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1.1 Lie algebras and exterior algebras
A Lie algebra g is a vector space endowed with a Lie bracket, an
operation [, ] : g ∧ g→ g satisfying the Jacobi identity:

[x , [y , z ]] + [y , [z , x ]] + [z , [x , y ]] = 0 ∀x , y , z ∈ g

A differential graded algebra A is a graded algebra plus a degree 1
differential d : A→ A satisfying d2 = 0 and Leibniz:

d(a · b) = d(a) · b + (−1)|a|a · d(b)

A Gerstenhaber algebra B is a graded-commutative algebra with a degree
-1 Lie bracket satisfying the Poisson identity:

{a, b · c} = {a, b} · c + (−1)(|a|−1)|b|b · {a, c}

Proposition: Given V a vector space, the following are equivalent:

• a Lie bracket [, ] : V ∧ V → V

• a differential d : Λ•V ∗ → Λ•V ∗

• a Gerstenhaber bracket {, } : Λ•V ∧ Λ•V → Λ•V
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1.2 Lie bialgebras
A Lie bialgebra (g, g∗) consists of a vector space g and Lie algebra
structures on g, g∗ which are compatible (best seen in Λ•g∗):

d{a, b} = {d(a), b}+ (−1)|a|{a, d(b)}

I Equivalent formulation: dg∗ is 1-cocycle on C•ad(g, g⊗ g)

I Denoting x . φ for the coadjoint representation, we have:

〈[φ, ψ], [x , y ]〉 =− 〈x . ψ, φ . y〉+ 〈x . φ, ψ . y〉
+ 〈y . ψ, φ . x〉 − 〈y . φ, ψ . x〉

I If (g, g∗) is Lie bialgebra, then so does (g∗, g)

Example: sl(2,R)
H =

[
1 0
0 −1

]
, X+ =

[
0 1
0 0

]
, X− =

[
0 0
1 0

]
,

[H,X±] = ±2X± [X+,X−] = H δ(H) = 0 δ(X±) = X± ∧ H
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1.3 Manin triple, Drinfeld double and matched pairs

A Manin triple consists of a Lie bialgebra g with:

I an invariant non-degenerate symmetric bilinear form 〈, 〉 on g, and

I isotropic subalgebras p, q ⊂ g such that g = p ⊕ q.

Given (g, g∗) a Lie bialgebra, its Drinfeld double g⊕ g∗ is a Manin triple:

[x ⊕ φ, y ⊕ ψ] = ([x , y ] + φ . y − ψ . x)⊕ ([φ, ψ] + y . φ− x . ψ)

Proposition: Lie bialgebras ⇐⇒
Drinfeld double

Manin triples

A matched pair consists of Lie algebras (g,m) and actions m x g, m y g

φ . [x , y ] = [φ . x , y ] + [x , φ . y ] + (φ / x) . y − (φ / y) . x

[φ, ψ] / x = [φ / x , ψ] + [φ, ψ / x ] + φ / (ψ . x)− ψ / (φ . x)

Proposition: g, g∗ Lie algebras are bialgebra iff they form a matched pair
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1.4 Linear Poisson structures

Given V a vector space, a linear Poisson structure
{, } : C∞(V )× C∞(V )→ C∞(V ) is a Poisson bracket (Lie+Leibniz) for
which linear functions are closed under bracket.

{`ξ, `η} = `[ξ,η]

Characterization: {, } linear ⇐⇒ (T ∗V → V ∗)
π#

−−→ (TV → ∗) linear
Proposition: (V , {, }) linear Poisson ⇐⇒ (V ∗, [, ]) Lie algebra

Straightforward extension to vector bundles V → M, linear Poisson
structures and Lie algebroids (A, [, ], ρ : A→ TM):

{`α, `β} = `[α,β] {`α, π∗(f )} = ρ(α)(f ) {π∗(f ), π∗(g)} = 0

Proposition: A Poisson structure π on a Lie algebra g defines a Lie
bialgebra iff π# is a Lie algebroid morphism

(T ∗g⇒ g∗)
π#

−−→ (Tg⇒ ∗)
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1.5 Integration of Lie bialgebras

A Poisson group (G , π) is a Lie group coupled with a Poisson structure π
on G that is multiplicative, meaning that (tfae):

I m : G × G → G is Poisson

I m ⊂ G × G × Ḡ coisotropic

I (T ∗G ⇒ g∗)
π#

−−→ (TG ⇒ ∗) Lie groupoid morphism

Theorem (Drinfeld)
Any Lie bialgebra (g, πg) integrates to a Poisson group (G , πG ).
If G simply connected, there is a 1-1 correspondence between Poisson
structures in G and g.

I (Alt) Proof: Use Lie2 to integrate (T ∗g⇒ g∗)
π#

−−→ (Tg⇒ ∗)

I Theory naturally extends to correspondence between Poisson
groupoids and Lie bialgebroids (Weinstein, Mackenzie, Xu).
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2.1 2-vector spaces

A 2-vector space V = (V1 ⇒ V0) is a groupoid object in vector spaces:

I V1,V0 vector spaces (over R, dim <∞)

I s, t : V1 → V0 source and target linear maps

I a linear multiplication m : V1 ×V0 V1 → V1 admitting unit
u : V0 → V1 and inverse i : V1 → V1

Proposition: A 2-vector space V is the same as a 2-term complex:

2vect ∼=
Dold−Kan

Ch1,0(R)

ker s = V ′1
t−→ V0 V = (V ′1 n V0 ⇒ V0)

(Shifted) Duality: Given V a 2-vector space, its dual V ∗ is

V ∗ = Hom(V ,R[1]), it corresponds via Dold-Kan to V ∗0
t∗−→ (V ′1)∗.
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2.2 Tensor products

I 2-vector spaces are simplicial vector spaces and chain complexes

I both simplicial vector spaces and chain complexes have natural ⊗
I None of them restricts to 2-vector spaces! (mistake in literature)

Example:
(R⇒ ∗) is a 2-vector space. Its nerve is the simplicial vector space
NRk = Rk . The levelwise tensor product NR⊗ NR is a well-defined
simplicial vector space. But it does not satisfy the ! horn-filling condition

•
1⊗0

		
0

• •

0⊗1
hh

0
oo

•
1⊗0

		
(1,0)⊗(0,1)

• •

0⊗1
hh

1⊗1
oo

To define 2-algebras we need to deal with bilinearity.
But the category of 2vect is not a monoidal category...
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2.3 Lie 2-algebras and crossed modules

A Lie 2-algebra g = (g1 ⇒ g0) is a groupoid object in Lie algebras:

I g1, g0 Lie algebras (over R, dim <∞)

I s, t : g1 → g0 source and target morphisms

I a multiplication morphism m : g1 ×g0 g1 → g1 admitting unit
u : g0 → g1 and inverse i : g1 → g1

Given a Lie 2-algebra g, the action g . ker s, v . c = [u(v), c] is by
derivations and satisfy for all v ∈ g and c ∈ ker s

a) t(v . c) = [v , t(c)] b) t(c1) . c2 = [c1, c2]

In particular, the bracket in g1 = ker s ⊕ g0 can be recovered from the

map ker s
t−→ g0 and the action g . ker s.

A pair (h
∂−→ g, g . h) of a Lie algebra morphism and an action by

derivations satisfying a) and b) is a Lie algebra crossed module.

Proposition: Lie 2-algebras ⇐⇒ Lie algebra crossed module
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2.4 Weil algebra perspective

V = V1 ⊕ V0 ∈ Gr(Vect). Its Weil algebra W (V ) = Λ•(V ∗0 )⊗ S•(V ∗1 )
has a bigrading |ξ| = (1, 0) for ξ ∈ V ∗0 and |µ| = (1, 1) for µ ∈ V ∗1 .

(W (V ), d) =

0 //

OO

0 //

OO

0 //

OO

S3V ∗1
//

OO

0 //

OO

0 //

OO

S2V ∗1
//

OO

S2V ∗1 ⊗ V ∗0
//

OO

0 //

OO

V ∗1
dh//

OO

dJ ++

V ∗1 ⊗ V ∗0
//

OO

V ∗1 ⊗ Λ2V ∗0
//

OO

R //

OO

V ∗0 dh

//
dv
OO

Λ2V ∗0
//

OO

Λ3V ∗0
//

OO

Proposition:
2-vector space ⇐⇒ (W (V ), dv ) ⇐⇒ (W (V ∗), dv )
Lie 2-algebra ⇐⇒ (W (V ), dv + dh) ⇐⇒ (W (V ∗), dv , {, })

weak Lie 2-algebra ⇐⇒ (W (V ), d) ⇐⇒ ...
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2.5 Integration to Lie 2-groups

2-vector spaces V are VB-groupoids / VB-algebroids over a point:

V1 ⇒ V0

↓ ↓
∗ ⇒ ∗

 
V1 ⇒ V0

↓ ↓
∗ ⇒ ∗

Lie 2-algebras g are LA-groupoids / double Lie algebroids over a point:

?  
g1 ⇒ g0
⇓ ⇓
∗ ⇒ ∗

 
g1 ⇒ g0
⇓ ⇓
∗ ⇒ ∗

A Lie 2-group is a groupoid object in Lie groups.

Proposition: Lie 2-groups ⇐⇒ Lie group crossed modules.

Theorem: Every Lie 2-algebra integrates to a Lie 2-group.

(Alt) Proof: Integrate vertically to get a group object in Lie algebroids.
The orbits are Lie groups, so they don’t have π2, no obstructions!
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3.1 Double vector bundles
A double vector bundle D consists of horizontal and vertical vector
bundle structures which are compatible, in the sense that mh

λ and mv
µ

commute ∀λ, µ ∈ R:
D → B
↓ C ↓
A → M

The core C → M is ker(D → B) ∩ ker(D → A).

Example
Given E → M a vector bundle, the tangent and cotanget:

TE → TM
↓ E ↓
E → M

T ∗E → E∗

↓ T ∗M ↓
E → M

Proposition: Every double vector bundle splits (though non-canonically)

D ∼= A⊕ B ⊕ C mv
λ(a, b, c) = (a, λb, λc) mh

µ(a, b, c) = (µa, b, µc)
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3.2 Duality and triality

D• → B
↓ A∗ ↓
C∗ → M

horizontal
 

dual

D → B
↓ C ↓
A → M

vertical
 
dual

D∗ → C∗

↓ B∗ ↓
A → M

Proposition: There is a non-degenerate pairing

fl(D∗)×C∗ D• → R 〈α, β〉 = 〈α, d〉 − 〈β, d〉

inducing an isomorphism D• ∼= fl(D∗)•

The group of dualizing operations for double vector bundles has order 6:

D 7→ D,D•,D∗,fl(D),fl(D•),fl(D∗)

For triple vector bundles this group was studied by Mackenzie,
Gracia-Saz, Metha, and it has order 96!
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3.3 Compatible Poisson structures
One Poisson str: VB-algebroids / double linear Poisson structure

D• ⇒ B
↓ A∗ ↓
C∗ ⇒ M

 
(D, π) → B
↓ C ↓
A → M

 
D∗ → C∗

⇓ B∗ ⇓
A → M

Two Poisson str: PVB-algebroids / double Lie algebroids

(D•, π) → B
⇓ A∗ ⇓
C∗ → M

 
D ⇒ B
⇓ C ⇓
A ⇒ M

 
(D∗, π) ⇒ C∗

↓ B∗ ↓
A ⇒ M

Three Poisson str: double Lie bialgebroids [BCdH, J. Geom. Mech. 2022]

(D•, π) ⇒ B
⇓ A∗ ⇓
C∗ ⇒ M

 
(D, π) ⇒ B
⇓ C ⇓
A ⇒ M

 
(D∗, π) ⇒ C∗

⇓ B∗ ⇓
A ⇒ M
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3.4 Main Theorems

Theorem (BCdH, J. Geom. Mech. 2022)
If (D, π) is a double Lie bialgebroid and π is symplectic then D ∼= T ∗A is
the cotangent of a Lie bialgebroid (Drinfeld double).

Theorem (BCdH, J. Geom. Mech. 2022)
Poisson double groupoids Σ (introduced by Mackenzie) differentiate to
double Lie bialgebroids Lie2(Σ).
Integration is possible under topological assumptions.

Theorem (Meinrenken-Pike, IMRN 2021)
Given a double vector bundle D, a double Lie bialgebroid structure on D
is the same as a pair (W (D), dh + dv , {}) where d = dh + dv is a
differential and {, } is a deg (−1,−1) bracket satisfying Leibniz.
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3.5 Application to Lie 2-bialgebra

A Lie 2-bialgebra is a Poisson LA-groupoid over a point:

(g1, π) ⇒ g0
⇓ ⇓
∗ ⇒ ∗

This gives a clean simple approach to the theory of Lie 2-bialgebras:

Thm: Lie 2-bialgebras can be described as crossed modules.

Thm: A Lie 2-bialgebra structure on V = (V1 ⇒ V0) is the same as a
differential and a Gerstenhaber bracket on W (V ) (⇒ connection with
L∞-algebra approach [Bai-Sheng-Zhu, Comm. Math. Phys. 2013])

Thm: Lie 2-bialgebras can be integrated to Poisson 2-groups.
[Chen-Stienon-Xu, J. Differential Geom. 2013]
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Thanks!
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