Schrödinger model of minimal representations and branching problems

Toshiyuki Kobayashi

Graduate School of Mathematical Sciences
The University of Tokyo
http://www.ms.u-tokyo.ac.ip/~toshi/

Minimal Representations and Theta Correspondence: In honor of Gordan Savin for his 60th birthday

The Erwin Schrödinger International Institute for Mathematics and Physics (ESI) April 12, 2022

Global Analysis on "Minimal Representations"

Motif

Our guiding principle*

viewed from "G or $U(\mathfrak{g})$ "

Algebra small rep

Geometric Realization

Analysis large symmetry viewed from "function space"

^{*} T. Kobayashi, Algebraic analysis of minimal representations, Publ. RIMS 47 (2011), 585-611.

Restriction to compact subgroups K'

In 2001 Spring, I gave a course lecture at Harvard. Gordan was returning there. My course intended to elucidate a phenomenon "discrete decomposability" of the restriction to non-compact subgroups.

A key is to prove (i) \Longrightarrow (ii) in Theorem 1 below.

I was asked if the converse (ii) \Longrightarrow (i) holds.

G: real reductive group, *K*: max compact subgroup.

Theorem 1 (K– 1998*, 2021**) Suppose $\Pi \in Irr(G)$

and $K' \subset K$. Then (i) \iff (ii).

- (i) $AS_K(\Pi) \cap C_K(K') = \{0\}$ (ii) $[\Pi|_{K'} : \pi] < \infty$ $\forall \pi \in Irr(K')$.

 $AS_K(\Pi)$: asymptotic K-support of Π , $C_K(K')$: momentum set of $T^*(K/K')$.

Remark. $C_K(K') = \{0\}$ if $K' = K \rightsquigarrow HC$'s admissibility theorem.

^{* (}i) ⇒ (ii) Kobayashi, Ann Math 1998; (ii) ⇒ (i) Kobayashi, PAMQ 2021 (Kostant memorial issue).

Admissible restriction $\Pi|_{G'}$

 \rightsquigarrow Classification of triples (G, G', Π) such that

 $\begin{cases} G\supset G' \text{ reductive symmetric pair} \\ \Pi\in\operatorname{Irr}(G) \text{ is minimal rep*}/A_{\mathfrak{q}}(\lambda)^{**} \\ \text{the restriction }\Pi|_{G'} \text{ is }\underline{G'\text{-admissible}}, \end{cases}$

i.e., discretely decomposable with finite multiplicity.

$$G \supset G' \\ \cup \qquad \cup \\ K \supset K'$$

^{*} Kobayashi-Y. Oshima, Crelles (2015) 201-223; ** Adv Math (2012) 2013-2047.

Definition: Multiplicity of the restriction $\Pi|_{G'}$

G: real reductive Lie group

 $\mathcal{M}(G)$: smooth admissible reps of G of finite length with moderate growth (defined on Fréchet spaces) Irr(G): irreducible objects

 $G \supset G'$: real reductive Lie groups

<u>Def</u> (multiplicity) For $\Pi \in Irr(G)$ and $\pi \in Irr(G')$, we set

 $[\Pi|_{G'}:\pi]=\dim_{\mathbb{C}}\operatorname{Hom}_{G'}(\Pi|_{G'},\pi)\in\mathbb{N}\cup\{\infty\}$ symmetry breaking operators

Introduction 1: Multiplicity in tensor product

Let G be a non-compact simple Lie group.

Fact 1* (K- '95) (i) \iff (ii) holds. (i) $[\Pi_1 \otimes \Pi_2 : \Pi] < \infty$ ${}^{\forall}\Pi_1, {}^{\forall}\Pi_2, {}^{\forall}\Pi \in Irr(G)$. (ii) $g \simeq \mathfrak{so}(n, 1)$.

 \rightsquigarrow Tensor product $\Pi_1 \otimes \Pi_2$ is "usually" of infinite multiplicity!

Introduction 2: Restriction for symmetric pairs

More generally,

<u>Fact 2</u>* For a pair $G \supset G'$ of real reductive group, (i) \iff (ii).

- (i) (Rep) $[\Pi|_{G'}:\pi] < \infty \quad \forall \Pi \in \operatorname{Irr}(G), \forall \pi \in \operatorname{Irr}(G').$
- (ii) (Geometry) $(G \times G')/\operatorname{diag}(G')$ is real spherical.

Even for symmetric pairs (G, G'), this condition may fail.

Example** (1)
$$(G,G') = (SL(n,\mathbb{R}),SO(p,q))$$
 $p+q=n$
(i) $\iff p=0, q=0, \text{ or } p=q=1$
(2) $(G,G') = (O(p,q),O(p_1,q_1)\times O(p_2,q_2)).$

(i) $\iff p_1 + q_1 = 1, p_2 + q_2 = 1, p = 1, q = 1, \text{ or } G' \text{ compact.}$

 \rightsquigarrow Multiplicity of the restriction $\Pi|_{G'}$ may be infinite even when G' is maximal in G.

Question: Bounded multiplicity $\Pi|_{G'}$ for "small" Π

Question Given a reductive symmetric pair $G \supset G'$. Does there exist at least one infinite-dim'l $\Pi \in \operatorname{Irr}(G)$ with the following property? (finite) $[\Pi|_{G'}:\pi] < \infty \quad \forall \pi \in \operatorname{Irr}(G'),$ or more strongly (bounded) $\sup_{\pi \in \operatorname{Irr}(G')} [\Pi|_{G'}:\pi] < \infty.$

Uniformly bounded multiplicities

$$\Omega \subset \operatorname{Irr}(G)$$
, $G \supset G'$

Answer in terms of geometric condition (spherical/visible action):

$$\begin{split} \Omega &= \mathrm{Irr}(G) & G_{\mathbb{C}} \times G_{\mathbb{C}}' \curvearrowright (G_{\mathbb{C}} \times G_{\mathbb{C}}') / \operatorname{diag} G_{\mathbb{C}}' \ ^* \\ \Omega &= \{H\text{-distinguished reps}\} & G_{\mathbb{C}}' & \curvearrowright G_{\mathbb{C}}/B_{G/H} \ ^{**} \\ \Omega &= \{\mathrm{Ind}_P^G(\mathbb{C}_{\lambda})\} & G_{\mathbb{C}}' & \curvearrowright G_{\mathbb{C}}/P_{\mathbb{C}} \end{split}$$

^{*} Kobayashi-T. Oshima, Adv. Math. 2014, ** Kobayashi, Adv. Math. 2021, *** Kobayashi, J. Lie Theory (2022) 197-238.

Question: Bounded multiplicity $\Pi|_{G'}$ for "small" Π

Question Given a reductive symmetric pair $G\supset G'$. Does there exist at least one infinite-dim'l $\Pi\in {\rm Irr}(G)$ with the following property? (finite) $[\Pi|_{G'}:\pi]<\infty \quad ^\forall \pi\in {\rm Irr}(G').$ or more strongly $\sup_{\pi\in {\rm Irr}(G')}[\Pi|_{G'}:\pi]<\infty.$

Bounded multiplicity theorems

Let G be a 1-connected real non-compact simple Lie group.

Theorem A (K–) There exist C>0 and infinite-dimensional irreducible reps Π_1 , Π_2 of G such that $\sup_{\Pi\in \mathrm{Irr}(G)} [\Pi_1\otimes \Pi_2:\Pi] \leq C.$

<u>Theorem B</u> (K–) There exist C>0 and an infinite-dimensional irreducible rep Π of G such that

$$\sup_{\pi \in Irr(G')} [\Pi|_{G'} : \pi] \le C$$

for all symmetric pairs $G \supset G'$.

Review: Complex minimal nilpotent orbit

 $\mathfrak{g}_\mathbb{C}$: simple Lie algebra $/\mathbb{C}$

 $\mathfrak{g}_{\mathbb{C}}^*\supset\mathbb{O}_{min,\mathbb{C}}$: $\exists 1$ minimal coadjoint orbit $(\neq \{0\})$.

 $n(\mathfrak{g}_{\mathbb{C}}) := \text{ half the complex dimension of } \mathbb{O}_{\min,\mathbb{C}}$

$$g_{\mathbb{C}}$$
 A_n
 B_n
 C_n
 D_n
 $g_2^{\mathbb{C}}$
 $\mathfrak{f}_4^{\mathbb{C}}$
 $e_6^{\mathbb{C}}$
 $e_8^{\mathbb{C}}$
 $n(g_{\mathbb{C}})$
 n
 $2n-2$
 n
 $2n-3$
 3
 8
 11
 17
 29

Remark Let G be a Lie group such that $\mathfrak{g}_{\mathbb{C}}$ is simple. $\Longrightarrow \mathrm{DIM}(\Pi) \geq n(\mathfrak{g}_{\mathbb{C}})$ infinite-dim'l $\Pi \in \mathrm{Irr}(G)$.

Example $DIM(\Pi) = n(\mathfrak{g}_{\mathbb{C}})$ if Π is a minimal rep.

Review: Minimal representation (Definition)

 \mathcal{J} : Joseph ideal \cdots completely prime two-sided primitive ideal whose associated variety is $\mathbb{O}_{\min,\mathbb{C}} \cup \{0\}$.

<u>Definition</u> $\Pi \in Irr(G)$ is <u>minimal representation</u> if the annihilator of Π in $U(\mathfrak{g}_{\mathbb{C}})$ is the Joseph ideal.

<u>Example</u> The two irreducible components of the Segal–Shale–Weil rep are min reps of $G = Mp(n, \mathbb{R})$.

Classification: Gan-Savin*, Tamori**.

^{*} W. T. Gan, G. Savin, On minimal representations definitions and properties. Represent. Theory 9 (2005), 46–93.

^{**} H. Tamori, Classification of minimal representations of real simple Lie groups. Math. Z. 292 (2019), 387-402.

Bounded multiplicity property for tensor product

 $\frac{\text{Theorem A}}{\text{Incommon}} (\mathsf{K-}) \text{ There exist } C > 0 \text{ and infinite-dimensional irreducible reps } \Pi_1, \Pi_2 \text{ of } G \text{ such that } \sup_{\Pi \in \mathrm{Im}(G)} [\Pi_1 \otimes \Pi_2 : \Pi] \leq C.$

Theorem A'(K-)*
$$\Pi_1, \Pi_2 \in Irr(G)$$
 with $DIM(\Pi_1) = DIM(\Pi_2) = n(\mathfrak{g}_{\mathbb{C}})$ $\Rightarrow \quad {}^{\exists}C > 0$ such that $[\Pi_1 \otimes \Pi_2 : \Pi] \leq C \quad {}^{\forall}\Pi \in Irr(G)$

Bounded multiplicity theorem

Let G be a simple Lie group, not complex.

```
Theorem B'(K-)* If \Pi \in \operatorname{Irr}(G) satisfies \operatorname{DIM}(\Pi) = n(\mathfrak{g}_{\mathbb{C}}), then \exists C > 0 such that [\Pi|_{G'} : \pi] \leq C \qquad \forall \pi \in \operatorname{Irr}(G') for all symmetric pairs (G, G').
```

^{*} T. Kobayashi, Multiplicity in restricting minimal representations, PROMS, (2022). Available also at ArXiv:2204.05079

Global Analysis on "Minimal Representations" Motif

Our guiding principle*

viewed from "G or $U(\mathfrak{g})$ "

Algebra small rep

Geometric Realization

Analysis large symmetry viewed from "function space"

^{*} T. Kobayashi, Algebraic analysis of minimal representations, Publ. RIMS 47 (2011), 585-611.

Example 2. $O(p,q) \downarrow O(p',q') \times O(p'',q'')$

 ϖ : minimal representation of G = O(p,q) $(p+q \ge 8, \text{ even})$

Example 2.* (Branching law $\varpi|_{G'}$ using conformal geometry)

Suppose that
$$p'+p''=p, q'+q''=q$$
, and $p+q$ even
$$G = O(p,q)$$

$$\cup \qquad \qquad \cup$$

$$G' = O(p',q') \times O(p'',q'')$$

- · Conformal construction of the min rep ϖ by the Yamabe operator
- · Geometric construction of discrete spectrum of the restriction $\varpi|_{G'}$ · · · · conformal group v.s. isometry group

^{*} Kobayashi–Ørsted, Anallysis on minimal representations I,II,III, Adv. Math., (2003) 486–595.

Example 3. Plancherel-type theorem for the restriction $\Pi|_{G'}$

Joseph ideal is not defiend for $\mathfrak{sl}(n,\mathbb{C})$. But Theorem B' still applies.

^{*} Kobayashi–Ørsted-Pevzner, Geometric analysis on small unitary representations of GL(N, ℝ), J. Funct. Anal. 260 (2011). 1682–1720.

Sketch of Proof for Theorems A and B

Let G be a 1-connected real non-compact simple Lie group.

 $\underline{\text{Theorem A}} \text{ (K-) There exist } C > 0 \text{ and infinite-dimensional irreducible reps } \Pi_1, \Pi_2 \text{ of } G \text{ such that }$

 $\sup_{\Pi\in Irr(G)}[\Pi_1\otimes\Pi_2:\Pi]\leq C.$

<u>Theorem B</u> (K–) There exist C > 0 and an infinite-dimensional irreducible rep Π of G such that

 $\sup_{\pi \in Im(G')} [\Pi|_{G'} : \pi] \le C$

for all symmetric pairs $G \supset G'$.

smallest GK dim

←-Theorem A', $+\alpha$

← Theorem B', $+\alpha$

(i) finite-dim'l reps vs (ii) infinite-dim'l reps

Theorem A"(K-)* (i)
$$\iff$$
 (ii) on (G, P_1, P_2)

- (i) $O(G_{\mathbb{C}}/P_{1,\mathbb{C}}, \mathcal{L}_{\lambda_1}) \otimes O(G_{\mathbb{C}}/P_{2,\mathbb{C}}, \mathcal{L}_{\lambda_2})$ is multiplicity-free ${}^{\forall}\lambda_1, {}^{\forall}\lambda_2$.
- (ii) sup $[\operatorname{Ind}_{P_1}^G(\mathbb{C}_{\lambda_1}) \otimes \operatorname{Ind}_{P_2}^G(\mathbb{C}_{\lambda_2}) : \pi] < \infty$. $\pi \in Irr(G')$

Theorem B"(K-)* (i)
$$\iff$$
 (i)

- $\pi \in Irr(G')$

^{*} T. Kobayashi, Bounded multiplicity theorems for induction and restriction, J. Lie Theory, 32 (2022), 197–238.

Sketch of Proof for Theorems A and B

smallest GK dim degenerate ps

Theorem A \leftarrow Theorem A", Theorem A", \cdots

Theorem B ← Theorem B"*, Theorem B"***,

Geometry in proof cois

coisotropic action on

associated variety

visible action

(or spherical action)

on generalized

flag variety

^{*} Kobayashi, ArXiv:2204.05079; ** Kobayashi, J. Lie Theory, 32 (2022) 197-238.

Our guiding principle*

^{*} T. Kobayashi, Algebraic analysis of minimal representations, Publ. RIMS 47 (2011), 585-611.

Schrödinger model of minimal reps

$$g = \pi^- + I + \pi^+$$
 π^{\pm} abelian

$$G \overset{\pi}{\curvearrowright} L^2(\Xi) \qquad \mathbb{O}_{\min,\mathbb{C}} \cap \mathfrak{g}^* \underset{\text{Lagrangean}}{\supset} \Xi := \mathbb{O}_{\min,\mathbb{C}} \cap \mathfrak{n}^+.$$

 $\mathcal{F}_{\Xi} = \pi(w)$ unitary inversion operator. cf. $P^+wP^+ \subset G$

Example
$$G = Mp(N, \mathbb{R}) \cap L^2(\Xi) \simeq L^2(\mathbb{R}^N)_{\text{even}}$$

 $\Xi = \{X \in \text{Sym}(N, \mathbb{R}) : \text{rank } X = 1\} \stackrel{2:1}{\longleftarrow} \mathbb{R}^N \setminus \{0\}$
 $\mathscr{F}_\Xi \cdots$ Fourier transorm $f \mapsto \int f(x) e^{\sqrt{-1}\langle x, \zeta \rangle} dx$

Example*
$$G = O(p,q)$$
 $p + q$ even $C^2(\Xi)$

$$\Xi = \{(x,y) \in \mathbb{R}^{p+q-2} \setminus \{0\} : |x|^2 - |y|^2 = 0\}$$

$$\mathcal{F}_\Xi \cdots \text{ explicit kernel by "Bessel distribution"}$$

More general case (without explicit formula of \mathcal{F}_{Ξ}) **,***

^{*} Kobayashi-Mano, Memoirs of AMS 1000 (2011); ** Hillgert-Kobayashi-Möllers J. Math. Soc. Japan (2014).

^{***} Kobayashi-Savin, Global uniqueness of small representations, Math. Z., 281 (2015), 215–231.

```
\mathcal{F}_{\Xi} ... unitary inversion on \Xi \subset \mathbb{R}^{p-1,q-1} \mathcal{F}_{\mathbb{R}^N} ... Fourier transform on \mathbb{R}^N
```

$$\mathcal{F}_\Xi$$
 ··· unitary inversion on $\Xi\subset\mathbb{R}^{p-1,q-1}$ $\mathcal{F}_{\mathbb{R}^N}$ ··· Fourier transform on \mathbb{R}^N

Assume q = 2. Set p = N + 1.

$$\mathbb{R}^{N,1} \supset \Xi = \underbrace{\qquad \qquad \text{projection}}_{} = \mathbb{R}^{N}$$

$$\mathcal{F}_\Xi$$
 ... unitary inversion on $\Xi\subset\mathbb{R}^{p-1,q-1}$ $\mathcal{F}_{\mathbb{R}^N}$... Fourier transform on \mathbb{R}^N

Assume q = 2. Set p = N + 1.

$$\mathcal{F}_{\Xi}$$
 $\mathcal{F}_{\mathbb{R}^N}$ $O(N+1,2)$ $Mp(N,\mathbb{R})$

$$\mathcal{F}_\Xi$$
 ... unitary inversion on $\Xi \subset \mathbb{R}^{p-1,q-1}$ $\mathcal{F}_{\mathbb{R}^N}$... Fourier transform on \mathbb{R}^N

Assume q = 2. Set p = N + 1.

$$\mathcal{F}_{\Xi}$$
 interpolate $\mathcal{F}_{\mathbb{R}^N}$ $a=1$ $a=2$

 $a \cdots$ deformation parameter > 0

Unitary inversion operators

• Fourier transform $\cdots Mp(N, \mathbb{R})$

self-adjoint op. on
$$L^2(\mathbb{R}^N)$$

$$\mathcal{F}_{\mathbb{R}^N} = c \exp\left(\frac{\pi i}{4}(\Delta - |\chi|^2)\right)$$

→ Hermite semigp

phase factor Laplacian
$$= e^{\frac{\pi i N}{4}}$$

• Unitary inversion* on $\Xi \cdots O(N+1,2)$ self-adjoint op. on $L^2(\mathbb{R}^N,\frac{dx}{\mathbb{N}})$

$$\mathcal{F}_{\Xi} = c \exp\left(\frac{\pi i}{2}(|x|\Delta - |x|)\right)$$

phase factor Laplacian $-a^{\frac{\pi i(N-1)}{2}}$

^{*} K-Mano, The inversion formula and holomorphic extension of the minimal representation ..., 2007, pp. 159-223.

(k,a)-generalized Fourier transform $\mathcal{F}_{k,a}$

self-adjoint op. on $L^2(\mathbb{R}^N, \vartheta_{k,a}(x)dx)$

$$\mathcal{F}_{k,a} = c \exp\left(\frac{\pi i}{2a}(|x|^{2-a}\Delta_k - |x|^a)\right)$$
phase factor
$$= e^{i\frac{\pi(N+2\langle k \rangle + a-2)}{2a}}$$
Dunkl Laplacian

(k, a)-deformation of Hermite semigroup *

$$I_{k,a}(t) := \exp \frac{t}{a} (|\mathbf{x}|^{2-a} \Delta_k - |\mathbf{x}|^a) \qquad \text{Re } t > 0$$

Deformation parameter k: multiplicity on root system \mathcal{R} , a > 0

^{*} Ben Salid-Kobayashi-Ørsted, Compositio Math (2012)

Deformation theory of Fourier transform

Observation (branching laws)

Schrödinger model

$$O(N+1,2) \overset{}{\curvearrowright} L^2(\Xi) \quad \mathcal{F}_\Xi$$
 symmetric pair \nearrow
$$O(N) \times SL(2,\mathbb{R})$$
 dual pair \searrow
$$Mp(N,\mathbb{R}) \quad \overset{}{\curvearrowright} L^2(\mathbb{R}^n) \quad \mathcal{F}_{\mathbb{R}^n}$$

Special values of holomorphic semigroup $I_{k,a}(t)$

Global Analysis on "Minimal Representations"

Motif

Our guiding principle*

viewed from "G or $U(\mathfrak{g})$ "

Algebra small rep

Geometric Realization

Analysis large symmetry viewed from "function space"

^{*} T. Kobayashi, Algebraic analysis of minimal representations, Publ. RIMS 47 (2011), 585-611.

Happy Birthday to Gordan!