $	$egin{array}{c} 3 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 4 \end{array}$	$egin{array}{c} 4 \\ 3 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 3 \end{array}$	$ \begin{array}{c} 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1 \end{array} $	$\begin{pmatrix} 3 \\ 3 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 4 \end{pmatrix}$	
$\begin{array}{l} a \in \mathcal{A} \\ \text{Weight } \psi(\chi(a)) \end{array}$	$\begin{array}{c c} 0 \\ \hline -2 \end{array}$	1 2		_	$\frac{4^{+}}{-2}$	4^{-2}	_	$\frac{5}{-2}$	$\frac{6}{-2}$	2 -	-	$\frac{8}{-2}$

Theorem (Bruin, Lukina 2024)

Let (I, F_{π}, Leb) be a rotated odometer with ergodic Lebesgue measure, and consider the skew-product $(I \times \mathbb{Z}, T_{\pi}, \text{Leb} \otimes \nu)$ with skew-function ψ as before.

Assume that all eigenvalues λ_j of the associated matrix M of χ with norm $|\lambda_j| \ge 1$ have weights $\psi(\ell_j) = 0$, with the exception of one, say λ_c , which is Pisot.

Suppose the algebraic and the geometric multiplicities of λ_c are equal.

If ψ is not a coboundary, then the essential values $E^*(\Psi)=\{0,\infty\},$ with 0 non-trivial essential value.

Example:

$\pi = (1, 7, 4)(2, 5)(3, 6)$ $q = 9$ #{ergodic measures} = 1 $E^*(\Psi) = \{0, \infty\}$	$M = \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$a \in \mathcal{A}$ Weight $\psi(\chi(a))$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
Characteristic polynomial	$(x-16)(x-4)^2(x-1)^2x^5$					
Eigenvalues Weights of left eigenvectors	$\begin{array}{c c c c c c c c c c c c c c c c c c c $					

23 / 26

Discrepancy

Discrepancy of sequences arising as fixed points of primitive substitutions, and fixed points in *S*-adic sequences, were studied in <u>Adamczewski 2004</u>, <u>Berthé and Delecroix 2014</u>.

For rotated odometers, the substitution matrices are often not primitive.

Theorem (Bruin and Lukina 2024)

Suppose that Leb is ergodic for a stationary rotated odometer (I, F_{π}) .

Suppose the matrix associated to the substitution χ is diagonalizable, and the largest eigenvalue λ_0 has multiplicity 1.

Then for Lebesgue-a.e. x, there is $C = C_x$ such that the F_{π} -orbit of x has discrepancy

$$\mathfrak{D}_R \le C_x \cdot R^{\gamma_0 - 1},$$

where $\gamma_0 := \max\left\{\frac{\log|\lambda_1|}{\log \lambda_0}, 0\right\}$.

Open problems

- 1. Find examples of weakly mixing rotated odometers, or prove that they do not exist.
- 2. Develop further criteria for (non)-ergodicity of skew-products over rotated odometers.
- 3. Consider skew-products of rotated odometers with different skew-functions.

References

- B. Adamczewski, Symbolic discrepancy and self-similar dynamics. Ann. de l'Institut Fourier, 54 (2004), 2201–2234.
- V. Berthé, V. Delecroix, Beyond substitutive dynamical systems: S-adic expansions. RIMS Lecture note "Kokyuroku Bessatu" B46 (2014), 81–123.
- ▶ H. Bruin and O. Lukina, Rotated odometers. J. Lond. Math. Soc., 107 (2023), 1983-2024.
- H. Bruin and O. Lukina, Rotated odometers and actions on rooted trees. Fundam. Math. 260 (2023), 233-249.
- H. Bruin and O. Lukina, Skew-product systems over infinite interval exchange transformations. arXiv:2408.14079.
- K. Fraczek, P. Hubert, Recurrence and non-ergodicity in generalized wind-tree models. Math. Nachr. 291 (2018), 1686–1711.
- K. Fraczek, C. Ulcigrai, Non-ergodic Z-periodic billiards and infinite translation surfaces. Invent. Math. 197 (2014), 241–298.
- K. Schmidt, Cocycles on ergodic transformation groups. Macmillan Lectures in Mathematics, Vol. 1. Macmillan Co. of India, Ltd., Delhi, 1977.

Thank you for your attention!

イロン イロン イヨン イヨン 一日