Tensionless Strings Limits in 4d Conformal Manifolds

José Calderón Infante

Based on ongoing work with Irene Valenzuela

The Landscape vs the Swampland, ESI Vienna, 18/07/2024

The Swampland Distance Conjecture

Lots of top-down evidence!

• String theory:

[Grimm, Palti, Valenzuela '18] [Lee, Lerche, Weigand '18-'19]

+ many many more!

• AdS/CFT: [Baume, JCI '20+'23] [Ooguri, Wang '24] [Perlmutter, Rastelli, Vafa, Valenzuela '20]

[Ooguri, Vafa '06] Swampland Distance Conjecture (SDC)

There is an infinite tower of states becoming light at infinite-distance points in moduli space

$M_{tower} \sim e^{-\alpha \Delta \phi} \text{ as } \Delta \phi \to \infty \quad (M_{Pl} = 1)$

Distance parameter (today's main protagonist!)

+ Bottom-up motivations

[Hamada, Montero, Vafa, Valenzuela '21] [Stout '21+'22] [JCI, Castellano, Herráez, Ibáñez '23]

+ connections to other conjectures, pheno implications,

[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT **?**

Moduli space metric

[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT **?**

AdS/CFT basics: AdS CFT $(\phi, m) \longleftrightarrow (\mathcal{O}, \Delta)$ At infinite distance: Tower of operators with $\Delta - \Delta_{unitarity} \sim e^{-\alpha_{CFT}t}$ **Question:** Which operators? (e.g. unitarity bound depend on spin!)

Higher-spin operators

[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT **?**

[Perlmutter, Rastelli, Vafa, Valenzuela '20] **CFT Distance Conjecture:**

Conformal manifold of local CFT in d>2

I. HS point → Infinite distance

II. Infinite distance \longrightarrow HS point **III.** $\gamma_{\ell} = \Delta_{\ell} - (\ell + d - 2) \sim e^{-\alpha_{\ell} t}$

Zamolodchikov distance

Local CFT: Posses stress tensor

Dynamical gravity in the bulk!

[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT **?**

[Perlmutter, Rastelli, Vafa, Valenzuela '20] **CFT Distance Conjecture:** Conformal manifold of local CFT in d>2 I. HS point → Infinite distance II. Infinite distance → HS point

$$\prod \gamma_{\ell} = \Delta_{\ell} - (\ell + d - 2) \sim e^{-\alpha_{\ell} t}$$

Zamolodchikov distance

Local CFT: Posses stress tensor

Dynamical gravity in the bulk!

Today: Stringy origin of HS points **?** [JCI, Valenzuela '24]

Strings in the Conformal Manifold

KK tower \rightarrow No HS fields

Problem: $T_s \lesssim R_{AdS}^{-2} \longrightarrow$ String in a highly-curved background... hard to study!

- Inspiration: Emergent String Conjecture [Lee, Lerche, Weigand '19]

 - ✓ KK modes → Decompactification
 ✓ Excitations of weakly-coupled string
 - String tower \rightarrow HS fields
 - **Expectation:** HS point \leftrightarrow tensionless string

- Rely on CFT results and extract clues

A Distance Conjecture Approach

In flat space: Value of $\alpha \rightarrow$ Nature of the tower

$$\alpha = \sqrt{\frac{d-2+n}{n(d-2)}} \longrightarrow$$

Decompactifica n extra dimer

Caveat: Different values found for decompactification to running solution [Etheredge, Heidenreich, McNamara, Rudelius, Ruiz, Valenzuela '23]

From the CFT: Restrict to zoo of 4d SCFTs with simple gauge group (Lagrangian) admitting large N

Three different values:
$$\alpha = \begin{cases} \sqrt{\frac{2}{3}}, \sqrt{\frac{2}{3}}, \sqrt{\frac{2}{3}} \end{cases}$$

Out of 21 theories!

But...
$$\alpha \neq \frac{1}{\sqrt{3}}$$
 for all of them?

ation of
$$\alpha = \frac{1}{\sqrt{d-2}} \longrightarrow \frac{1}{\text{string limit}}$$

 $\left\{\frac{7}{12}, \frac{1}{\sqrt{2}}\right\}$ [Perlmutter, Rastelli, Vafa, Valenzuela '20] Suggests three different strings in AdS

Actually... Match $n = \{3,4,6\}$ \rightarrow Decompactification to $D = \{8,9,11\}$?

So... What is going on?!

A Distance Conjecture Approach

In flat space: Value of $\alpha \rightarrow$ Nature of the tower

$$\alpha = \sqrt{\frac{d-2+n}{n(d-2)}} \quad \blacksquare$$

Caveat: Different values found for decompactification to running solution [Etheredge, Heidenreich, McNamara, Rudelius, Ruiz, Valenzuela '23]

From the CFT: Restrict to zoo of 4d SCFTs with simple gauge group (Lagrangian) admitting large N Three different values: $\alpha = \left\{ \sqrt{\frac{2}{3}}, \sqrt{\frac{7}{12}} \left(\frac{1}{\sqrt{2}} \right) \right\}$ [Perlmutter, Rastelli, Vafa, Valenzuela '20] → E.g. $\mathcal{N} = 4$ SYM \checkmark Type IIB on AdS₅ × S⁵

Goal: Understand this case!

Convex Hull for AdS5xS5

► Â

Convex Hull for AdS5xS5

Convex Hull for N = 4 SYM

 $\mathcal{N} = 4$ SU(N) gauge theory in 4d

See [Stout '21+'22] and [Basile, Montella '23] for progress in this direction

Convex Hulls Comparison

Notice:

Convex hulls for AdS and CFT glue nicely together! (see later)

For convex hull connoisseurs: The string vector slides! (c.f. talks by Tom, Nacho and Muldrow)

A Detour: Scale Separation vs Sharpened SDC

KK tower ↔ BPS operators

Relax condition

 $\Delta_{BPS} \sim \mathcal{O}(1) \longleftrightarrow M_{KK} \sim R_{AdS}^{-1}$

No scale separation from the CFT!

 \hat{R}

KK

AdS

Notice:

Convex hulls for AdS and CFT do not glue nicely together!

Weird BPS $M_{KK} \sim R_{AdS}^{-2\beta} \longleftrightarrow \Delta_{BPS} \sim N^{\frac{2}{3}(1-2\beta)}$ spectrum • Weird S^5 stabilization Long story short

Anti-separation of scales: $\beta > 1/2 \rightarrow M_{KK} \ll R_{AdS}^{-1}$

HS

't Hooft limit (fixed λ)

CFT

A Detour: Scale Separation vs Sharpened SDC

KK tower ↔ BPS operators

Relax condition

 $\Delta_{BPS} \sim \mathcal{O}(1) \longleftrightarrow M_{KK} \sim R_{AdS}^{-1}$

No scale separation from the CFT!

R

KK

Notice:

Convex hulls for AdS and CFT do not glue nicely together!

Recap

$$\neq \frac{1}{\sqrt{3}} \text{ in } \mathcal{N} = 4 \text{ SYM }$$

Weakly curved

CFT:

CFT predictio spectrum in highly-curved AdS

Recap

$$\neq \frac{1}{\sqrt{3}} \text{ in } \mathcal{N} = 4 \text{ SYM }$$

Reason 2:

- $M_{s} \ll R_{AdS}^{-1} \rightarrow$ Weakly curved approximation breaks down!
 - What goes wrong when computing α ?

1. Moduli space metric for g_s 2. String excitation modes with g_s

$$: M_{s} \sim \sqrt{T_{s}} \sim M_{Pl} g_{s}^{1/4}$$

$$M_{s} \sim M_{Pl} g_{s}^{1/2} \xrightarrow{4}$$

$$M_{s} \sim T_{s} R_{AdS}$$
Food for thought!
The string is a str

What about the others?

$$\alpha = \left\{ \sqrt{\frac{2}{3}}, \sqrt{\frac{7}{12}} \left(\frac{1}{\sqrt{2}} \right) \right\} \quad \text{[Pe}$$

New strings? Or same string, weirder background?

- **Problem:** How to detect a string from the CFT?
- Instead, look for physical properties that are controlled only by α
 - **1.** Ratio between *a* and *c* central charges
 - 2. Hagedorn temperature at large N

- **Recap:** 4d SCFTs with simple gauge group (Lagrangian) admitting large N
 - erlmutter, Rastelli, Vafa, Valenzuela '20]
 - g. $\mathcal{N} = 4$ SYM \checkmark Type IIB on AdS₅ × S⁵

CFT Distances vs Einstein Gravity

[Henningson, Skenderis '98] Most notably: $a \neq c$ (at large N) \leftrightarrow No weakly-coupled Einstein gravity at low energies

Relevant for various aspects of low energy EFT!

CFT Distances vs Hagedorn Temperature

$$Z(T) = \sum_{states} e^{-E/T} = \int \rho(E) e^{-E/T} dE \quad -$$

Hagedorn temperature: $T_H \longrightarrow$ Controls exponential density of states at high energies! \rightarrow **Expectation:** Hagedorn temperature should only depend on α

4d $\mathcal{N} = 1$ SU(N) gauge theory \rightarrow 7 parameters: $\{n_{Ad}, n_F, n_{\bar{F}}, n_A, n_{\bar{A}}, n_S, n_{\bar{S}}\}$ # chiral multiplets

Long story short... $Z(T) \rightarrow \infty \leftrightarrow$ Hagedorn cond $\mathcal{N} = 1 v$

CFT Distance Parameter: $12 \alpha^2 - 3 =$

(+) Conformal manifold $\rightarrow \beta_{1-loop} = 0$

 $\xrightarrow{\Gamma \to T_H} \infty \longrightarrow \rho(E) \sim e^{E/T_H} \text{ Stringy!}$

Controls Hagedorn temperature

dition:
$$z_v(T_H) + \left\{ n_{Ad} + \frac{1}{2}(n_S + n_{\bar{S}} + n_A + n_{\bar{A}}) \right\} z_c(T_H) = 1$$

vector \mathcal{I}
Nice ... but not enough!

$$= \left[n_{Ad} + \frac{1}{2} \left(n_S + n_{\bar{S}} + n_A + n_{\bar{A}} \right) + n_F + n_{\bar{F}} \right] : ($$

$$n_F + n_{\bar{F}} = 6 - 2 \left(n_{Ad} + \frac{1}{2} \left(n_S + n_{\bar{S}} + n_A + n_{\bar{A}} \right) \right)$$

CFT Distances vs Hagedorn Temperature

$$Z(T) = \sum_{states} e^{-E/T} = \int \rho(E) e^{-E/T} dE \quad -$$

4d $\mathcal{N} = 1$ SU(N) gauge theory \rightarrow 7 parameters: $\{n_{Ad}, n_F, n_{\bar{F}}, n_A, n_{\bar{A}}, n_S, n_{\bar{S}}\}$ # chiral multiplets

Long story short... $Z(T) \rightarrow \infty \leftrightarrow$ Hagedorn cond $\mathcal{N} = 1 v$

 $\xrightarrow{T \to T_H} \infty \longrightarrow \rho(E) \sim e^{E/T_H} \text{ Stringy!}$

Hagedorn temperature: $T_H \longrightarrow$ Controls exponential density of states at high energies! \rightarrow Expectation: Hagedorn temperature should only depend on α

Controls Hagedorn temperature

$$\mathcal{S} \text{ short...} Z(T) \to \infty \leftrightarrow \text{Hagedorn condition: } z_v(T_H) + \left\{ \begin{array}{l} n_{Ad} + \frac{1}{2}(n_S + n_{\bar{S}} + n_A + n_{\bar{A}}) \\ \mathcal{N} = 1 \text{ vector } \end{array} \right\} \begin{array}{l} z_c(T_H) = 1 \\ \mathcal{N} = 1 \text{ vector } \end{array}$$

$$\text{Nice... and enough!} \begin{array}{l} \mathcal{N} = 1 \\ \mathcal{N} = 1 \end{array}$$

$$\text{CFT Distance Parameter } \mathbf{f} \beta_{1-loop} = 0 \text{: } 3\left(3 - 4\alpha^2\right) = \left[n_{Ad} + \frac{1}{2}\left(n_S + n_{\bar{S}} + n_A + n_{\bar{A}}\right) \right] \text{ :)}$$

CFT Distances vs Hagedorn Temperature

$$Z(T) = \sum_{states} e^{-E/T} = \int \rho(E) e^{-E/T} dE \quad -$$

Hagedorn temperature: $T_H \longrightarrow$ Controls exponential density of states at high energies! \rightarrow **Expectation:** Hagedorn temperature should only depend on α

4d $\mathcal{N} = 1$ USp(2N)/SO(N) gauge theory \rightarrow 3 parameters: $\{n_F, n_A, n_S\}$ # chiral multiplets

 $\xrightarrow{T \to T_H} \infty \longrightarrow \rho(E) \sim e^{E/T_H}$ Stringy!

Controls Hagedorn temperature Long story short... $Z(T) \to \infty \leftrightarrow$ Hagedorn condition: $z_v(T_H) + \{n_S + n_A\} z_c(T_H) = 1$ $\mathcal{N} = 1 \text{ vector } \mathcal{N} = 1 \text{ chirals}$

$$\beta_{1-loop} = 0: 3(3 - 4\alpha^2) = [n_S + n_A]:$$

-> Hagedorn condition: $z_v(T_H) + 3(3 - 4\alpha^2) z_c(T_H) = 1$ Expectation confirmed

Same as for SU(N)

$$Z(T) = \sum_{states} e^{-E/T} = \int \rho(E) e^{-E/T} dE \quad -$$

[Gadde, Pomoni, Rastelli '09] \rightarrow Restrict to flavor singlets! \triangleleft

Hagedorn condition

Bonus Track: A New AdS String from Top-down?

Setup: Type IIB on $AdS_5 \times S^5/Z_k \leftrightarrow \mathcal{N} = 2$ necklace quivers

 S^1 of orbifold singularities

A very peculiar limit:

- Driven by only axions \rightarrow Typically finite distance
- **But!** CFT predicts infinite distance + HS conserved currents [Aharony, Berkooz, Rey '15]

Stringy origin?

- Fundamental string remains tensionful...
- D3 wrapping blow-up 2-cycle become tensionless! [Aharony, Berkooz, Rey '15]
- String propagating in AdS₅ × S¹! Candidate for new emergent string in AdS \mathbf{Z} [Baume, JCI '20]

Conclusions and More Questions

There is much to learn about/from the Distance Conjecture in AdS/CFT

CFT side

Prove rest of CFT Distance Conjecture **?**

CFT Distance in N-direction **?**

Thank you for your attention!

Stringy side

New strings in AdS **?**

Building them: D3 wrapping blow-ups in AdS **?**