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Plan PEPS & bicategories

understand MPO symmetries of string-net PEPS through TFT

Motivation:

w= description of string-net PEPS with boundary

allowing e.g. for calculation of error thresholds for error-correcting codes
based on string nets with boundary

= mapping of PEPS to critical system via “strange correlator”
allowing e.g. for understanding various CFT structures directly on the lattice

—n 2/2?



Plan PEPS & bicategories

understand MPO symmetries of string-net PEPS through TFT

Plan:

w= reminder about PEPS and MPO

= from MPO symmetries to fusion categories and bimodule categories

w= invertible case : a 2-object bicategory / 2-Morita context in fusion categories

== explanation in terms of state-sum topological field theory

work in progress with Jutho Haegeman
& Laurens Lootens
& Christoph Schweigert
& Frank Verstraete
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Matrix product states PEPS & bicategories

Warmup: MPS

w= efficient approximation to ground states of local gapped Hamiltonians for 1-d lattices

= element of ?—Lﬁg for system with N sites
d . . .
= [¥(A)) = > Tr(ATTATZ ... AIN) |G1)|j2) - - - i)
J15J25-+JN

assuming periodic boundary conditions and translational invariance
A D X D X d-tensor

J
(A7) pq

D = ‘virtual dimension’

— Aqu
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Matrix product states PEPS & bicategories

Warmup: MPS

=

=

=

efficient approximation to ground states of local gapped Hamiltonians for 1-d lattices
element of ?—Lg’lg for system with N sites
d . . .
[W(A) = > T(ATLAIZ...AIN) |j1)]j2) - - - iN)
J15J25-+JN

diagrammatically:

1Y (A)) =

J1i

J2

JN
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Matrix product states PEPS & bicategories

Warmup: MPS

w= efficient approximation to ground states of local gapped Hamiltonians for 1-d lattices

= element of ?—Lg%g for system with N sites

d
= ¥ (A)) = > Tr(ATLAZ ... AIN) |j1)]j2) - - |iN)

J1:J25--3dN

NB : fundamental theorem of MPS
= injective MPS: { A7 |j=1,2,...,d} generate full D?-dim matrix algebra

w |P(A)) = [¢(B)) forinjective MPS based on tensors A and B

— |1 XAr=€¢’1BXr
| |

i.e. A and B related up to phase by a virtual gauge transformation
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Matrix product states PEPS & bicategories

i alternative prescription:

~ at each site place two D-dim degrees of freedom with on.n.basis {|z) } :
D D D D D D D D
® o ® o ® O ® O
J1 J2 J3 J4
~ maximally entangle all pairs of qudits on neighboring sites : D
projectonto |ar) := > |i)]i)
i=1

) (o] |a)(a] Ja){a] |a)(a]l |a){c]
J1 J2 J3 Ja

~ act on the pair of qudits at each site with linearmap f,: CP @ CP — €4

J1 J2 J3 J4
—> realizethe MPS |y (A)) as projected entangled pair state
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Projected entangled pair states PEPS & bicategories

w= inshort: an MPS is a projected entangled pair state

—p 5/2?



Projected entangled pair states PEPS & bicategories

= inshort: an MPS isa PEPS
s Virtue: generalizes rather directly to any dimension

(term PEPS usually reserved for 2-d case)
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Projected entangled pair states PEPS & bicategories

= inshort: an MPS isa PEPS
s Virtue: generalizes rather directly to any dimension

s concretelyin d = 2

w= alternatively via PEPS tensor A with 1 physical leg and n virtual legs
analogous to standard description of MPS

—p 5/2?



Projected entangled pair states PEPS & bicategories

= inshort: an MPS isa PEPS
s Virtue: generalizes rather directly to any dimension

s concretelyin d = 2

w= alternatively via PEPS tensor A with 1 physical leg and n virtual legs

VARV VIRV

| | | |

[l

~ e.g. for n = 4:

A

|

A

|

A

|

A

_

[l
[l
[l
[l

~ from now oninstead: n =3 (hexagonal lattice)
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Matrix product operators PEPS & bicategories

ww properties of PEPS wave function [¢(A))
for ground states of string-net models <+—

symmetries of the PEPS tensor A

s> can realize such symmetries through matrix product operators (MPO) B

associated with defect lines .
in the lattice of PEPS tensors: /

]

|

-

]

Lol

|

[

2V

[

=
L

[%_Oj
!

SCHUCH-CIRAC-PEREZ-GARCIA 2010

BUERSCHAPER 2014

SAHINOGLU-WILLIAMSON-BULTINCK-MARIEN-HAEGEMAN-SCHUCH-VERSTRAETE P2014

BULTINCK-MARIEN-WILLIAMSON-

SAHINOGLU-HAEGEMAN-VERSTRAETE 2017
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Matrix product operators PEPS & bicategories

properties of PEPS wave function [¢(A))
for ground states of string-net models <+— symmetries of the PEPS tensor A

can realize such symmetries through matrix product operators (MPO) B
associated with defect lines f f o

in the lattice of PEPS tensors: 7/ r/ r/ J\
T | L

]

.

[

Loy

[

=
L

]

involves MPO tensor B with two external (defect) and two internal legs so that

NB: taking de = d instead of de = D ]
allows for alternative use of MPO as operator on an MPS (hence name)

D
B — Z Tr(Bili{L...B'i’ni;z,)|i1...in><fi§_...ri”n| i1 da ... ip

(S
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’ : 1
MPO rep’s of fusion categories PEPS & bicategories

L
|

b
T

i abbreviated notation:
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’ : 1
MPO rep’s of fusion categories PEPS & bicategories

=

=

=

=

abbreviated notation: <+>

consider simultaneously whole family of MPO tensors B, labeled by “a”

B, and B, canbe fused by concatenation of external legs of B, and By

invoke MPO injectivity / fundamental theorem of MPO

~» decomposition

=2

described by fusion tensor X ;™
—a

C->-1m
S}
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’ : 1
MPO rep’s of fusion categories PEPS & bicategories

i abbreviated notation: <+>
a

w= consider simultaneously whole family of MPO tensors B, labeled by “a
= B, and B, canbe fused by concatenation of external legs of B, and By

= invoke MPO injectivity / fundamental theorem of MPO

» 1T T C
~» decomposition } t = ZNgb —t— e —t*—
C

described by fusion tensor X ;™

Interpretation: fusion category C with simple objects labeled by a
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’ : 1
MPO rep’s of fusion categories PEPS & bicategories

i abbreviated notation: <+>
a

w= consider simultaneously whole family of MPO tensors B, labeled by “a
= B, and B, canbe fused by concatenation of external legs of B, and By

= invoke MPO injectivity / fundamental theorem of MPO

. 1T T C
~» decomposition ' - ZNgb —t— S —t*—
C

described by fusion tensor X ;™

Interpretation: fusion category C
with associativity of fusion encoded in 6j symbols °F of C :

o5, o

d— k ) — Z (Ongc)f,mn d=—n /b

c,gk .
fim,n m
\c , f \C
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’ : 1
MPO rep’s of fusion categories PEPS & bicategories

i abbreviated notation: <+>
a

w= consider simultaneously whole family of MPO tensors B, labeled by “a
= B, and B, canbe fused by concatenation of external legs of B, and By

= invoke MPO injectivity / fundamental theorem of MPO

- N C
~» decomposition t r = ZNgb —t— e —t*—
C

described by fusion tensor X ;™

More general interpretation: MPO representation of a fusion category C
with associativity of fusion encoded in recoupling identity

o5, o

i = 5 eyt denl
\ c faman f - c

for fusion tensor X
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’ : 1
MPO rep’s of fusion categories PEPS & bicategories

i abbreviated notation: <+>
a

w= consider simultaneously whole family of MPO tensors B, labeled by “a
= B, and B, canbe fused by concatenation of external legs of B, and By

= invoke MPO injectivity / fundamental theorem of MPO

- N C
~» decomposition t r = ZNgb —t— e —t*—
C

described by fusion tensor X ;™

More general interpretation: MPO representation of a fusion category C

‘ to be explained ' — Fis—
for fusion tensor X

—n 7/2?



PEPS rep’s of fusion categories

PEPS & bicategories

= consider PEPS description
of ground states of string-net models on honeycomb lattice

BUERSCHAPER-AGUADO-VIDAL 2009
GU-LEVIN-SWINGLE-WEN 2009

and allow for spherical fusion categories with arbitrary fusion multiplicities

—pn 8/2?



PEPS rep’s of fusion categories

= consider PEPS description
of ground states of string-net models on honeycomb lattice

= amounts to realization (AOéQ,j) (CBB,n)

o N4
\k/ = A ; B
1 l
Y m
i
of PEPS tensor (AyB,m)
with physical leg (aB3+, k) (sticking out of screen)
and three virtual legs (AaC, j)
(CBB,n)
(AvB, m)

multiplicity label

PEPS & bicategories

—pn 8/2?



PEPS rep’s of fusion categories

PEPS & bicategories

= consider PEPS description
of ground states of string-net models on honeycomb lattice

= amounts to realization (AOéQ,j) (CBB,n)

o N2
\k/ = A ; B
1 l
v m
|
Interpretation : (AyB,m)

fusion category D with simple objects labeled by «, 3, ..., A, B, ...
and morphisms j € Homp(A® o, C)
n € Homp(C Q 3, B)
m € Homp(AQ ~v, B)

with PEPS tensor as 6j-symbol “F of D k € Homp(a® 3,7)

—pn 8/2?



PEPS rep’s of fusion categories

PEPS & bicategories

= consider PEPS description
of ground states of string-net models on honeycomb lattice

= amounts to realization (AOéQ,j) (CBB,n)

o f N
\k/ = A ; B
f Y
v m
v
Interpretation : (AyB,m)

fusion category D with simple objects labeled by «, 3, ..., A, B, ...
and morphisms j € Homp(AR a, C)
n € Homp(C Q 3, B)

\/ / m omp (A
\ = 4Faﬁ'y v,jk / © Homp(4©7, B)

k € Hom’D(a ®:87 7)

f u,mn
, 1ML, M

{
5 )
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PEPS rep’s of fusion categories

PEPS & bicategories

= consider PEPS description
of ground states of string-net models on honeycomb lattice

== amounts to realization (Aozg,j) (CﬁB,n)
:-’;—7'\(_1/7_1::
a  f N
k
\k/ = A B
f gl
fy ~m'
v
More general interpretation: (AyB,m)

fusion category D with simple objects labeled by «, 3, ...
together with a “PEPS realization” of D

with «

\\\ / /
4F§‘ﬁ'7 v,jk ,u as recoupling identity

n
“”m” | for PEPS tensor
)

f,m n

—n 9/2?



PEPS module category PEPS & bicategories

= consider PEPS description
of ground states of string-net models on honeycomb lattice

= amounts to realization (AOéQ,j) (CBB,n)

o I

k
\k/ = A B
1 l
fy ~m'
v
More general interpretation: (AyB,m)

fusion category D with simple objects labeled by «, 3, ...

together with right D - module category M with simple objects labeled by A, B, ...
(“quantum subgroup”)

—n 10/?2?



PEPS module category PEPS & bicategories

= consider PEPS description
of ground states of string-net models on honeycomb lattice

= amounts to realization (AOéQ,j) (CBB,n)

o I

k
\k/ = A B
1 l
fy ~m'
v
More general interpretation: (AyB,m)

fusion category D with simple objects labeled by «, 3, ...
together with right D - module category M with simple objects labeled by A, B, ...
and morphisms 5 € Homaq (A<, C)
n € Homa (C <3, B)
m € Homaq (A<, B)

k € HOHI'D(OL ®/87 '7)

—n 10/?2?



PEPS module category PEPS & bicategories

= recoupling identity for PEPS tensor — PEPS tensor is module 6j-symbol °F

= module 6j-symbol °F expresses isomorphism (A <a) <3 =5 A4 (a®P):

A 87 6 A Q 6
P %
_ AaB\v,mn m
C]L o Z (3F )g,ak /’y
| Y1, M n
B B

w= recoupling identity for PEPS tensor then reads explicitly

9 A 9 A 6 A5 9
> CFE ) CEs™ ) Sht = > CF™) Gl CFB° ) fran, (CEEPN) TP
o d,rst

—> IS mixed pentagon identity

stating the equality of two distinguished isomorphisms

(Ada)<B) 4y — Ad(a® (BR7))

—pn 11/22



PEPS/MPO module category PEPS & bicategories

w= recall: also arecoupling identity for MPO fusion tensor

which is now realized as

a
c-.-m/ = (cCA,n)=n—+m @

»~b Uk = (bCB, k)

—p 12/22



PEPS/MPO module category PEPS & bicategories

w= recall: also arecoupling identity for MPO fusion tensor

rr interpretation:
M also has structure of a left module category over the fusion category C
and MPO fusion tensor is module 6j-symbol F

= module 6j-symbol 'F describes isomorphism (a ® b) > A =% ap (b>A)

a b A a b A

N N
J

Rk — Z (1F bA)(::Jk o

C,m,n |

B B

= recoupling identity for MPO tensor reads explicitly

Z (1chA)§:l?:;s(1F%bC)f’,pq _ Z (OFabc)zc,Zsl (1FaJA)£Si’:IgL (1FchA)JCj’r?:p
o j,rst

— IS mixed pentagon identity
stating the equality of two distinguished isomorphisms

(a®b)Rc)> A =, ab (b>(c>A))

—p 12/22



PEPS/MPO bimodule category PEPS & bicategories

w= still lacking : interpretation of MPO tensor

which is now realized as ]

(87

—p 13/?2?2



PEPS/MPO bimodule category PEPS & bicategories

w= still lacking : interpretation of MPO tensor

= not yet used: MPO tensor satisfies two further consistency conditions:

: - a o
~~ zipper condition : C m — Cc>—m |

location of fusion process on the lattice does not matter

—p 13/?2?2



PEPS/MPO bimodule category PEPS & bicategories

w= still lacking : interpretation of MPO tensor

= not yet used: MPO tensor satisfies two further consistency conditions:

a T a
~~ zipper condition : C m — Cc>—m |
)} o
& b« p
~~ pulling-through condition —
A
Y Y

MPOs pass freely through lattice of PEPS tensors

(can be interpreted as
RG transformation for scale invariant MPQOs )

—p 13/?2?2



PEPS/MPO bimodule category PEPS & bicategories

w= still lacking : interpretation of MPO tensor

= not yet used: MPO tensor satisfies two further consistency conditions:

: - a o
~~ zipper condition : C m — Cc>—m |

o B o« P
~~ pulling-through condition — 4
A
Y Y

Interpretation: M isinfacta bimodule category

= MPO tensor is bimodule 6j-symbol “F
expressing isomorphism ap> (A <) = (a>A)da

a A « a A o
~ i
o/ D,mn TD
C]L: — Z (2F%Aa)c:jk

mn
| D,m,n |
B B

—p 13/?2?2



PEPS/MPO bimodule category PEPS & bicategories

w= still lacking : interpretation of MPO tensor

= not yet used: MPO tensor satisfies two further consistency conditions:

: - a o
~~ zipper condition : C m — Cc>—m |

o B o« P
~~ pulling-through condition — 4
A
Y Y

Interpretation: M isinfacta bimodule category
= MPO tensor is bimodule 6j-symbol “F
= zipper and pulling-through conditions are mixed pentagon equations

Z(zFan)D nO(lFabD)E,pq _ Z(lFabA)F , TS (2FaFa)E ,tq (2FbAa)D,np
C,lm f,ko

Ikl C,sm E F,rt
o F,rst
SPGB CRE ) ERS = Y (R S (R B, (R
o F,rst

for ((a®b)>A)<d =, ab>(b>(A<da)) / ((abA)<da)<di = ab (A< (a®B))

—p 13/?2?2



PEPS/MPO bicategory PEPS & bicategories

Summary:

PEPS, MPO and MPO fusion tensors and their consistency relations amount to

ww a fusion category C 4 afusion category D 4+ a C-D-bimodule category M

= identifications

right module constraint
bimodule constraint
left module constraint

= [dentifications
pentagon identity for C
left module mixed pentagon
bimodule mixed pentagon 1
bimodule mixed pentagon 2
right module mixed pentagon
pentagon identity for D

“00=000"
“11=011"
21 =122"
“32=223"
‘33 =334"
“44 =444"

S«
P +— MPO tensor
I «—s  MPO fusion tensor

PEPS tensor

[T

recoupling MPO fusion tensor
zipper condition
pulling-through condition
recoupling PEPS tensor
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PEPS/MPO bicategory PEPS & bicategories

Summary:
PEPS, MPO and MPO fusion tensors and their consistency relations amount to

ww a fusion category C 4 afusion category D 4+ a C-D-bimodule category M

= [dentifications
right module constraint  °F <«+—  PEPS tensor
bimodule constraint “F <+—  MPO tensor
left module constraint  F «+—  MPO fusion tensor

= identifications of pentagon identities

a string-net PEPS satisfying a D -type recoupling condition
has C-type MPO symmetries
iff there exists a compatible C-D-bimodule category M

—n 14/?22



PEPS/MPO bicategory PEPS & bicategories

Summary:
PEPS, MPO and MPO fusion tensors and their consistency relations amount to

w= a fusion category C + a fusion category D + a C-D-bimodule category M
w= identifications
right module constraint  °F <«+—  PEPS tensor
bimodule constraint  “F <«—  MPO tensor
left module constraint  'F  «<—  MPO fusion tensor
Special case: M invertible bimodule category

as is arguably required for MPO injectivity

—n 14/?22



PEPS/MPO bicategory PEPS & bicategories

Summary:
PEPS, MPO and MPO fusion tensors and their consistency relations amount to

ww a fusion category C 4 afusion category D 4+ a C-D-bimodule category M

= [dentifications
right module constraint  °F <«+—  PEPS tensor
bimodule constraint “F <+—  MPO tensor
left module constraint  F «+—  MPO fusion tensor

Special case: M invertible bimodule category

— data fit into 2-Morita context (or: 2-object bicategory)

in particular: D = Cyy = Fung(M, M) and Z(D) ~ Z(C)

—n 14/?22



PEPS/MPO from TFT PEPS & bicategories

Tensor network data:

=

=

=

=

PEPS tensor A and MPO tensor B

oriented surface 3 with cell decomposition A
for concreteness: A = honeycomb lattice

space H associated to physicallegof A: H = f Homp(a®fB,7)
a,B,velp
space associated to surface 3 : Hy, = (X) H (acopy of # ateach vertex)

vEAQ

depends on cell decomposition

—pn 15/2?2



PEPS/MPO from TFT PEPS & bicategories

Tensor network data:

w PEPStensor A and MPO tensor B

= oriented surface 3 with cell decomposition A
for concreteness: A = honeycomb lattice

v space H associated to physicallegof A: # = H Homp(a®pS,7)
a,B,velp
w space associated to surface X : Hy = (X) H (acopyof H ateach vertex)
vEAQ

= protected space HE C Hy
obtained by contracting the virtual legs of the PEPS tensors along the edges of A

does not depend on cell decomposition

—pn 15/2?2



PEPS/MPO from TFT PEPS & bicategories

Tensor network data:

=

=

PEPS tensor A and MPO tensor B

oriented surface 3 with cell decomposition A
for concreteness: A = honeycomb lattice

space H associated to physicallegof A: H = EB Homp(a® B, ~)
o,B,vyelp
space associated to surface ¥ : Hy = ® H (acopyof H ateach vertex)
vEAQ
protected space HY C Hx

obtained by contracting the virtual legs of the PEPS tensors along the edges of A

Goal:

=

obtain subspace H%. by a Turaev-Viro state-sum construction

= recover the PEPS/MPO bicategory from that construction

—pn 15/2?2



PEPS/MPO from TFT PEPS & bicategories

Tensor network data:

=

=

PEPS tensor A and MPO tensor B

oriented surface 3 with cell decomposition A
for concreteness: A = honeycomb lattice

space # associated to physicallegof A: H = (P Homp(a®p3,7)
o,B,v€lp

space associated to surface 3 : Hy, = (X) H (acopy of # ateach vertex)
vEAQ

protected space HY C Hx
obtained by contracting the virtual legs of the PEPS tensors along the edges of A

Goal:

=

obtain subspace H%. by a Turaev-Viro state-sum construction

similar to 1-dim case KAPUSTIN-TURZILLO-YOU 2017
and M =D-case Luo-LAKE-WU 2017

—pn 15/2?2



State sum construction PEPS & bicategories

Strategy -
s> [uraev-Viro TFT associated with spherical fusion category D
assigns to 3-manifold M alinearmap T-V(M): T-V(0_M) — T-V(0L M)

w in particular for M = My, with _ M5 =0
and 04 My, = X alinearmap C — T-V(X)
and hence T-V(M).1 € T-V(X)
== show thatinfact T-V(M).1 = |¢(A))

— explicit construction of -V on My, provides a construction of %

Prescription for 3-manifold M::
= 3-manifold: cylinder My := X x [0, 1]
geometric boundary: OMy = X x {0} U X x {1}

w take 3 X {0} tobe a physical boundary (“brane boundary”)
and X x {1} to be a gluing boundary ( microscopic degrees of freedom)
—> M, of desired form

—n 16/??



State sum construction PEPS & bicategories

State sum variables:

= fix a skeleton P for My not having vertices or edges on > x {1}

—n 17/?22



State sum construction

PEPS & bicategories

State sum variables:
ww fix a skeleton P for Ms;

== for convenience take P to consist of prisms matching A :

¥ x {1}

¥ x {0}

_),i;/_

(but results do not depend on choice of skeleton)

—n 17/?22



State sum construction

PEPS & bicategories

State sum variables:
ww fix a skeleton P for Ms;

== for convenience take P to consist of prisms matching A :

¥ x {1}

¥ x {0}

= o il
A

w= attach state-sum variables «, 3, ~, ... € I to the plaquettes of P in interior

and state-sum variables A, B, C, ... € Ix4 to the plaquettes of P on 3 x {0}

—n 17/?22



State sum construction

PEPS & bicategories

State sum variables:
ww fix a skeleton P for Ms;

== for convenience take P to consist of prisms matching A :

¥ x {1}
ﬂ
/ A(-. %0
— )
) / Qv eou /8
/C: o \
= attach state-sum variables o, 3,~, ... € Ip 1+ P
. e
and state-sum variables A, B, C, ... € In_p>——2 =0 S B

—n 17/?22



State sum construction PEPS & bicategories

Vector spaces:

= to every edge e € P associate vector space He = V, ® V' (two half-edges)
~ for edge in interior of M. :
Ve = Homp(a®pB,v) and VS =Homp(a®B,7v)"
= Homop (v, ® B)

—n 18/?2



State sum construction PEPS & bicategories

Vector spaces:

= to every edge e € P associate vector space He = V, ® V' (two half-edges)

~ for edge in interior of M. :
Ve =Homp(a®pB,v) and V. =Homp(a®pB,v)"
~ for edge on 3 x {0}:
V, = Homap(A<~,B) and VS = Homa(A~y,B)"
>~ Hompaq (B, A7)

Ar]

T f}/
( ¢ R
* =
Veo( D )
= €9 d
€1
( A

—n 18/?2




State sum construction PEPS & bicategories

Vector spaces:

= to every edge e € P associate vector space He = V, ® V' (two half-edges)

~ for edge in interior of M. :

V, = Homp(a®3,v) and V) = Homp(a®S3,~)*
~ foredgeon 3 x {0}:

V, = Homap(A<~,B) and VS = Homa(A~y,B)"

= to M. with skeleton P associate vector space Vp = ® He

ecP
A‘]

R

— |7
<>
Ve};(a)
=— €2 +
€1
<

—n 18/?2




State sum construction PEPS & bicategories

Vector spaces:

= to every edge e € P associate vector space He = V, ® V' (two half-edges)
~ for edge in interior of M. :
Ve = Homp(a®pB,v) and VS =Homp(a®B,7v)"
~ for edge on 3 x {0}:
V., = Homa(A<~vy,B) and V) = Homaq(Ad~,B)"

= to M with skeleton P associate vector space Vp = ® He
ecP

Canonical vectors:

w for each edge e € P canonical vector ve = » b; ®b* € V,Q V'

independent of choice of bases {b;} and {b*}

w thus canonical vector | vp = (X) ve € Vp
ecP

—p 19/22



State sum construction PEPS & bicategories

Evaluation map:
w= at every vertex v of P have evaluation map ev,

introduced by Turaev & Virelizier in absence of physical boundary
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State sum construction PEPS & bicategories

Evaluation map:
w= at every vertex v of P have evaluation map ev,

~ draw closed ball B,, around v
~ intersection of B, gives graph I, on 9B,

~~ every edge of T,
L . -
inherits object label from plaquette \' 3

~ every vertex of T,

«
i
inherits vector space label from half-edge -

\//’"
B
= evaluate T, (/':4 \*_,\ )
according to T-V’ rules
of state-sum TFT C

specifically :

—

B
Aitq
a
|
I
[/
\
oy
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State sum construction PEPS & bicategories

Evaluation map:

w= at every vertex v of P have evaluation map ev,

~ draw closed ball B,, around v
~ intersection of B, gives graph I, on 9B,

~~ every edge of T,
inherits object label from plaquette

-~
B

~ every vertex of T,

«
i
inherits vector space label from half-edge -
O/{ ™ \

- B
== evaluate I, (/‘:—4 \_\) )
C

according to T-V’ rules
of state-sum TFT

7 C ' n

TN N

by inspection: ~ AN )
T

SN

S = =

—n 20/??



State sum construction PEPS & bicategories

Evaluation map:
w= at every vertex v of P have evaluation map ev,

~ draw closed ball B,, around v
~ intersection of B, gives graph I, on 9B,

~~ every edge of T,
inherits object label from plaquette

~ every vertex of T,

A

’Y

inherits vector space label from half-edge (

evaluate T,

S

according to T-V’ rules

of state-sum TFT

specifically :

—n 20/??



State sum construction PEPS & bicategories

Perform evaluation:

= eV, is mapfrom (X) Ve for the half-edges incidentto v to C
e

eg. evy: Voo QV, ®V,Q®V,, — C incase of

—p 21/22



State sum construction PEPS & bicategories

Perform evaluation:

= eV, is mapfrom (X) Ve for the half-edges incidentto v to C
e

= combine the evaluations for all vertices of P to get linear map

evp = R evo: Vp = X)) Ve

veEP e ending on
gluing bdy
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State sum construction PEPS & bicategories

Perform evaluation:

= eV, is mapfrom (X) Ve for the half-edges incidentto v to C
e

= combine the evaluations for all vertices of P to get linear map

evp = QR eve: Vp = X)) Ve = Hy

veEP e ending on
gluing bdy
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State sum construction PEPS & bicategories

Perform evaluation:

= eV, is mapfrom (X) Ve for the half-edges incidentto v to C
e

= combine the evaluations for all vertices of P to get linear map

veP

eVp = ® eVy ¢

Vp = X Ve = Hy
e ending on
gluing bdy

wwr finally :

apply evaluation map evp to canonical vector vp

by inspection: | evp(vp) = PEPSp am

i note:

by construction evp (vp) liesin TV(Z) = HZ

so PEPSp, a4 lies in protected space as it should

—p 21/22



Boundary Wilson lines PEPS & bicategories

Generalization : physical boundary containing Wilson lines

w=» boundary Wilson line €2 separates regions with boundary conditions M1 & M2
—> €2 is object in functor category Funp (M1, M2)

/)

ww My, looks locally as

>L,4/ Ari By € Inn,

A2, Bs € IM2
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Boundary Wilson lines PEPS & bicategories

Generalization : physical boundary containing Wilson lines

w=» boundary Wilson line €2 separates regions with boundary conditions M1 & M2
—> €2 is object in functor category Funp (M1, M2)

/)

ww My, looks locally as

VA, B,/

y
& B~
/]

-142/ \‘B2
. . a (07
s> @gain evaluation map Q

; B;7 | g

2\

= L
N 0
| A0
Vo B
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Boundary Wilson lines PEPS & bicategories

Generalization : physical boundary containing Wilson lines

w=» boundary Wilson line €2 separates regions with boundary conditions M1 & M2
—> €2 is object in functor category Funp (M1, M2)

/)

ww My, looks locally as

. _
| A

il Bi «

By
g\_ directly in special cases

By

i can evaluate resulting graph [

Ay

—p 22/292



Boundary Wilson lines PEPS & bicategories

Generalization : physical boundary containing Wilson lines

w=» boundary Wilson line €2 separates regions with boundary conditions M1 & M2
—> €2 is object in functor category Funp (M1, M2)

/)

ww My, looks locally as

. _
| A

/A B
= specialcase: M =M =Mz — Funp(M, M) =D, =C
— geta 2F symbol (i.e. MPO tensor)
= specialcase: M1 =D & M2 =M — Funp(D,M) =M
— geta °F symbol

—p 22/292



Outlook PEPS & bicategories

Outlook:

= general boundary Wilson lines
using input from module Eilenberg-Watts calculus

== describe excitations (in Z(D))

= e.0. keep promises

—p 23/?22
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