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Global Analysis on “Minimal Representations”

Motif

Our guiding principle®

viewed from “G or U(g)”

Algebra small rep
$ Geometric Realization
Analysis large symmetry

viewed from “function space”

* T. Kobayashi, Algebraic analysis of minimal representations, Publ. RIMS 47 (2011), 585-611.



Restriction to compact subgroups K’
In 2001 Spring, | gave a course lecture at Harvard. Gordan was returning
there. My course intended to elucidate a phenomenon “discrete
decomposability” of the restriction to non-compact subgroups.
A key is to prove (i) = (ii) in Theorem 1 below.
| was asked if the converse (ii) = (i) holds.

G: real reductive group, K: max compact subgroup.

Theorem 1 (K- 1998%, 2021**) Suppose II € Irr(G)
and K’ c K. Then (i) < ({ii).

(i) ASk(ID N Ck(K") = {0}

(i) (Mg : 7] < 00 Y e Irr(K').

ASk(I1) : asymptotic K-support of II,
Cx(K’) : momentum set of T*(K/K").

I Remark. Cx(K’) = {0} if K" = K ~» HC’s admissibility theorem.

* (i) = (i) Kobayashi, Ann Math 1998; (i) = (i) Kobayashi, PAMQ 2021 (Kostant memorial issue).




Admissible restriction II|;
~> Classification of triples (G, G’, I1) such that

G D G’ reductive symmetric pair
IT € Irr(G) is minimal rep*/ A,(1)*™*
the restriction Il|s- is G’-admissible,

i.e., discretely decomposable with finite multiplicity.

= CQ
u U
NECQ

* Kobayashi-Y. Oshima, Crelles (2015) 201-223; ** Adv Math (2012) 2013-2047.



Definition: Multiplicity of the restriction 11|

G : real reductive Lie group

M(G): smooth admissible reps of G of finite length

with moderate growth (defined on Fréchet spaces)
Irr(G): irreducible objects

G > G’ :real reductive Lie groups

Def (multiplicity) For IT € Irr(G) and & € Irr(G”), we set

[ : 7] = dime Homgr (I, ) € N U {oo}
symmetry breaking operators




Introduction 1: Multiplicity in tensor product
Let G be a non-compact simple Lie group.

Fact 1* (K- '95) (i) & (ii) holds.
() 0} @I : 1] < oo Iy, "I, Y11 € Irr(G).
(i) g = so(n, 1).

~» Tensor product IT; ® I is “usually” of infinite multiplicity!

T. Kobayashi, Introduction to harmonic analysis on real spherical homogeneous spaces, 1995, 22—41.



Introduction 2: Restriction for symmetric pairs
More generally,

Fact 2* Forapair G > G’ of real reductive group, (i) < (ii).
(i) (Rep) Mg : 7] < oo YI € Irr(G), V7 € Irr(G).
(i) (Geometry) (G x G")/ diag(G") is real spherical.

Even for symmetric pairs (G, G’), this condition may fail.

Example™ (1) (G,G’) = (SL(n,R),SO(p,q)) p+q=n
() & p=0,g=0,0orp=g=1
(2) (G,G") =(O(p,q), O(p1,q1) X O(p2, q2)).
)= pi+q1=1,pp+q2=1,p=1,g=1,0r G’ compact.

~> Multiplicity of the restriction I may be infinite
even when G’ is maximal in G.

K-T. Oshima, Adv. Math, (2013). K—-Matsuki, Transformation Group, (2014) (special issue for Dynkin).



Question: Bounded multiplicity I1|; for “small” I1

Question Given a reductive symmetric pair G > G’ .

Does there exist at least one infinite-dim’l I1 € Irr(G)
with the following property?

(finite) Mg ]l <o Ymelr(G),
or more strongly

(bounded) sup [llgr : ] < oo.
melr(G')




Uniformly bounded multiplicities

Qclr(G), G>OG

Question Find a criterion for the triple (G, G’, Q) such that

sup sup [Ig : 7] < co.
TleQ melrr(G”)

Answer in terms of geometric condition (spherical/visible action):

Q =1Irr(G) Ge X G- (Ge x GL)/ diag G- *
Q = {H-distinguished reps} G “~Ge/Bon **
Q = {Ind%(C,)} G ™~ Ge/Pc

~» classification

* Kobayashi-T. Oshima, Adv. Math. 2014, ** Kobayashi, Adv. Math. 2021, *** Kobayashi, J. Lie Theory (2022) 197-238.



Question: Bounded multiplicity I1|; for “small” I1

Question Given a reductive symmetric pair G > G’ .

Does there exist at least one infinite-dim’l I1 € Irr(G)
with the following property?

(finite) Mg :n]l <o Ymelr(G).
or more strongly

(bounded) sup [llgr : ] < oo.
melr(G')




Bounded multiplicity theorems
Let G be a 1-connected real non-compact simple Lie group.

Theorem A (K—) There exist C > 0 and infinite-dimensional

irreducible reps I1;, I1, of G such that

sup [IL ®II, : II] < C.
Helrr(G)

Theorem B (K-) There exist C > 0 and an infinite-dimensional

irreducible rep II of G such that
sup [Hgr :x] < C
nelrr(G7)
for all symmetric pairs G > G’ .




Review: Complex minimal nilpotent orbit

ac: simple Lie algebra /C
g% O Opinc: 7' minimal coadjoint orbit (# {0}).

n(gc) := half the complex dimension of Oy

gc ‘An By, Ca Dy, Qg TZC eg g g

7 %
nac) | n 2n-2 n 21—-3 3 8 11 17 29

Remark Let G be a Lie group such that g¢ is simple.
= DIM(I) > n(gc) 7 infinite-dim’l T € Trr(G).

Example DIM(II) = n(gc) if IT is a minimal rep.



Review: Minimal representation (Definition)

J: Joseph ideal - - - completely prime two-sided primitive ideal
whose associated variety is Opinc U {0}.

Definition II € Irr(G) is minimal representation
if the annihilator of IT in U(gc) is the Joseph ideal.

Example The two irreducible components of the
Segal-Shale—Weil rep are min reps of G = M p(n, R).

Classification: Gan—Savin*, Tamori**.

* W. T. Gan, G. Savin, On minimal representations definitions and properties, Represent. Theory 9 (2005), 46-93.

** H. Tamori, Classification of minimal representations of real simple Lie groups. Math. Z. 292 (2019), 387—402.



Bounded multiplicity property for tensor product

Theorem A (K-) There exist C > 0 and infinite-dimensional
irreducible reps TTy, T, of G such that

sup [T &ThL: T <C.

elrn(G)

1

Theorem A’(K-)* 11y, Il € Irr(G) with DIM(I1;) = DIM(1;) = n(gc)
= IC>O0suchthat[Il; ®I, : 1] < C I € Irr(G)

Example (Tensor product of two Weil reps)
LZ(Rn) ® L2 (Rn) ~ LZ(RZn)

Wigner transform

Mp(n,R) X Mp(n,R) ((f—’ Mp(n,R) — S p(n,R)
iag

%
T. Kobayashi, Multiplicity in restricting minimal representations, PROMS (2022). Available also at arXiv:2204.05079




Bounded multiplicity theorem
Let G be a simple Lie group, not complex.

Theorem B’(K-)* [f IT € Irr(G) satisfies DIM(IT) = n(gc),

then 7C > 0 such that
Mg :n]1<C  Ynelr(G)
for all symmetric pairs (G, G").

* T. Kobayashi, Multiplicity in restricting minimal representations, PROMS, (2022). Available also at ArXiv:2204.05079
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Motif

Our guiding principle*

viewed from “G or U(g)”
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* T. Kobayashi, Algebraic analysis of minimal representations, Publ. RIMS 47 (2011), 585-611.



Example 2. O(p.q) | O(p’,q") x O(p".q")

w: minimal representation of G = O(p, q) (p + g = 8, even)

Example 2. (Branching law @] using conformal geometry)
Suppose that p’ + p”’ = p, ¢+ ¢" = g, and p + g even

G = o(p,q)
U U
G’ =0(p'.q)x0p".q")

- Conformal construction of the min rep @ by the Yamabe operator
- Geometric construction of discrete spectrum of the restriction w]|¢/
--- conformal group v.s. isometry group

* Kobayashi-@rsted, Analysis on minimal representations L11,11l, Adv. Math., (2003) 486-595.




Example 3. Plancherel-type theorem for the restriction Il
Joseph ideal is not defiend for sl(n, C). But Theorem B’ still applies.

Example 3. LetG =SL(n,R)and I, = Indg(C,l) be a unitarily
induced rep from a mirabolic subgroup P of G. The Plancherel
theorem for I1,|¢- is proved for all symmetric pairs (G, G”):

letn = p+q; n=2m (neven)

-G =S0(p,q) cont spectrum (multiplicity 2)
+ discrete spectrum (mult. free)
- G’ =Spm,R) almost irreducible
-G =SL(m,C)-T discretely decomposable (mult. free)

- G’ =S(GL(p,R) x GL(g,R)) no discrete spectrum (mult. free)

* Kobayashi-@rsted—Pevzner, Geometric analysis on small unitary representations of GL(N,R), J. Funct. Anal. 260

(2011), 1682-1720.



Sketch of Proof for Theorems A and B

Let G be a 1-connected real non-compact simple Lie group.

Theorem A (K-) There exist C > 0 and infinite-dimensional sSm a| |eSt G K dlm
irreducible reps 11y, I, of G such that
el : 1] <C. ’
i € < «—Theorem A’, +a
’
Theorem B (K-) There exist C > 0 and an infinite-dimensional (_Theorem B ) + a
irreducible rep II of G such that
sup [Mlgr: 7] < C
reln(G')
for alf symmetric pairs G > G’ .




(i) finite-dim’l reps vs (i) infinite-dim’l reps
P c G > G
N N N
Pc C Gc D G(,C

parabolic reductive

Theorem A”(K-)* (i) = (ii)on (G, Py, Pr)
(i) O(Gc/P1c, L) ® O(Ge/Pac, Ly,) is multiplicity-free Y4y, Y ,.

(i) sup [Indf (C;)®Ind§ (Cy,) : 7 < oo,
nelrr(G7)

Theorem B"(K-)* (i) & (i)on (G,P.G")
(i) O(Gc/Pc, L))l is multiplicity-free A.

(iiy sup [Indg((C,lle, 1] < oo,
melr(G')

* T. Kobayashi, Bounded multiplicity theorems for induction and restriction, J. Lie Theory, 32 (2022), 197-238.



Sketch of Proof for Theorems A and B

smallest GK dim degenerate ps
Theorem A «—Theorem A", Theorem A”, **
Theorem B «—Theorem B'*, Theorem B™**,
Geometry in proof  coisotropic visible action
action on (or spherical action)
associated variety on generalized
flag variety

* Kobayashi, ArXiv:2204.05079; ** Kobayashi, J. Lie Theory, 32 (2022) 197-238.
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Schrédinger model of minimal reps
g=n"+I[+n* n*abelian
Vs
N 72— —_
G L(E) @min,(C N g* 2 == @min,(C nnt.
Lagrangean

= = n(w) unitary inversion operator. cf. P*wP* c G
open

Example G = Mp(N,R)"~ L2(E) =~ L2 (R )eyen

E ={X € Sym(N,R) : rank X = 1} & RN\ {0}
¥z --- Fourier transorm [ ff(x)e\/__ux’odx

Example* G = O(p,q) p+qgeven LX(E)
E = {(x,y) € RP*72\ {0} : x> — |yl* = 0}
F= - -+ explicit kernel by “Bessel distribution”

1

More general case (without explicit formula of Fz) *****
* Kobayashi-Mano, Memoirs of AMS 1000 (2011); ** Hilgert—Kobayashi-Mollers  J. Math. Soc. Japan (2014).

*** Kobayashi—Savin, Global uniqueness of small representations, Math. Z., 281 (2015), 215-231.



Interpolation of Fourier transform ¥~

F= --- unitary inversionon & ¢ RP~h4~1
Fev -+ Fourier transform on RY




Interpolation of Fourier transform ¥~

F= --- unitary inversionon & ¢ RP~h4~1
Fev -+ Fourier transform on RY

Assume g =2.Setp=N+ 1.

_ projection
IRV -y

P



Interpolation of Fourier transform ¥~

F= --- unitary inversionon & ¢ RP~h4~1
Fev -+ Fourier transform on RY

Assume g =2.Setp=N+ 1.

P

I = TRN
ON + 1,2) Mp(N,R)




Interpolation of Fourier transform ¥~

F= --- unitary inversionon & ¢ RP~h4~1
Fev -+ Fourier transform on RY

Assume g =2.Setp=N+ 1.

7/ projection
R¥M 5E= ¥ projection PR, 7 =Y

AT

- deformation parameter > 0



Unitary inversion operators
e Fourier transform - -- Mp(N, R)

self-adjoint op. on L>(R")
—_——

Fav = exp(g(A—le)) Ay Hermite semigp
phase factor  Laplacian
niN
=e¢ 4

e Unitary inversion"onE--- O(N + 1,2)

self-adjoint op. on L*(R", &

7 A

—_———
ﬂi [(4 ) »
Fe= ¢ exp(3(|x|A—|x|)) ~» Laguerre semigp
phase factor Laplacian
7i(N—1)
=¢e 2

*
K-Mano, The inversion formula and holomorphic extension of the minimal representation - - -, 2007, pp. 159-223.



(k, a)-generalized Fourier transform 7,

self-adjoint op. on L>(RY, 9 ,(x)dx)

—_———
i
Fra= ¢ exp(5-( P —[x)
2a
phase factor Dunkl Laplacian
I-zrr.\’+2<2k>+a—2)
=e a

(k, a)-deformation of Hermite semigroup *

t
Tra(t) = exp —(IX*“Ap = |x) | Ret>0
a

Deformation parameter : multiplicity on root system R, a > 0

%
Ben Said—Kobayashi-@rsted, Compositio Math (2012)



Deformation theory of Fourier transform

Observation (branching laws)
Schrédinger model

ONN +1,2) YL*(EB) ¥=
symmetric pair /"
O(N) X SL(2,R)
dual pair \
Mp(N,R) "YL*R") Fg»



Special values of holomorphic semigroup 7, ,(7)

‘ (k, a)-generalized Fourier transform % ,

TI—)%’I

‘ Holomorphic semigroup 7 ,(f) ‘

a— \KfAHl a—1

k1 (2
1—)”%/\/(%0 kHO\/\\‘I—)%"

Q
l
[\

Dunkl transform Hermite semigp Laguerre semigp 7"1(,1
k— (\ /H % - ”7\ ﬁ -0
‘ Fourier transform Fp~ ‘ ‘ unitary inversion 7=

& ‘unitary inversion operator’ =

the Weil repreéentation of the minimal représentation of
the metaplectic group Mp(N, R) the conformal group O(N + 1,2)
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Happy Birthday to Gordan !



