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This third talk concerns the development of SRM for Â based real 
analysis. This is a wilderness in the sense that there is no 
detailed set of well established benchmarking formal systems 
that have been developed for this purpose like the well known 
subsystems of Z2 and the well known subsystems of PA. Generally 
speaking, formalized real analysis for reverse mathematics 
purposes has been done via codings back into L[Z2], and thereby 
considered as part of traditional RM. This is definitely not the 
right way to go about any kind of SRM for Â based real analysis.  
 
We have seen that SRM anchored in two mathematical realms which 
already have well studied formal systems can be sufficiently 
well defined to support active investigations. Most succinctly, 
given a target non mathematical standard system, and given a 
strictly mathematical language, find a finite set of strictly 
mathematical theorems in that language that corresponds closely 
to that target. Also develop strictly mathematical base theories 
and obtain reversals over them. In the realm of w based 
countable mathematics, we have seen that we can basically import 
the whole of RM with base theory RCA0 to SRM with base theory 
ETF. However, in the realm of Z based finite mathematics, we 
can't just import finite RM based on fragments of PA, but have 
to introduce finite sets or finite sequences of integers with 
carefully designed strictly mathematical base theories (FSTZ, 
FSQZ), and solve some internalization issues.  
 
There are a few major relationships between theories that we 
encounter in SRM (and RM).  
1. T is interpretable in S. 
2. S,T are mutually interpretable.  
3. T is a regular extension of S if and only if T proves S and 
there is an interpretation of T into S which is the identity on 
L[S]. 
4. T is a faithful extension of S if and only if there is a 
faithful interpretation of T into S which is the identity on 
L[S]. 
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4 is what we strive for most in SRM developments. We saw 4 
throughout lecture 1 in the SRM of w based countable 
mathematics. We saw both 4 and the weaker 3 in lecture 2 in the 
SRM of Z based finite mathematics.   
  
We now come to a vitally important wilderness - the realm of Â 
based analysis.  
 
MAJOR OVERALL GOAL. Take a book on real analysis like  
 
Real Analysis, H.L. Royden, Macmillan, 1968. 
 
Through SRM formalization, give a detailed logical analysis. 
Example findings might look like this: 
 

The SRM of (such and such portions of or modifications of)  
the book forms a finite set of logically presented strictly  
mathematical theorems from the book which forms a faithful 

extension of,  
regular extension of, interpretable in, or mutually  

interpretable with one of RCA0, WKL0, ACA0, ATR0, P11-CA0 
or other standard formal system 

 
Work roughly along this line includes 
 
G. Takeuti, Two applications of logic in mathematics, Princeton 
University Press, published 2015, copyright 1978, 148 pp.  
 
"In Part Two, he develops classical analysis including complex 
analysis in Peano’s arithmetic, showing that any arithmetical 
theorem proved in analytic number theory is a theorem in Peano’s 
arithmetic. In doing so, the author applies Gentzen’s cut 
elimination theorem." - Princton University Press. 
 
The rest of this talk is to give some illustration as to how 
such an SRM development might begin to take shape. I have not 
actually seriously engaged in such a project above, with a real 
real analysis text, so I am wandering in the wilderness.  
 
We start with the motivating one sorted structure 
(Â,<,N,Z,Q,0,1,-,+,•), unary -. Thus we are viewing N Í Z Í Q Í 
Â, where all three are taken as primitive. We use the standard 
axioms for this structure, which includes that every element of 
Z is isolated.  
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I think there is an interesting completeness theorem here. First 
the wrong completeness "theorem".  
 
WRONG. The set of all true universal sentences in 
(Â,<,N,Z,Q,0,1,-,+,•) is decidable with a nice axiomatization.  
 
Of course we are looking for a nice axiomatization, but this 
isn't even decidable by H10.  
 
CORRECT? The set of all simple true universal sentences in 
(Â,<,N,Z,Q,0,1,-,+,•) is very decidable with a nice 
axiomatization.  
 
Universally quantified propositional combinations of atomic 
formulas where there is at most one atomic formula without 
N,Z,Q, and that atomic formula is linear or quadratic? E.g., 
Carl Ludwig Siegel proved that quadratic Diophantine equations 
over Z are decidable. But nice axiomatization?? The decidability 
was also done over Q. In any case here "simple" will make nice 
axiomatizations very likely.   
 
We can push this idea of "simple true universal" and even more 
aggressively "simple true (not necessarily universal)" further 
as we go along to give principled versions of complex 
axiomatizations.  
 
Moving on, we need finite sequences. We do this by moving to the 
2-sorted structure with sorts Â and Â*. We have to add 
additional primitives. The most obvious ones are  
 
1. Constant < > in Â*.  
2. lth from Â* into N. All values fall under predicate N. 
3. Injection from Â into Â*.  
4. Concatenation from Â*,Â* into Â*.  
5. Application from Â*,Â into Â. This is coordinate extraction, 
and undefined unless the second argument lies in N+.  
 
These symbols come with obvious axioms which I won't spell out 
here. Most interesting is lth(cat(xR*,yR*)) = lth(xR*)+lth(yR*). 
Simple true treatment again?  
 
So now the intended interpretation is  
 

(Â,Â*,<Â,NÂ,ZÂ,QÂ,0Â,1Â,-Â®Â,+Â,Â®Â,•Â,Â®Â, 

<>Â*,lthÂ*,Â®Â,injÂ®Â*,catÂ,Â®Â,appÂ,Â®Â) 
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But we need a sort for partial functions from Â* into Â*, 
something allowed by our rich underlying logic (free many sorted 
logic with partial function variables and relativized 
quantifiers). Actually this will ruin the plan to have a 
faithful extension of RCA0, as this would require us making false 
mathematical statements that limit the partial functions from Â* 
into Â*. (But we can later relativize to certain ones and sill 
have faithful extensions). Instead we use a sort for partial 
functions from Q* into Â*. For this to be allowed in our 
underlying logic, we need Q* to either be a sort or a (unary) 
relation symbol. We choose the latter. Then it is natural to add 
new unary predicates N*,Z*,Q* on sort Â*, arriving at the 
intended interpretation  
 

(Â,Â*,PF(Q*Â*,Â*),<Â,NÂ,ZÂ,QÂ,N*Â*,Z*Â*,Q*Â*,0Â,1Â, 
-Â®Â,+Â,Â®Â,•Â,Â®Â,<>Â*,lthÂ*,Â®Â,injÂ®Â*,catÂ,Â®Â,  

appÂ,Â®Â,valPF(Q*Â*,Â*),Q*Â*®Â*) 
 
with the axioms that these three new unary predicates carve out 
the elements of Â* all of whose coordinates fall under N,Z,Q, 
respectively, using application (app). Also see the 
valPF(Q*Â*,Â*),Q*Â*®Â* which maps PF(Q*Â*,Â*),Q*Â* into Â*, for the 
action of the elements of the new sort PF(Q*Â*,Â*). This is the 
environment for what we call sequential analysis.  
 
We are finally in a position to lay down the axioms that come to 
grips with the real analysis. First of all, we need to import 
ETF. 
 
1. We need initial axioms and composition here much like we had 
in ETF. Successor axioms are not needed because we have the 
ordered ring axioms with discrete Z. Sort w in ETF is identified 
with NÂ here. 1,2,3-ary functions in ETF are identified with 
elements of PF(Q*Â*,Â*) that map NÂ,NÂ2,NÂ3 into Â*, 
respectively. Also the f in PF(Q*Â*,Â*) correspond exactly to 
certain g in PF(Q*Â*,Â) via val and inj. 
 
A Cauchy sequence is an f:N ® Â such that there exists g:N ® 
N\{0} with for all m,n > r, |f(m)-f(n)| < 1/g(r).  
 
2. Every Cauchy sequence converges.  
 
3. Every element of Â is the limit of a Cauchy sequence f:N ® 
Q.  
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We need a form of 2,3 with uniformity. 
 
A g-Cauchy sequence is an f:N ® Q such that g:N ® N\{0} and for 
all m,n > r, |f(m)-f(n)| < 1/g(r).  
 
4. Let f:N ® Â. There exists g:N2 ® Q and h:N2 ® N\[0] such 
that for all n, (g)n is an (h)n-Cauchy sequence which limit f(n).  
 
5. Let g:N2 ® Â and h:N2 ® N be such that for all n, (g)n is an 
(h)n-Cauchy sequence. There exists f:N ® Â such that for all n, 
f(n) is the limit of (g)n.  
 
This system now pins down Â and PF(Q*,Â*) in the right way so 
that we now have a faithful extension of RCA0 which does some 
basic real analysis.   
 
But what about having PF(Â*,Â*) or even just PF(Â,Â)? For 
venturing into such third order contexts, we actually should 
begin with S(Â*).  
 
Here to have a faithful extension of RCA0 or even P11-CA0, we need 
to pin down S(Â*). This involves restricting S(Â*).  
 
The natural restriction in this context is, on the intended 
interpretation, the Borel subsets of Â*. But this is too big a 
leap at this point in the SRM development. Far too much SRM 
machinery is needed to take the plunge into arbitrary Borel 
subsets of Â* at this point. So we adopt the incremental 
approach, treating increasingly large families of subsets of Â 
incrementally, stopping to look at strictly mathematical 
statements that arise, their logical relationships, and 
reversals.  
 
A very important target is the semi algebraic subsets of the Ân. 
Expect all standard theorems in this context to be provable in 
our present base theory. 
 
The idea now is to climb slowly and carefully up the low levels 
of the Borel hierarchy of subsets of Â*, starting with countable 
sets and open sets. Investigate the status of all of the 
relevant mathematical theorems from descriptive set theory, 
establishing implications and also proofs that certain 
combinations are faithful extensions of the standard benchmarks 
from RM. Limit points, closures, interiors, boundaries, 
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exteriors. Also condensation points (of closures) without 
introducing third order notions.   
 
Then treat the n-th level of the Borel hierarchy of subsets of 
Â*, for arbitrary n. Most naturally, this is done using trees 
where the leaves are assigned open intervals in Â with rational 
endpoints, given by those endpoints, and w splitting indicates 
union and 1-splitting (no splitting) indicates complement, or 
variants thereof. Then we introduce "real x lies at node u" as a 
primitive with associated axioms. This avoids introducing third 
order notions.  
 
Then move to the full transfinite Borel hierarchy via well 
founded trees. Move cautiously into third order by comparing the 
transfinite Borel hierarchy with the characterization of Borel 
sets as the least sigma algebra containing the intervals.  
 
Another major challenge is to work out the SRM of  
 
Classical descriptive set theory, A. Kechris, Springer-Verlag, 
1991.  
 
 
 
 
 
 
 

 
  


