# PEPS AND BICATEGORIES

### Higher structures and field theory

6 August 2020



JF ESI 06\_07\_20 - p. 1/??

# Goal:



R

. . . . . .

understand MPO symmetries of string-net PEPS through TFT

# Motivation :

- description of string-net PEPS with boundary
  - allowing e.g. for calculation of error thresholds for error-correcting codes based on string nets with boundary
- mapping of PEPS to critical system via "strange correlator" allowing e.g. for understanding various CFT structures directly on the lattice

# Goal:



understand MPO symmetries of string-net PEPS through TFT

# Plan:

- reminder about PEPS and MPO
- from MPO symmetries to fusion categories and bimodule categories
- invertible case: a 2-object bicategory / 2-Morita context in fusion categories
- explanation in terms of state-sum topological field theory

| work in progress with | Jutho Haegeman       |
|-----------------------|----------------------|
| &                     | Laurens Lootens      |
| &                     | Christoph Schweigert |
| &                     | Frank Verstraete     |
|                       |                      |

#### Warmup: MPS

- efficient approximation to ground states of local gapped Hamiltonians for 1-d lattices
- $\mathbb{R}$  element of  $\mathcal{H}_{phys}^{\otimes N}$  for system with N sites

R

 $|\psi(A)
angle \ = \ \sum_{j_1,j_2,...,j_N}^d \operatorname{Tr}(A^{j_1}A^{j_2}\cdots A^{j_N}) \, |j_1
angle |j_2
angle \cdots |j_N
angle$ 

assuming periodic boundary conditions and translational invariance

 $A \quad D \times D \times d \text{-tensor}$  $(A^{j})_{pq} \equiv A_{jpq}$  $d = \dim(\mathcal{H}_{phys})$ D = 'virtual dimension'

#### Warmup: MPS

efficient approximation to ground states of local gapped Hamiltonians for 1-d lattices R

 $\mathbb{R}$  element of  $\mathcal{H}_{phys}^{\otimes N}$  for system with N sites

R

$$|\psi(A)\rangle = \sum_{j_1,j_2,\dots,j_N}^{d} \operatorname{Tr}(A^{j_1}A^{j_2}\dots A^{j_N}) |j_1\rangle |j_2\rangle \dots |j_N\rangle$$
  

$$|\psi(A)\rangle = \left(A + A + \dots +$$

#### Warmup: MPS

- efficient approximation to ground states of local gapped Hamiltonians for 1-d lattices
- $\mathbb{R}$  element of  $\mathcal{H}_{phys}^{\otimes N}$  for system with N sites

R.

$$|\psi(A)
angle \ = \ \sum_{j_1,j_2,...,j_N}^d \operatorname{Tr}(A^{j_1}A^{j_2}\cdots A^{j_N}) \ket{j_1}\ket{j_2}\cdots \ket{j_N}$$

**NB**: fundamental theorem of MPS

 $\blacksquare$  injective MPS:  $\{A^j | j = 1, 2, ..., d\}$  generate full  $D^2$ -dim matrix algebra

 $|\psi(A)\rangle = |\psi(B)\rangle$  for injective MPS based on tensors A and B

$$\iff -X - A - = e^{i\theta} - B - X -$$

i.e. *A* and *B* related up to phase by a virtual gauge transformation



# **Projected entangled pair states**

- In short: an MPS is a projected entangled pair state
- ,
- •
- •
- •
- •
- •
- •
- •
- •

| • |   |    |      |       |     |    |     |      |     |      |     |      |      |          |    |     |      |    |     |    |      |      |     |     |     |       |                     |      |     |
|---|---|----|------|-------|-----|----|-----|------|-----|------|-----|------|------|----------|----|-----|------|----|-----|----|------|------|-----|-----|-----|-------|---------------------|------|-----|
| • |   |    |      |       |     |    |     |      |     |      |     |      |      |          |    |     |      |    |     |    |      |      |     |     |     |       |                     |      |     |
| • |   | 13 | p il | n sł  | nor | t: | an  | MF   | ۶S  | is a | a F | PEF  | PS   |          |    |     |      |    |     |    |      |      |     |     |     |       |                     |      |     |
| • |   |    | F V  | virtu | ie: | a  | ene | eral | ize | s ra | the | er d | lire | ctlv     | to | anv | v di | me | nsi | on |      |      |     |     |     |       |                     |      |     |
| • |   |    |      |       |     | 3  |     |      |     |      |     |      |      | <b>j</b> |    |     | ,    |    |     |    |      |      |     |     |     |       |                     |      |     |
| • |   |    |      |       |     |    |     |      |     |      |     |      |      |          |    | (te | erm  | P  | EP  | Sυ | ISUa | ally | res | ser | vec | l for | · <mark>2</mark> -c | d ca | se) |
| • |   |    |      |       |     |    |     |      |     |      |     |      |      |          |    |     |      |    |     |    |      |      |     |     |     |       |                     |      |     |
| • |   |    |      |       |     |    |     |      |     |      |     |      |      |          |    |     |      |    |     |    |      |      |     |     |     |       |                     |      |     |
| • |   |    |      |       |     |    |     |      |     |      |     |      |      |          |    |     |      |    |     |    |      |      |     |     |     |       |                     |      |     |
| • |   |    |      |       |     |    |     |      |     |      |     |      |      |          |    |     |      |    |     |    |      |      |     |     |     |       |                     |      |     |
| • |   |    |      |       |     |    |     |      |     |      |     |      |      |          |    |     |      |    |     |    |      |      |     |     |     |       |                     |      |     |
| • |   |    |      |       |     |    |     |      |     |      |     |      |      |          |    |     |      |    |     |    |      |      |     |     |     |       |                     |      |     |
| ٠ |   |    |      |       |     |    |     |      |     |      |     |      |      |          |    |     |      |    |     |    |      |      |     |     |     |       |                     |      |     |
| • |   |    |      |       |     |    |     |      |     |      |     |      |      |          |    |     |      |    |     |    |      |      |     |     |     |       |                     |      |     |
| ٠ |   |    |      |       |     |    |     |      |     |      |     |      |      |          |    |     |      |    |     |    |      |      |     |     |     |       |                     |      |     |
| ٠ |   |    |      |       |     |    |     |      |     |      |     |      |      |          |    |     |      |    |     |    |      |      |     |     |     |       |                     |      |     |
| • |   |    |      |       |     |    |     |      |     |      |     |      |      |          |    |     |      |    |     |    |      |      |     |     |     |       |                     |      |     |
| • |   |    |      |       |     |    |     |      |     |      |     |      |      |          |    |     |      |    |     |    |      |      |     |     |     |       |                     |      |     |
| • |   |    |      |       |     |    |     |      |     |      |     |      |      |          |    |     |      |    |     |    |      |      |     |     |     |       |                     |      |     |
| • |   |    |      |       |     |    |     |      |     |      |     |      |      |          |    |     |      |    |     |    |      |      |     |     |     |       |                     |      |     |
| • |   |    |      |       |     |    |     |      |     |      |     |      |      |          |    |     |      |    |     |    |      |      |     |     |     |       |                     |      |     |
| • | • | •  | •    | •     | •   | •  | •   | •    | •   | •    | •   | •    | •    | •        | •  | •   | •    | •  | •   | •  | •    | •    | •   | •   | •   |       |                     |      |     |

- 🖙 in short: an MPS is a PEPS
  - Image wirtue: generalizes rather directly to any dimension
  - concretely in d = 2:
  - Reference and the standard description of MPS analogous to standard description of MPS M



JF ESI 06\_07\_20 - p. 5/??

- $\mathbb{R}$  properties of PEPS wave function  $|\psi(A)
  angle$ 
  - for ground states of string-net models  $\leftrightarrow \rightarrow$  symmetries of the PEPS tensor A
- $\square$  can realize such symmetries through matrix product operators (MPO)  $\widehat{B}$ associated with defect linesin the lattice of PEPS tensors :



SCHUCH-CIRAC-PÉREZ-GARCÍA 2010

BUERSCHAPER 2014

ŞAHINOĞLU-WILLIAMSON-BULTINCK-MARIËN-HAEGEMAN-SCHUCH-VERSTRAETE P2014

BULTINCK-MARIËN-WILLIAMSON-ŞAHINOĞLU-HAEGEMAN-VERSTRAETE 2017

- reproperties of PEPS wave function  $|\psi(A)\rangle$ for ground states of string-net models  $\leftrightarrow$  symmetries of the PEPS tensor *A* 
  - $\square$  can realize such symmetries through matrix product operators (MPO)  $\widehat{B}$ associated with defect linesin the lattice of PEPS tensors :



involves MPO tensor **B** with two external (defect) and two internal legs so that

$$\widehat{B} = \sum_{\{i\},\{i'\}=1}^{D} \operatorname{Tr} \left( B^{i_1 i'_1} \cdots B^{i_n i'_n} \right) |i_1 \cdots i_n\rangle \langle i'_1 \cdots i'_n| \qquad i_1$$

NB: taking  $d_e = d$  instead of  $d_e = D$ allows for alternative use of MPO as operator on an MPS (hence name)

 $l_n$ 

# **MPO rep's of fusion categories**

#### PEPS & bicategories



- •

### **MPO rep's of fusion categories**

- Image: Second state and the second state and th
- $\sim$  consider simultaneously whole family of MPO tensors  $B_a$  labeled by "a"
- $\mathbb{R} = \widehat{B}_a$  and  $\widehat{B}_b$  can be fused by concatenation of external legs of  $B_a$  and  $B_b$
- invoke MPO injectivity / fundamental theorem of MPO



### **MPO rep's of fusion categories**

- Image: which is a state of the state of
- $\sim$  consider simultaneously whole family of MPO tensors  $B_a$  labeled by "a"
- $\mathbb{R} = \widehat{B}_a$  and  $\widehat{B}_b$  can be fused by concatenation of external legs of  $B_a$  and  $B_b$
- invoke MPO injectivity / fundamental theorem of MPO



**Interpretation**: fusion category C with simple objects labeled by a

- abbreviated notation:
- $\sim$  consider simultaneously whole family of MPO tensors  $B_a$  labeled by ""a"
- $\mathbb{B}_{a}$  and  $\widehat{B}_{b}$  can be fused by concatenation of external legs of  $B_{a}$  and  $B_{b}$
- Invoke MPO injectivity / fundamental theorem of MPO

- Image: which is a state of the state of
- $\sim$  consider simultaneously whole family of MPO tensors  $B_a$  labeled by ""a"
- $\mathbb{B}_{a}$  and  $\widehat{B}_{b}$  can be fused by concatenation of external legs of  $B_{a}$  and  $B_{b}$
- Invoke MPO injectivity / fundamental theorem of MPO

 $\rightsquigarrow$  decomposition



More general interpretation : MPO representation of a fusion category C

with associativity of fusion encoded in recoupling identity

$$d - k = \sum_{f,m,n} ({}^{0}\mathbf{F}_{d}^{abc})_{c,jk}^{f,mn} d - n = \sum_{f,m,n} ({}^{0}\mathbf{F}_{d}^{abc})_{c,jk}^{f,mn} d - n = 0$$
for fusion tensor **X**

JF ESI 06\_07\_20 - p. 7/??

- Image: which is a state of the state of
- $\square$  consider simultaneously whole family of MPO tensors  $B_a$  labeled by ""a"
- $\mathbb{R} = \widehat{B}_a$  and  $\widehat{B}_b$  can be fused by concatenation of external legs of  $B_a$  and  $B_b$
- Invoke MPO injectivity / fundamental theorem of MPO



- consider PEPS description
  - of ground states of string-net models on honeycomb lattice

BUERSCHAPER-AGUADO-VIDAL 2009

GU-LEVIN-SWINGLE-WEN 2009

and allow for spherical fusion categories with arbitrary fusion multiplicities

### **PEPS rep's of fusion categories**



### **PEPS rep's of fusion categories**



### **PEPS rep's of fusion categories**



JF ESI 06\_07\_20 - p. 8/??



of ground states of string-net models on honeycomb lattice





of ground states of string-net models on honeycomb lattice





of ground states of string-net models on honeycomb lattice







recall: also a recoupling identity for MPO fusion tensor

#### interpretation :

 ${\cal M}$  also has structure of a left module category over the fusion category  ${\cal C}$ and MPO fusion tensor is module 6j-symbol  ${}^{1}{
m F}$ 

■ module 6j-symbol <sup>1</sup>F describes isomorphism  $(a \otimes b) \triangleright A \xrightarrow{\cong} a \triangleright (b \triangleright A)$ 



recoupling identity for MPO tensor reads explicitly

 $\sum_{o} \left( {}^{1}\!\mathbf{F}_{B}^{fcA} \right)_{g,lm}^{C,no} ({}^{1}\!\mathbf{F}_{B}^{abC})_{f,ko}^{D,pq} = \sum_{j,rst} ({}^{0}\!\mathbf{F}_{g}^{abc})_{f,kl}^{j,rs} ({}^{1}\!\mathbf{F}_{B}^{ajA})_{g,sm}^{D,tq} ({}^{1}\!\mathbf{F}_{D}^{bcA})_{j,rt}^{C,np}$ 

 $\implies$  is mixed pentagon identity

stating the equality of two distinguished isomorphisms

$$((a \otimes b) \otimes c) \triangleright A \xrightarrow{\cong} a \triangleright (b \triangleright (c \triangleright A))$$

### **PEPS/MPO** bimodule category





not yet used : MPO tensor satisfies two further consistency conditions :

zipper condition :



location of fusion process on the lattice does not matter



not yet used: MPO tensor satisfies two further consistency conditions:



MPOs pass freely through lattice of PEPS tensors

(can be interpreted as RG transformation for scale invariant MPOs)



not yet used : MPO tensor satisfies two further consistency conditions :



**Interpretation**: *M* is in fact a bimodule category

■ MPO tensor is bimodule 6j-symbol <sup>2</sup>F expressing isomorphism  $a \triangleright (A \triangleleft \alpha) \xrightarrow{\cong} (a \triangleright A) \triangleleft \alpha$ 





not yet used : MPO tensor satisfies two further consistency conditions :



**Interpretation**: *M* is in fact a bimodule category

- $\blacksquare$  MPO tensor is bimodule 6j-symbol  ${}^{2}\mathbf{F}$
- zipper and pulling-through conditions are mixed pentagon equations

$$\begin{split} &\sum_{o} ({}^{2}\mathbf{F}_{B}^{fA\alpha})_{C,lm}^{D,no} ({}^{1}\mathbf{F}_{B}^{abD})_{f,ko}^{E,pq} = \sum_{F,rst} ({}^{1}\mathbf{F}_{C}^{abA})_{f,kl}^{F,rs} ({}^{2}\mathbf{F}_{B}^{aF\alpha})_{C,sm}^{E,tq} ({}^{2}\mathbf{F}_{E}^{bA\alpha})_{F,rt}^{D,np} \\ &\sum_{o} ({}^{3}\mathbf{F}_{B}^{C\alpha\beta})_{D,lm}^{\gamma,no} ({}^{2}\mathbf{F}_{B}^{aA\gamma})_{C,ko}^{E,pq} = \sum_{F,rst} ({}^{2}\mathbf{F}_{D}^{aA\alpha})_{C,kl}^{F,rs} ({}^{2}\mathbf{F}_{B}^{aF\beta})_{D,sm}^{E,tq} ({}^{3}\mathbf{F}_{E}^{A\alpha\beta})_{F,rt}^{\gamma,np} \\ &\text{for } ((a\otimes b) \triangleright A) \triangleleft \alpha \xrightarrow{\cong} a \triangleright (b \triangleright (A \triangleleft \alpha)) \ / ((a \triangleright A) \triangleleft \alpha) \triangleleft \beta \xrightarrow{\cong} a \triangleright (A \triangleleft (\alpha \otimes \beta)) \end{split}$$

### Summary :

- PEPS, MPO and MPO fusion tensors and their consistency relations amount to
- $\sim$  a fusion category C + a fusion category D + a C-D-bimodule category M

 $^{3}\mathrm{F}$ 

#### identifications

- right module constraint bimodule constraint left module constraint
- ←→ PEPS tensor
- ${}^{2}F \longleftrightarrow MPO$  tensor

 $\longleftrightarrow$ 

 ${}^{1}\mathbf{F} \longleftrightarrow \mathsf{MPO}$  fusion tensor

#### identifications

pentagon identity for *C* left module mixed pentagon bimodule mixed pentagon 1 bimodule mixed pentagon 2 right module mixed pentagon pentagon identity for *D* 

00 = 000" 11 = 011

- "21 = 122"  $\leftrightarrow \rightarrow$
- "32 = 223"  $\leftrightarrow \rightarrow$
- "33 = 334"  $\leftrightarrow$
- 44 = 444

- recoupling MPO fusion tensor
- zipper condition
  - pulling-through condition
  - recoupling PEPS tensor

### Summary :

- PEPS, MPO and MPO fusion tensors and their consistency relations amount to
- $\mathbb{R}$  a fusion category  $\mathcal{C}$  + a fusion category  $\mathcal{D}$  + a  $\mathcal{C}$ - $\mathcal{D}$ -bimodule category  $\mathcal{M}$

#### Identifications

- right module constraint
  - bimodule constraint left module constraint
- ${}^{3}F \longleftrightarrow PEPS$  tensor
- $^{2}F \longleftrightarrow MPO$  tensor
- ${}^{1}\mathbf{F} \longleftrightarrow \mathsf{MPO}$  fusion tensor
- identifications of pentagon identities



a string-net PEPS satisfying a  $\mathcal{D}$ -type recoupling condition has  $\mathcal{C}$ -type MPO symmetries

iff there exists a compatible  $\mathcal{C}$ - $\mathcal{D}$ -bimodule category  $\mathcal{M}$ 



- PEPS, MPO and MPO fusion tensors and their consistency relations amount to
- $\mathbb{R}$  a fusion category  $\mathcal{C}$  + a fusion category  $\mathcal{D}$  + a  $\mathcal{C}$ - $\mathcal{D}$ -bimodule category  $\mathcal{M}$

#### identifications

right module constraint ${}^{3}\mathbf{F} \leftrightarrow \rightarrow$ PEPS tensorbimodule constraint ${}^{2}\mathbf{F} \leftrightarrow \rightarrow$ MPO tensorleft module constraint ${}^{1}\mathbf{F} \leftrightarrow \rightarrow$ MPO fusion tensor

Special case: *M* invertible bimodule category

as is arguably required for MPO injectivity



- PEPS, MPO and MPO fusion tensors and their consistency relations amount to
- $\mathbb{R}$  a fusion category  $\mathcal{C}$  + a fusion category  $\mathcal{D}$  + a  $\mathcal{C}$ - $\mathcal{D}$ -bimodule category  $\mathcal{M}$

#### identifications

 $\begin{array}{ccc} \mbox{right module constraint} & {}^3{\bf F} & \longleftrightarrow & \mbox{PEPS tensor} \\ \mbox{bimodule constraint} & {}^2{\bf F} & \longleftrightarrow & \mbox{MPO tensor} \\ \mbox{left module constraint} & {}^1{\bf F} & \longleftrightarrow & \mbox{MPO fusion tensor} \end{array}$ 

**Special case**: *M* invertible bimodule category

 $\Rightarrow$  data fit into 2 - Morita context (or: 2 - object bicategory)



in particular:  $\mathcal{D} = \mathcal{C}^{\star}_{\mathcal{M}} \equiv \operatorname{Fun}_{\mathcal{C}}(\mathcal{M}, \mathcal{M})$  and  $\mathfrak{Z}(\mathcal{D}) \simeq \mathfrak{Z}(\mathcal{C})$ 









- Strategy :
  - Turaev-Viro TFT associated with spherical fusion category  $\mathcal{D}$ assigns to 3-manifold M a linear map T-V(M):  $\text{T-V}(\partial_{-}M) \rightarrow \text{T-V}(\partial_{+}M)$
  - $\square$  in particular for  $M=M_{\Sigma}$  with  $\partial_{-}M_{\Sigma}=\emptyset$

and  $\partial_+ M_{\Sigma} = \Sigma$ : a linear map  $\mathbb{C} \to \text{T-V}(\Sigma)$ and hence  $\text{T-V}(M) \cdot 1 \in \text{T-V}(\Sigma)$ 

 ${}_{\mathbb{T}}$  show that in fact  $\operatorname{\mathsf{T-V}}(M) \cdot 1 = |\psi(A)\rangle$ 

 $\implies$  explicit construction of T-V on  $M_{\Sigma}$  provides a construction of  $\mathcal{H}^0_{\Sigma}$ 

#### Prescription for 3-manifold $M_\Sigma$ :

S-manifold: cylinder  $M_{\Sigma} := \Sigma \times [0, 1]$ geometric boundary:  $\partial M_{\Sigma} = \Sigma \times \{0\} \cup \Sigma \times \{1\}$ 

Image with the second structure in the second str

### State sum variables :

 $\mathbb{R}$  fix a skeleton P for  $M_{\Sigma}$  not having vertices or edges on  $\Sigma \times \{1\}$ 



- $\square$  fix a skeleton P for  $M_{\Sigma}$
- is for convenience take P to consist of prisms matching  $\Delta$ :



(but results do not depend on choice of skeleton)



 $\square$  fix a skeleton P for  $M_{\Sigma}$ 

for convenience take P to consist of prisms matching  $\Delta$ :



attach state-sum variables  $\alpha, \beta, \gamma, ... \in I_{\mathcal{D}}$  to the plaquettes of P in interior and state-sum variables  $A, B, C, ... \in I_{\mathcal{M}}$  to the plaquettes of P on  $\Sigma \times \{0\}$ 



- $\square$  fix a skeleton **P** for  $M_{\Sigma}$
- for convenience take P to consist of prisms matching  $\Delta$ :





It is every edge *e* ∈ *P* associate vector space  $\mathcal{H}_e = V_e \otimes V_e^*$  (two half-edges)
If interior of  $M_{\Sigma}$ :

$$V_e = \operatorname{Hom}_{\mathcal{D}}(\alpha \otimes \beta, \gamma) \quad \text{and} \quad V_e^* = \operatorname{Hom}_{\mathcal{D}}(\alpha \otimes \beta, \gamma)^*$$

 $\cong \operatorname{Hom}_{\mathcal{D}}(\gamma, \alpha \otimes \beta)$ 



#### Vector spaces:

It is every edge *e* ∈ *P* associate vector space  $\mathcal{H}_e = V_e \otimes V_e^*$  (two half-edges)

s for edge in interior of  $M_{\Sigma}$ :

 $V_e = \operatorname{Hom}_{\mathcal{D}}(\alpha \otimes \beta, \gamma) \quad \text{and} \quad V_e^* = \operatorname{Hom}_{\mathcal{D}}(\alpha \otimes \beta, \gamma)^*$ 

show for edge on  $\Sigma \times \{0\}$ :

$$V_e = \operatorname{Hom}_{\mathcal{M}}(A \triangleleft \gamma, B)$$
 and

$$V_e^* = \operatorname{Hom}_{\mathcal{M}}(A \triangleleft \gamma, B)^*$$

$$\cong \operatorname{Hom}_{\mathcal{M}}(B, A \triangleleft \gamma)$$





to every edge  $e \in P$  associate vector space  $\mathcal{H}_e = V_e \otimes V_e^*$  (two half-edges) for edge in interior of  $M_{\Sigma}$ :

 $V_e = \operatorname{Hom}_{\mathcal{D}}(\alpha \otimes \beta, \gamma)$  and  $V_e^* = \operatorname{Hom}_{\mathcal{D}}(\alpha \otimes \beta, \gamma)^*$ 

 $\checkmark$  for edge on  $\Sigma \times \{0\}$ :

 $V_e = \operatorname{Hom}_{\mathcal{M}}(A \triangleleft \gamma, B)$  and  $V_e^* = \operatorname{Hom}_{\mathcal{M}}(A \triangleleft \gamma, B)^*$ 

 $\mathbb{I}_{\mathbb{T}}$  to  $M_{\Sigma}$  with skeleton P associate vector space  $V_P = \bigotimes \mathcal{H}_e$ 



#### Vector spaces:

to every edge  $e \in P$  associate vector space  $\mathcal{H}_e = V_e \otimes V_e^*$  (two half-edges)

• for edge in interior of  $M_{\Sigma}$ :

 $V_e = \operatorname{Hom}_{\mathcal{D}}(\alpha \otimes \beta, \gamma) \quad \text{and} \quad V_e^* = \operatorname{Hom}_{\mathcal{D}}(\alpha \otimes \beta, \gamma)^*$ 

symplectic for edge on  $\Sigma \times \{0\}$ :

 $V_e = \operatorname{Hom}_{\mathcal{M}}(A \triangleleft \gamma, B)$  and  $V_e^* = \operatorname{Hom}_{\mathcal{M}}(A \triangleleft \gamma, B)^*$ 

 $\mathbb{I}$  to  $M_{\Sigma}$  with skeleton P associate vector space  $V_P = \bigotimes_{e \in P} \mathcal{H}_e$ 

#### **Canonical vectors**:

for each edge  $e \in P$  canonical vector  $v_e = \sum_i b_i \otimes b^i \in V_e \otimes V_e^*$ independent of choice of bases  $\{b_i\}$  and  $\{b^i\}$ 

thus canonical vector

$$v_P = \bigotimes_{e \in P} v_e \ \in V_P$$

### Evaluation map :

- $\mathbf{w}$  at every vertex  $\mathbf{v}$  of  $\mathbf{P}$  have evaluation map  $\mathbf{ev}_{\mathbf{v}}$ 
  - introduced by Turaev & Virelizier in absence of physical boundary



- $\mathbf{v}$  at every vertex  $\mathbf{v}$  of  $\mathbf{P}$  have evaluation map  $\mathbf{ev}_{\mathbf{v}}$ 
  - $\checkmark$  draw closed ball  $B_v$  around v
  - $\sim$  intersection of  $B_v$  gives graph  $\Gamma_v$  on  $\partial B_v$
  - every edge of \Gamma\_v
     inherits object label from plaquette
  - $\sim$  every vertex of  $\Gamma_v$ 
    - inherits vector space label from half-edge
- $\sim$  evaluate  $\Gamma_v$ 
  - according to T-V' rules of state-sum TFT

specifically:





JF ESI 06\_07\_20 - p. 20/??



- $\mathbf{v}$  at every vertex  $\mathbf{v}$  of  $\mathbf{P}$  have evaluation map  $\mathbf{ev}_{\mathbf{v}}$ 
  - $\checkmark$  draw closed ball  $B_v$  around v
  - $\sim$  intersection of  $B_v$  gives graph  $\Gamma_v$  on  $\partial B_v$
  - every edge of **\Gamma\_v** inherits object label from plaquette
  - $\sim$  every vertex of  $\Gamma_v$ 
    - inherits vector space label from half-edge
- $\mathbf{v}$  evaluate  $\Gamma_{v}$ 
  - according to T-V' rules of state-sum TFT

by inspection :





- $\mathbf{v}$  at every vertex  $\mathbf{v}$  of  $\mathbf{P}$  have evaluation map  $\mathbf{ev}_{\mathbf{v}}$ 
  - draw closed ball  $B_v$  around v
  - $\sim$  intersection of  $B_v$  gives graph  $\Gamma_v$  on  $\partial B_v$
  - every edge of \Gamma\_v
     inherits object label from plaquette
  - $\sim$  every vertex of  $\Gamma_v$ 
    - inherits vector space label from half-edge
- $\sim$  evaluate  $\Gamma_v$ 
  - according to T-V' rules of state-sum TFT

specifically:



B

B

 $\alpha$ 

A

 $\rightarrow \sim ({}^3\!\mathrm{F}^{Alphaeta}_B)^{\gamma}_C$ 





 $\mathbf{v} = \mathbf{v}_{v}$  is map from  $\bigotimes_{e} V_{e}$  for the half-edges incident to v to  $\mathbb{C}$ 

combine the evaluations for all vertices of *P* to get linear map





 $\mathbf{v} = \mathbf{v}_{v}$  is map from  $\bigotimes_{e} V_{e}$  for the half-edges incident to v to  $\mathbb{C}$ 

 $\sim$  combine the evaluations for all vertices of P to get linear map

$$\operatorname{ev}_P = \bigotimes_{v \in P} \operatorname{ev}_v : \ V_P \to \bigotimes_{\substack{e \text{ ending on} \\ \text{gluing bdy}}} V_e = \mathcal{H}_{\Sigma}$$

### Perform evaluation :

 $\mathbb{I}_{e} \mathbb{I}_{v}$  is map from  $\bigotimes_{e} V_{e}$  for the half-edges incident to v to  $\mathbb{C}$ 

combine the evaluations for all vertices of *P* to get linear map

$$\operatorname{ev}_P = \bigotimes_{v \in P} \operatorname{ev}_v : \ V_P \to \bigotimes_{\substack{e \text{ ending on} \\ \text{gluing bdy}}} V_e = \mathcal{H}_{\Sigma}$$

finally :

apply evaluation map  $ev_P$  to canonical vector  $v_P$ 

by inspection :

$$ev_P(v_P) = PEPS_{\mathcal{D},\mathcal{M}}$$

note:

by construction  $\operatorname{ev}_P(v_P)$  lies in  $\operatorname{T-V}(\Sigma) = \mathcal{H}^0_\Sigma$ 

so  $PEPS_{\mathcal{D},\mathcal{M}}$  lies in protected space as it should









### Outlook

