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Noncommutative Gauge Theory

> After over 20 years of intensive work, there are still many open
general problems in the description and quantization of
noncommutative gauge theories (e.g. those arising in string theory
with non-constant Poisson or twisted Poisson structures)

> Failure of Leibniz rule: d(fxg) # df xg+ fxdg obstructs a
good noncommutative differential calculus, and in particular closure
of gauge transformations: [0} ,03,]JA # 6[/\ */\]

» [ _.-algebras offer a natural arena for systematic constructions of
noncommutative gauge theories that deal with these issues —

but so far not understood beyond “semi-classical (Poisson) level”
(Blumenhagen, Brunner, Kupriyanov & Liist '18; Kupriyanov & Sz '21)



Braided Field Theory

» In some cases this can be rectified by deforming the L..-algebra
itself: Braided L.,-algebras construct braided field theories
equivariant under a triangular Hopf algebra action, with braided

noncommutative fields (Dimitrijevi¢ Ciri¢, Giotopoulos, Radovanovi¢ & Sz '21)
» Notion of braided gauge symmetry is not new — kinematical
aspects of this idea have appeared before (Brzezinski & Majid '92; ...)

— ideas and techniques borrowed from twisted noncommutative
gravity (Aschieri et al. '05; ...)

» Explicit realizations in physics? Look at Hopf algebraic symmetries
of string amplitudes ... (Asakawa, Mori & Watamura '08);
Braided deformations underlie AdS/CFT dual gauge theories to

Yang-Baxter deformations of AdSs x S° string o-models
(van Tongeren '15)



Braided Quantum Field Theory

» Quantization? Oeckl's algebraic approach to braided QFT based
on braided Wick's Theorem and Gaussian integration —
but does not treat theories with gauge symmetries (Oeckl '99)

> Goals: Apply modern incarnation of Batalin-Vilkovisky (BV)
quantization (a la Costello-Gwilliam) to conventional
noncommutative field theories

Develop braided version which completely captures perturbative
braided QFT with explicit computations of correlation functions

> Avoid functional analytic complications of continuum field theories
= work with fuzzy field theories
(i-e. finite-dimensional, algebraic BV formalism)



Outline

» BV Quantization
» Example: Scalar Field Theory on the Fuzzy Sphere
» Braided BV Formalism

» Example: Braided Scalar Field Theory on the Fuzzy Torus

with Hans Nguyen and Alexander Schenkel [arXiv: 2107.02532]



Free BV Field Theory (E, Qo, (—, —))

» Graded vector space
E=. - @®E'®oE°®E'® .- = ghosts @ fields @ antifields

Qo : E — E differential of degree 1 (Q3 = 0)

(—,—): E® E — C non-degenerate graded antisymmetric of
degree —1 and Qp-invariant (—1-shifted symplectic structure)

» Describes derived space of free fields

> Observables (Sym E* ~ Sym E[1], Qo,{—,—}): Shifted Poisson
bracket {p,¥} = (p,¥) 1 for p,9 € E[1] defines a Py-algebra:

—Qu{e, ¥} = {Qup, ¥} + (1) {p, Quo} compatibility

{o, 0} = (1)1 {4, ¢} symmetric
{p A, x}} = £{, {x, 0}} £ {x, {¢,¥}} Jacobi identity
{p,vx} = {e, v x v {e x} Leibniz rule



L .-Algebras

» Extend cochain complex (E[—1], Q) by antisymmetric maps
{l,: E[-1]®" — E[—1]}n>2 to form an L. -algebra:

Qola(v,w) = £(Qov,w) £ fa(v, Qow)  Leibniz rule
Lo(v, l2(w, u)) + cyclic = (Qoo¥3=% 430 Q)(v,w,u) Jacobi up to homotopy
plus “higher homotopy Jacobi identities”
» Cyclic with respect to pairing (—, —) : E[-1] ® E[-1] — C:
(Vo, n(vi, Vo, ooy va)) = £ (v, la(vo, Vi, ..., V1))

» (Cyclic) Lo.-algebras are homotopy coherent generalizations of
(quadratic) Lie algebras

> Extended L.-algebra on (Sym E[1]) ® E[-1]:
Zﬁ”(a1® Vi,...y@an @ Vy) = a1+ a3, ®@(ve,...,Vn)

(31 @ V1,8 @ Va)ext = T a1a (vi,v2)



Interacting BV Field Theory

Interactions | € (Sym E[1])° incorporated by choosing dual bases
€a € E[-1] , 0* € E[-1]* ~ E[2] and ‘contracted coordinate
functions’ a = ¢p*®e, € ((SymE[1])® E[fl])1

Homotopy Maurer-Cartan Action:

Al = nz>:2 (n/\:__l)!<a7£'r37"‘ﬂ(a,._.,a)>ext e (Sym E[l])o

Sev = (a,Qo(a))ext + Al = BV action
(Classical) Master Equation: Qo(Al) + 3 {A/,AI} = 0
G = 0 where Qi = Q +{\/,—}

Defines Pg-algebra (Sym E[1], Qin, {—, —}) of observables for
interacting BV field theory



Quantum BV Field Theory

» BV Laplacian Agy : Sym E[1] — (Sym E[1])[1]:

Apy(1) = 0 = Anv(p) » ADevlpy) = {o, ¥}
Apy(ab) = Agy(a) b+ (—1)17 aA, (b) + {a, b}

Implements Gaussian integration/Wick's Theorem
> Satisfies Qo Apy + Ay Q = 0, A2, = 0, Axy(AI) = 0
> @2, = 0 where Quv = Qu¢+hlApy = Qo+ {N,—}+hAgny

» Quantum observables (Sym E[1], an) (Eo-algebra) for interacting
BV field theory



Homological Perturbation Theory

» Propagators determine strong deformation retracts of E* ~ E[1]:

'

. — =1, im—1 = Qv +7Q
(e 0) L e T Y
r
. ()
> Observables:  (Sym H*(E[1]),0) I_I_/(SymE[l],Qo)

» Homological Perturbation Lemma: With § = {\/,—} 4+ hAgy, there is
a strong deformation retract

‘D

(Sym E[].]7 QB\/)

_

(Sym H*(E[1]),9)

N

-

where 1 = M(1—6M) 167 = No S (6N)

k=1

> (1 --@n) = N(p1-- @) € SymH*(E[1]) are n-point correlation
functions on space of vacua H®(E) of the field theory



Scalar Field Theory on the Fuzzy Sphere

> Fuzzy sphere: A = (j)® (j)* =~ Mat(N) forspinj = Y=L irrep of

su(2), with generators [Xi, Xj] = imveuXe, XiXi = 1, X{ = X;

» Free BV field theory: E = E°@ E' with E° = E! = A
Q = A+m’ with A(a) = 5 [X,[X;,a]] (fuzzy Laplacian)
N

(o) = (=1)'*1 % Te(p9)
» Fuzzy spherical harmonics YjJ ceA (0<JLSN, —J<j< ) satisfy

AYY) = JU+)Y | EmT(Y YY) = 80y

» [ ..-algebra: For any n > 2, choose ¢,: E[-1]®" — E[~1] as

Lo(p1, -+ 0n) = # Z_:s Po(1) " Pa(n)
SR

. . oot Jo++Jn v\sJo* Jp* 0
> Interactions: Al = ¢ {JZ;} Lo Yoy e (Sym E[1))
iJi
/Jﬁ?::}:j" = (YJ.;O,lfn(ijl,_..., ij”)> € C symmetric under neighbour
swaps (Wigner 3j and 6j symbols (Chu, Madore & Steinacker '01; ...))




Scalar Field Theory on the Fuzzy Sphere

Deformation retract: H*(E[1]) = 0 for m® > 0:

-G
()
(070)/—zﬂ(E[1] Qo) G = Q(;l — (A+m2)—1

"
(Sym E[1], Quv)

Only M(1) = 1 is non-zero (because @ = 0)

/—I%

Correlation functions: (C,0) ___ ~
S

Example: 2-point function at 1-loop in ¢*-theory (n = 3):

(prp2) = NM(OT(p102) + (6T (p12) + (5T)* (01 02))

= —h{p1, G(v2))
RN <
JU+1)+m?

(Y7, G(e1) (Y27, G(g2)) + O(X)
{JiJit

Receives both planar and non-planar loop corrections as in conventional
perturbation theory (Chu, Madore & Steinacker '01), due to Loo-structure of /



Representations of Triangular Hopf Algebras

Idea: BV formalism/L..-algebras are defined in the category of
vector spaces, but the definitions make sense in any (closed abelian)
symmetric monoidal category (with non-trivial braiding
isomorphism) and define braided BV formalism/braided L..-algebras

In particular, there is a category of vector spaces which are
(left) modules for a fixed given triangular Hopf algebra H
(morphisms are H-equivariant maps)

Universal R-matrixx: R = R*® R, € H® H is triangular if
Rl = Ry = R, ®R“

Braiding isomorphism 7 : V@ W — W ® V:
TR(v@w) = (Ry>w)® (R*>v)

Symmetric if R is triangular: 73 = 1



Free Braided BV Field Theory (E, Qy, (—, —))

» 7Z-graded H-module E
Qo : E — E H-equivariant differential of degree 1

(=,—): E® E — C H-invariant non-degenerate braided graded
antisymmetric of degree —1 and Qp-invariant:

(p,0) = —(—1)¥1IH(Ry b 1p, R* b )

» Braided symmetric algebra SymgzE[1]:
v = (=11 (Ra v 0) (R > )

> Observables (SymgE[1], Qo,{—,—}) defines a braided Po-algebra:
—Qo{p, ¥} = {Qup, ¥} + (=1 {, Quv} compatibility
{e.v} = (D) R by, R > 0} braided symmetric

{o.{v.x}} = £{Rav¥,{Rs>x, R’ R*>p}}

+ {Rs Ra>x, {R’ > ¢, R*>1}}  braided Jacobi identity

{o, ¥} x £ (Ra>¢){R* >, x} braided Leibniz rule

{0, x}



Braided L..-Algebras

> Extend cochain complex (E[—1], Q) by H-equivariant braided
antisymmetric maps {/, : E[-1]®" — E[-1]},>2 to form a
braided L..-algebra:

U osv V') = (=) (L Ryp v R b v, . )
plus braided homotopy Jacobi identities (unchanged for n = 2)

» Braided L..-algebras are homotopy coherent generalizations of
braided Lie algebras (Woronowicz '89; Majid '93; ...)

» Braided cyclic with respect to (—,—): E[-1] ® E[-1] — C:
Vo, bn(Vay ..y vn)) = £ (Rug -+ Ry 1PV, £n(R¥Dvg, . .., R 1>V, 1))
> Extended braided L..-algebra {Qo, £**} on (SymgE[l]) ® E[-1]:

<81 Rdvi, a2 ® V2>ext = :I:al (Ral>32) <Ra[>V1,V2> etc.



Braided Quantum Field Theory

Interactions: With a = 0" ®¢e, € ((SymRE[l])®E[fl])1:

A" ' ext 0
A Z (n+1)! a, 07" (a, . ,a))ext € (SymgE[1])

Braided Pp-algebra (SymgpE[l], Que = Qo+ {A/, =}, {—,—}) of
observables for interacting braided BV field theory

Braided BV Laplacian Agy : SymgE[1] — (SymgE[1])[1]:

ABV SDn) = Z :l: Sala Qi "t R(ljfl D90./'>

i<j

X @1 i1 @i (RT B gign) -+ (RY™ > j1) G s -+ ¢pn
Implements braided Gaussian integration/Wick's Theorem  (Oeckl '99)

Braided Eq-algebra (SymgE[l], Qsv = Qint + 2 Agy) of quantum
observables for interacting braided BV field theory.



Braided Quantum Field Theory

» Braided strong deformation retract:

—_— \(7) m,¢ = H-equivariant
(H.(E[l])v 0) -~ o (E[l]’ QO) ’7 = H-invariant

» Applying Homological Perturbation Lemma to H-invariant

d = {A,—}+hAgy, gives braided strong deformation retract

_ "

(SymRH.(E[l])7g> I (SymRE[l]aoBv)

< ﬁ
where T = Mo Y (6M)k
k=1

» Braided homological perturbation theory computes correlation
functions of braided quantum field theory



Braided Scalar Field Theory on the Fuzzy Torus

» Fuzzy torus A ~ Mat(N): a = 3 a; U' V/ with generators obeying:
iJELpN
vu* = vv =1 , UV =gqVvVU , U'=VN =1
where g = e2mi/N. Tr(a) = aoo defines a trace on A

» Group Hopf algebra H = C[Z3] acts on A:
kvU = g U , kpV = g2V where k = (ki, k) € Z3

» Triangular R-matrix: R = & 3 ¢ s®t = R*®R., € HO®H

N2
s,tez3

A is a braided commutative H-module algebra: ab = (R. > b) (R > a)

» Free braided BV field theory: E = E°@® E'! with E® = E! =
Q = A+m, Aa) = — =y (U, [U7a]] + [V, [V, 4]

(p,9) = (-1) (o)

A
]

)



Braided Scalar Field Theory on the Fuzzy Torus

Fuzzy plane waves e, = Uk VR ¢ A satisfy
Ale) = ([kalg+[kl7) e, Tr(eie) = ok
n/2_ _—n/2
where [n]y = W (g-numbers)

Braided Lo.-algebra: For any n > 2, choose ¢, : E[-1]®" — E[~1] as
€n(<p1,...,<p,,) = Q1 Pn

. n—1 *
Interactions: Al = {;} Ik, €, -~ €k, € (SymgE[1])°
Ik, = q=1<i 57 (e Uk, ek,)) = q 2 2 Gy o
g-symmetric under neighbour swaps: ..k, ... = gkikiv Lk koo

Deformation retract: H*(E[1]) = 0 for m? > 0:

i {9
(070)/— ﬂ(E[].],Qo) G = QOI — (A+m2)*1

\0_/



Braided Scalar Field Theory on the Fuzzy Torus

» Correlation functions: Only (1) = 1 is non-zero
» Example 1: 4-point function of free braided scalar field (A = 0):
(p102030a) = N((hDsvT) (010203 04))

= K ({1, G(#2)) (93, G(pa)) + (1, Ra > G(03)) (R > 02, G(04))
+ (o1, G(pa)) (02, G(3)))

Braided Wick's Theorem (Oeckl '99)
» Example 2: 2-point function at 1-loop in ¢*-theory (n = 3):
(pr1p2) = M(ET(p102) + (5T (01 02) + (5T) (1 02))

A2 R (e, G(p1)) (e, G(w2))
2 2 [h]5 + [R]G + m?

= ~h{p1, G(p2)) - +0(XY)

2
k.lezy,

No notion of non-planar loop corrections due to braided Loo-structure
of I; No UV/IR mixing in continuum? (Oeckl '00; Balachandran et al. '06)



