On double Lie bialgebroids

Matias del Hoyo (UFF)

based on joint work with H. Bursztyn (IMPA) and A. Cabrera (UFRJ)

Higher Structures and Field Theory ESI, Vienna, August 2022

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー のへで

Contents

1. Lie bialgebras

2. Lie 2-algebras

3. Lie 2-bialgebras

- 1.1 Lie algebras and exterior algebras
- 1.2 Lie bialgebras
- 1.3 Manin triple, Drinfeld double and matched pairs
- 1.4 Linear Poisson structures
- 1.5 Integration of Lie bialgebras

A *Lie algebra* \mathfrak{g} is a vector space endowed with a Lie bracket, an operation $[,]: \mathfrak{g} \land \mathfrak{g} \to \mathfrak{g}$ satisfying the *Jacobi* identity:

 $[x,[y,z]] + [y,[z,x]] + [z,[x,y]] = 0 \qquad \forall x,y,z \in \mathfrak{g}$

A *Lie algebra* \mathfrak{g} is a vector space endowed with a Lie bracket, an operation $[,]: \mathfrak{g} \land \mathfrak{g} \rightarrow \mathfrak{g}$ satisfying the *Jacobi* identity:

 $[x,[y,z]] + [y,[z,x]] + [z,[x,y]] = 0 \qquad \forall x,y,z \in \mathfrak{g}$

A differential graded algebra A is a graded algebra plus a degree 1 differential $d : A \rightarrow A$ satisfying $d^2 = 0$ and Leibniz:

$$d(a \cdot b) = d(a) \cdot b + (-1)^{|a|} a \cdot d(b)$$

A *Lie algebra* \mathfrak{g} is a vector space endowed with a Lie bracket, an operation $[,]: \mathfrak{g} \land \mathfrak{g} \rightarrow \mathfrak{g}$ satisfying the *Jacobi* identity:

 $[x,[y,z]] + [y,[z,x]] + [z,[x,y]] = 0 \qquad \forall x,y,z \in \mathfrak{g}$

A differential graded algebra A is a graded algebra plus a degree 1 differential $d : A \rightarrow A$ satisfying $d^2 = 0$ and Leibniz:

$$d(a \cdot b) = d(a) \cdot b + (-1)^{|a|} a \cdot d(b)$$

A *Gerstenhaber algebra* B is a graded-commutative algebra with a degree -1 Lie bracket satisfying the *Poisson identity*:

$$\{a, b \cdot c\} = \{a, b\} \cdot c + (-1)^{(|a|-1)|b|} b \cdot \{a, c\}$$

4 / 21

A *Lie algebra* \mathfrak{g} is a vector space endowed with a Lie bracket, an operation $[,]: \mathfrak{g} \land \mathfrak{g} \rightarrow \mathfrak{g}$ satisfying the *Jacobi* identity:

 $[x,[y,z]] + [y,[z,x]] + [z,[x,y]] = 0 \qquad \forall x,y,z \in \mathfrak{g}$

A differential graded algebra A is a graded algebra plus a degree 1 differential $d : A \rightarrow A$ satisfying $d^2 = 0$ and Leibniz:

$$d(a \cdot b) = d(a) \cdot b + (-1)^{|a|} a \cdot d(b)$$

A Gerstenhaber algebra B is a graded-commutative algebra with a degree -1 Lie bracket satisfying the *Poisson identity*:

$$\{a, b \cdot c\} = \{a, b\} \cdot c + (-1)^{(|a|-1)|b|} b \cdot \{a, c\}$$

Proposition: Given V a vector space, the following are equivalent:

- a Lie bracket $[,]: V \land V \to V$
- a differential $d: \Lambda^{\bullet}V^* \to \Lambda^{\bullet}V^*$
- a Gerstenhaber bracket $\{,\} : \Lambda^{\bullet} V \land \Lambda^{\bullet} V \to \Lambda^{\bullet} V$

イロン イロン イヨン イヨン 二日

A *Lie bialgebra* $(\mathfrak{g}, \mathfrak{g}^*)$ consists of a vector space \mathfrak{g} and Lie algebra structures on $\mathfrak{g}, \mathfrak{g}^*$ which are *compatible* (best seen in $\Lambda^{\bullet}\mathfrak{g}^*$):

```
d\{a,b\} = \{d(a),b\} + (-1)^{|a|}\{a,d(b)\}
```

A *Lie bialgebra* $(\mathfrak{g}, \mathfrak{g}^*)$ consists of a vector space \mathfrak{g} and Lie algebra structures on $\mathfrak{g}, \mathfrak{g}^*$ which are *compatible* (best seen in $\Lambda^{\bullet}\mathfrak{g}^*$):

$$d\{a,b\} = \{d(a),b\} + (-1)^{|a|}\{a,d(b)\}$$

▶ Equivalent formulation: $d_{\mathfrak{g}^*}$ is 1-cocycle on $C^{\bullet}_{ad}(\mathfrak{g}, \mathfrak{g} \otimes \mathfrak{g})$

A *Lie bialgebra* $(\mathfrak{g}, \mathfrak{g}^*)$ consists of a vector space \mathfrak{g} and Lie algebra structures on $\mathfrak{g}, \mathfrak{g}^*$ which are *compatible* (best seen in $\Lambda^{\bullet}\mathfrak{g}^*$):

$$d\{a,b\} = \{d(a),b\} + (-1)^{|a|}\{a,d(b)\}$$

▶ Equivalent formulation: $d_{\mathfrak{g}^*}$ is 1-cocycle on $C^{\bullet}_{ad}(\mathfrak{g}, \mathfrak{g} \otimes \mathfrak{g})$

• Denoting $x \triangleright \phi$ for the coadjoint representation, we have:

$$\begin{split} \langle [\phi, \psi], [\mathbf{x}, \mathbf{y}] \rangle &= - \langle \mathbf{x} \triangleright \psi, \phi \triangleright \mathbf{y} \rangle + \langle \mathbf{x} \triangleright \phi, \psi \triangleright \mathbf{y} \rangle \\ &+ \langle \mathbf{y} \triangleright \psi, \phi \triangleright \mathbf{x} \rangle - \langle \mathbf{y} \triangleright \phi, \psi \triangleright \mathbf{x} \rangle \end{split}$$

• If $(\mathfrak{g}, \mathfrak{g}^*)$ is Lie bialgebra, then so does $(\mathfrak{g}^*, \mathfrak{g})$

A *Lie bialgebra* $(\mathfrak{g}, \mathfrak{g}^*)$ consists of a vector space \mathfrak{g} and Lie algebra structures on $\mathfrak{g}, \mathfrak{g}^*$ which are *compatible* (best seen in $\Lambda^{\bullet}\mathfrak{g}^*$):

$$d\{a,b\} = \{d(a),b\} + (-1)^{|a|}\{a,d(b)\}$$

▶ Equivalent formulation: $d_{\mathfrak{g}^*}$ is 1-cocycle on $C^{\bullet}_{ad}(\mathfrak{g},\mathfrak{g}\otimes\mathfrak{g})$

• Denoting $x \triangleright \phi$ for the coadjoint representation, we have:

$$\begin{split} \langle [\phi, \psi], [\mathbf{x}, \mathbf{y}] \rangle &= - \langle \mathbf{x} \triangleright \psi, \phi \triangleright \mathbf{y} \rangle + \langle \mathbf{x} \triangleright \phi, \psi \triangleright \mathbf{y} \rangle \\ &+ \langle \mathbf{y} \triangleright \psi, \phi \triangleright \mathbf{x} \rangle - \langle \mathbf{y} \triangleright \phi, \psi \triangleright \mathbf{x} \rangle \end{split}$$

▶ If $(\mathfrak{g}, \mathfrak{g}^*)$ is Lie bialgebra, then so does $(\mathfrak{g}^*, \mathfrak{g})$

Example: $sl(2, \mathbb{R})$ $H = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, X^{+} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, X^{-} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix},$ $[H, X^{\pm}] = \pm 2X^{\pm} \quad [X^{+}, X^{-}] = H \qquad \delta(H) = 0 \quad \delta(X^{\pm}) = X^{\pm} \wedge H$

1.3 Manin triple, Drinfeld double and matched pairs

A Manin triple consists of a Lie bialgebra \mathfrak{g} with:

- \blacktriangleright an invariant non-degenerate symmetric bilinear form \langle,\rangle on $\mathfrak{g},$ and
- ▶ isotropic subalgebras $p, q \subset \mathfrak{g}$ such that $\mathfrak{g} = p \oplus q$.

1.3 Manin triple, Drinfeld double and matched pairs

A Manin triple consists of a Lie bialgebra \mathfrak{g} with:

- \blacktriangleright an invariant non-degenerate symmetric bilinear form \langle,\rangle on $\mathfrak{g},$ and
- ▶ isotropic subalgebras $p, q \subset g$ such that $g = p \oplus q$.

Given $(\mathfrak{g}, \mathfrak{g}^*)$ a Lie bialgebra, its *Drinfeld double* $\mathfrak{g} \oplus \mathfrak{g}^*$ is a Manin triple:

$$[x \oplus \phi, y \oplus \psi] = ([x, y] + \phi \triangleright y - \psi \triangleright x) \oplus ([\phi, \psi] + y \triangleright \phi - x \triangleright \psi)$$

 $\begin{array}{c} \textbf{Proposition: Lie bialgebras} & \longleftrightarrow \\ \text{Drinfeld double} & \text{Manin triples} \end{array}$

1.3 Manin triple, Drinfeld double and matched pairs

A Manin triple consists of a Lie bialgebra \mathfrak{g} with:

- \blacktriangleright an invariant non-degenerate symmetric bilinear form \langle,\rangle on $\mathfrak{g},$ and
- ▶ isotropic subalgebras $p, q \subset g$ such that $g = p \oplus q$.

Given $(\mathfrak{g}, \mathfrak{g}^*)$ a Lie bialgebra, its *Drinfeld double* $\mathfrak{g} \oplus \mathfrak{g}^*$ is a Manin triple:

$$[x \oplus \phi, y \oplus \psi] = ([x, y] + \phi \triangleright y - \psi \triangleright x) \oplus ([\phi, \psi] + y \triangleright \phi - x \triangleright \psi)$$

 $\begin{array}{c} \textbf{Proposition: Lie bialgebras} & \longleftrightarrow \\ \text{Drinfeld double} & \text{Manin triples} \end{array}$

A matched pair consists of Lie algebras $(\mathfrak{g},\mathfrak{m})$ and actions $\mathfrak{m} \curvearrowleft \mathfrak{g}$, $\mathfrak{m} \curvearrowright \mathfrak{g}$

$$\phi \triangleright [x, y] = [\phi \triangleright x, y] + [x, \phi \triangleright y] + (\phi \triangleleft x) \triangleright y - (\phi \triangleleft y) \triangleright x$$
$$[\phi, \psi] \triangleleft x = [\phi \triangleleft x, \psi] + [\phi, \psi \triangleleft x] + \phi \triangleleft (\psi \triangleright x) - \psi \triangleleft (\phi \triangleright x)$$

Proposition: $\mathfrak{g}, \mathfrak{g}^*$ Lie algebras are bialgebra iff they form a matched pair

1.4 Linear Poisson structures

Given V a vector space, a linear Poisson structure $\{,\}: C^{\infty}(V) \times C^{\infty}(V) \to C^{\infty}(V)$ is a Poisson bracket (Lie+Leibniz) for which linear functions are closed under bracket.

$$\{\ell_{\xi},\ell_{\eta}\}=\ell_{[\xi,\eta]}$$

Characterization: {, } linear \iff $(T^*V \rightarrow V^*) \xrightarrow{\pi^{\#}} (TV \rightarrow *)$ linear **Proposition:** $(V, \{,\})$ linear Poisson $\iff (V^*, [,])$ Lie algebra

1.4 Linear Poisson structures

Given V a vector space, a linear Poisson structure $\{,\}: C^{\infty}(V) \times C^{\infty}(V) \to C^{\infty}(V)$ is a Poisson bracket (Lie+Leibniz) for which linear functions are closed under bracket.

$$\{\ell_{\xi},\ell_{\eta}\}=\ell_{[\xi,\eta]}$$

Characterization: {,} linear $\iff (T^*V \to V^*) \xrightarrow{\pi^{\#}} (TV \to *)$ linear **Proposition:** $(V, \{,\})$ linear Poisson $\iff (V^*, [,])$ Lie algebra

Straightforward extension to vector bundles $V \rightarrow M$, linear Poisson structures and *Lie algebroids* $(A, [,], \rho : A \rightarrow TM)$:

$$\{\ell_{lpha},\ell_{eta}\}=\ell_{[lpha,eta]} \qquad \{\ell_{lpha},\pi^*(f)\}=
ho(lpha)(f) \qquad \{\pi^*(f),\pi^*(g)\}=0$$

1.4 Linear Poisson structures

Given V a vector space, a linear Poisson structure $\{,\}: C^{\infty}(V) \times C^{\infty}(V) \to C^{\infty}(V)$ is a Poisson bracket (Lie+Leibniz) for which linear functions are closed under bracket.

$$\{\ell_{\xi},\ell_{\eta}\}=\ell_{[\xi,\eta]}$$

Characterization: {,} linear $\iff (T^*V \to V^*) \xrightarrow{\pi^{\#}} (TV \to *)$ linear **Proposition:** $(V, \{,\})$ linear Poisson $\iff (V^*, [,])$ Lie algebra

Straightforward extension to vector bundles $V \rightarrow M$, linear Poisson structures and *Lie algebroids* $(A, [,], \rho : A \rightarrow TM)$:

$$\{\ell_{\alpha}, \ell_{\beta}\} = \ell_{[\alpha, \beta]} \qquad \{\ell_{\alpha}, \pi^{*}(f)\} = \rho(\alpha)(f) \qquad \{\pi^{*}(f), \pi^{*}(g)\} = 0$$

Proposition: A Poisson structure π on a Lie algebra \mathfrak{g} defines a Lie bialgebra iff $\pi^{\#}$ is a Lie algebroid morphism

$$(T^*\mathfrak{g}\Rightarrow\mathfrak{g}^*)\xrightarrow{\pi^\#}(T\mathfrak{g}\Rightarrow*)$$

7 / 21

イロン イロン イヨン イヨン 一日

1.5 Integration of Lie bialgebras

A Poisson group (G, π) is a Lie group coupled with a Poisson structure π on G that is *multiplicative*, meaning that (tfae):

- $\blacktriangleright m: G \times G \rightarrow G \text{ is Poisson}$
- $m \subset G \times G \times \overline{G}$ coisotropic
- ► $(T^*G \rightrightarrows \mathfrak{g}^*) \xrightarrow{\pi^{\#}} (TG \rightrightarrows *)$ Lie groupoid morphism

1.5 Integration of Lie bialgebras

A Poisson group (G, π) is a Lie group coupled with a Poisson structure π on G that is *multiplicative*, meaning that (tfae):

- $\blacktriangleright m: G \times G \rightarrow G \text{ is Poisson}$
- $m \subset G \times G \times \overline{G}$ coisotropic
- ► $(T^*G \rightrightarrows \mathfrak{g}^*) \xrightarrow{\pi^{\#}} (TG \rightrightarrows *)$ Lie groupoid morphism

Theorem (Drinfeld)

Any Lie bialgebra $(\mathfrak{g}, \pi_{\mathfrak{g}})$ integrates to a Poisson group (G, π_G) . If G simply connected, there is a 1-1 correspondence between Poisson structures in G and \mathfrak{g} .

1.5 Integration of Lie bialgebras

A Poisson group (G, π) is a Lie group coupled with a Poisson structure π on G that is *multiplicative*, meaning that (tfae):

- $\blacktriangleright m: G \times G \rightarrow G \text{ is Poisson}$
- $m \subset G \times G \times \overline{G}$ coisotropic
- ► $(T^*G \rightrightarrows \mathfrak{g}^*) \xrightarrow{\pi^{\#}} (TG \rightrightarrows *)$ Lie groupoid morphism

Theorem (Drinfeld)

Any Lie bialgebra $(\mathfrak{g}, \pi_{\mathfrak{g}})$ integrates to a Poisson group (G, π_G) . If G simply connected, there is a 1-1 correspondence between Poisson structures in G and \mathfrak{g} .

- ► (Alt) Proof: Use Lie2 to integrate $(T^*\mathfrak{g} \Rightarrow \mathfrak{g}^*) \xrightarrow{\pi^{\#}} (T\mathfrak{g} \Rightarrow *)$
- Theory naturally extends to correspondence between Poisson groupoids and Lie bialgebroids (Weinstein, Mackenzie, Xu).

Lie 2-algebras

- 2.1 2-vector spaces
- 2.2 Tensor products
- 2.3 Lie 2-algebras and crossed modules
- 2.4 Weil algebra perspective
- 2.5 Integration to Lie 2-groups

2.1 2-vector spaces

A 2-vector space $V = (V_1 \rightrightarrows V_0)$ is a groupoid object in vector spaces:

- V_1, V_0 vector spaces (over \mathbb{R} , dim $< \infty$)
- ▶ $s, t: V_1 \rightarrow V_0$ source and target linear maps
- ▶ a linear multiplication $m: V_1 \times_{V_0} V_1 \rightarrow V_1$ admitting unit $u: V_0 \rightarrow V_1$ and inverse $i: V_1 \rightarrow V_1$

2.1 2-vector spaces

A 2-vector space $V = (V_1 \Rightarrow V_0)$ is a groupoid object in vector spaces:

- V_1, V_0 vector spaces (over \mathbb{R} , dim $< \infty$)
- ▶ $s, t: V_1 \rightarrow V_0$ source and target linear maps
- ▶ a linear multiplication $m : V_1 \times_{V_0} V_1 \rightarrow V_1$ admitting unit $u : V_0 \rightarrow V_1$ and inverse $i : V_1 \rightarrow V_1$

Proposition: A 2-vector space V is the same as a 2-term complex:

$$2 \text{vect} \cong_{\text{Dold}-\text{Kan}} Ch_{1,0}(\mathbb{R})$$

$$\ker s = V_1' \xrightarrow{t} V_0 \qquad V = (V_1' \ltimes V_0 \rightrightarrows V_0)$$

イロン イロン イヨン イヨン 一日

10 / 21

2.1 2-vector spaces

A 2-vector space $V = (V_1 \rightrightarrows V_0)$ is a groupoid object in vector spaces:

- V_1, V_0 vector spaces (over \mathbb{R} , dim $< \infty$)
- ▶ $s, t: V_1 \rightarrow V_0$ source and target linear maps
- ▶ a linear multiplication $m : V_1 \times_{V_0} V_1 \rightarrow V_1$ admitting unit $u : V_0 \rightarrow V_1$ and inverse $i : V_1 \rightarrow V_1$

Proposition: A 2-vector space V is the same as a 2-term complex:

$$2 \text{vect} \cong_{\text{Dold}-\text{Kan}} Ch_{1,0}(\mathbb{R})$$

$$\ker s = V_1' \xrightarrow{t} V_0 \qquad V = (V_1' \ltimes V_0 \rightrightarrows V_0)$$

(Shifted) Duality: Given V a 2-vector space, its dual V* is $V^* = Hom(V, \mathbb{R}[1])$, it corresponds via Dold-Kan to $V_0^* \xrightarrow{t^*} (V_1')^*$.

2.2 Tensor products

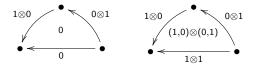
- > 2-vector spaces are simplicial vector spaces and chain complexes
- \blacktriangleright both simplicial vector spaces and chain complexes have natural \otimes
- ▶ None of them restricts to 2-vector spaces! (mistake in literature)

2.2 Tensor products

- 2-vector spaces are simplicial vector spaces and chain complexes
- \blacktriangleright both simplicial vector spaces and chain complexes have natural \otimes
- ▶ None of them restricts to 2-vector spaces! (mistake in literature)

Example:

 $(\mathbb{R} \Rightarrow *)$ is a 2-vector space. Its *nerve* is the simplicial vector space $N\mathbb{R}_k = \mathbb{R}^k$. The levelwise tensor product $N\mathbb{R} \otimes N\mathbb{R}$ is a well-defined simplicial vector space. But it does not satisfy the ! horn-filling condition

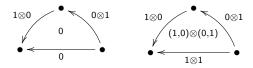


2.2 Tensor products

- 2-vector spaces are simplicial vector spaces and chain complexes
- \blacktriangleright both simplicial vector spaces and chain complexes have natural \otimes
- ▶ None of them restricts to 2-vector spaces! (mistake in literature)

Example:

 $(\mathbb{R} \Rightarrow *)$ is a 2-vector space. Its *nerve* is the simplicial vector space $N\mathbb{R}_k = \mathbb{R}^k$. The levelwise tensor product $N\mathbb{R} \otimes N\mathbb{R}$ is a well-defined simplicial vector space. But it does not satisfy the ! horn-filling condition



To define 2-algebras we need to deal with bilinearity. But the category of 2vect is not a monoidal category...

イロト イヨト イヨト イヨト 三日

2.3 Lie 2-algebras and crossed modules

- A Lie 2-algebra $\mathfrak{g} = (\mathfrak{g}_1 \rightrightarrows \mathfrak{g}_0)$ is a groupoid object in Lie algebras:
 - $\mathfrak{g}_1, \mathfrak{g}_0$ Lie algebras (over \mathbb{R} , dim $< \infty$)
 - ▶ $s, t : g_1 \rightarrow g_0$ source and target morphisms
 - ▶ a multiplication morphism $m : \mathfrak{g}_1 \times_{\mathfrak{g}_0} \mathfrak{g}_1 \to \mathfrak{g}_1$ admitting unit $u : \mathfrak{g}_0 \to \mathfrak{g}_1$ and inverse $i : \mathfrak{g}_1 \to \mathfrak{g}_1$

2.3 Lie 2-algebras and crossed modules

A Lie 2-algebra $\mathfrak{g} = (\mathfrak{g}_1 \rightrightarrows \mathfrak{g}_0)$ is a groupoid object in Lie algebras:

- $\mathfrak{g}_1, \mathfrak{g}_0$ Lie algebras (over \mathbb{R} , dim $< \infty$)
- $s, t : \mathfrak{g}_1 \rightarrow \mathfrak{g}_0$ source and target morphisms
- ▶ a multiplication morphism $m : \mathfrak{g}_1 \times_{\mathfrak{g}_0} \mathfrak{g}_1 \to \mathfrak{g}_1$ admitting unit $u : \mathfrak{g}_0 \to \mathfrak{g}_1$ and inverse $i : \mathfrak{g}_1 \to \mathfrak{g}_1$

Given a Lie 2-algebra \mathfrak{g} , the action $\mathfrak{g} \triangleright \ker s$, $v \triangleright c = [u(v), c]$ is by derivations and satisfy for all $v \in \mathfrak{g}$ and $c \in \ker s$

a)
$$t(v \triangleright c) = [v, t(c)]$$
 b) $t(c_1) \triangleright c_2 = [c_1, c_2]$

In particular, the bracket in $\mathfrak{g}_1 = \ker s \oplus \mathfrak{g}_0$ can be recovered from the map $\ker s \xrightarrow{t} \mathfrak{g}_0$ and the action $\mathfrak{g} \triangleright \ker s$.

2.3 Lie 2-algebras and crossed modules

A Lie 2-algebra $\mathfrak{g} = (\mathfrak{g}_1 \rightrightarrows \mathfrak{g}_0)$ is a groupoid object in Lie algebras:

- $\mathfrak{g}_1, \mathfrak{g}_0$ Lie algebras (over \mathbb{R} , dim $< \infty$)
- ▶ $s, t : g_1 \rightarrow g_0$ source and target morphisms
- ▶ a multiplication morphism $m : \mathfrak{g}_1 \times_{\mathfrak{g}_0} \mathfrak{g}_1 \to \mathfrak{g}_1$ admitting unit $u : \mathfrak{g}_0 \to \mathfrak{g}_1$ and inverse $i : \mathfrak{g}_1 \to \mathfrak{g}_1$

Given a Lie 2-algebra \mathfrak{g} , the action $\mathfrak{g} \triangleright \ker s$, $v \triangleright c = [u(v), c]$ is by derivations and satisfy for all $v \in \mathfrak{g}$ and $c \in \ker s$

a)
$$t(v \triangleright c) = [v, t(c)]$$
 b) $t(c_1) \triangleright c_2 = [c_1, c_2]$

In particular, the bracket in $\mathfrak{g}_1 = \ker s \oplus \mathfrak{g}_0$ can be recovered from the map $\ker s \xrightarrow{t} \mathfrak{g}_0$ and the action $\mathfrak{g} \triangleright \ker s$.

A pair $(\mathfrak{h} \xrightarrow{\partial} \mathfrak{g}, \mathfrak{g} \triangleright \mathfrak{h})$ of a Lie algebra morphism and an action by derivations satisfying a) and b) is a *Lie algebra crossed module*.

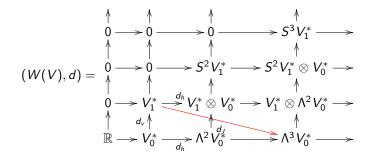
Proposition: Lie 2-algebras ↔ Lie algebra crossed module

2.4 Weil algebra perspective

 $V = V_1 \oplus V_0 \in Gr(Vect)$. Its Weil algebra $W(V) = \Lambda^{\bullet}(V_0^*) \otimes S^{\bullet}(V_1^*)$ has a bigrading $|\xi| = (1,0)$ for $\xi \in V_0^*$ and $|\mu| = (1,1)$ for $\mu \in V_1^*$.

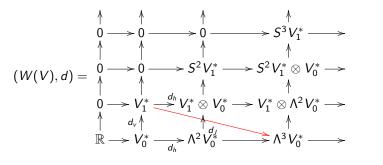
2.4 Weil algebra perspective

 $V = V_1 \oplus V_0 \in Gr(Vect)$. Its Weil algebra $W(V) = \Lambda^{\bullet}(V_0^*) \otimes S^{\bullet}(V_1^*)$ has a bigrading $|\xi| = (1,0)$ for $\xi \in V_0^*$ and $|\mu| = (1,1)$ for $\mu \in V_1^*$.



2.4 Weil algebra perspective

 $V = V_1 \oplus V_0 \in Gr(Vect)$. Its Weil algebra $W(V) = \Lambda^{\bullet}(V_0^*) \otimes S^{\bullet}(V_1^*)$ has a bigrading $|\xi| = (1,0)$ for $\xi \in V_0^*$ and $|\mu| = (1,1)$ for $\mu \in V_1^*$.



Proposition:

 $\begin{array}{rcl} \text{2-vector space} & \Longleftrightarrow & (W(V), d_v) & \Longleftrightarrow & (W(V^*), d_v) \\ \text{Lie 2-algebra} & \Leftrightarrow & (W(V), d_v + d_h) & \Leftrightarrow & (W(V^*), d_v, \{,\}) \\ \text{weak Lie 2-algebra} & \Leftrightarrow & (W(V), d) & \Leftrightarrow & \dots \end{array}$

2.5 Integration to Lie 2-groups

2-vector spaces V are VB-groupoids / VB-algebroids over a point:

2.5 Integration to Lie 2-groups

2-vector spaces V are VB-groupoids / VB-algebroids over a point:

Lie 2-algebras ${\mathfrak g}$ are LA-groupoids / double Lie algebroids over a point:

2.5 Integration to Lie 2-groups

2-vector spaces V are VB-groupoids / VB-algebroids over a point:

Lie 2-algebras ${\mathfrak g}$ are LA-groupoids / double Lie algebroids over a point:

A *Lie 2-group* is a groupoid object in Lie groups. **Proposition:** Lie 2-groups \iff Lie group crossed modules.

Theorem: Every Lie 2-algebra integrates to a Lie 2-group.

(Alt) **Proof:** Integrate vertically to get a group object in Lie algebroids. The orbits are Lie groups, so they don't have π_2 , no obstructions!

Lie 2-bialgebras

- 3.1 Double vector bundles
- 3.2 Duality and triality
- 3.3 Compatible Poisson structures
- 3.4 Main Theorems
- 3.5 Application to Lie 2-bialgebras

3.1 Double vector bundles

A *double vector bundle* D consists of horizontal and vertical vector bundle structures which are compatible, in the sense that m_{λ}^{h} and m_{μ}^{v} commute $\forall \lambda, \mu \in \mathbb{R}$:

$$egin{array}{ccc} D & o & B \ \downarrow & C & \downarrow \ A & o & M \end{array}$$

The core $C \to M$ is ker $(D \to B) \cap \text{ker}(D \to A)$.

3.1 Double vector bundles

A *double vector bundle* D consists of horizontal and vertical vector bundle structures which are compatible, in the sense that m_{λ}^{h} and m_{μ}^{v} commute $\forall \lambda, \mu \in \mathbb{R}$:

$$egin{array}{ccc} D & o & B \ \downarrow & C & \downarrow \ A & o & M \end{array}$$

The core $C \to M$ is ker $(D \to B) \cap \text{ker}(D \to A)$.

Example

Given $E \rightarrow M$ a vector bundle, the tangent and cotanget:

3.1 Double vector bundles

A *double vector bundle* D consists of horizontal and vertical vector bundle structures which are compatible, in the sense that m_{λ}^{h} and m_{μ}^{v} commute $\forall \lambda, \mu \in \mathbb{R}$:

$$egin{array}{ccc} D & o & B \ \downarrow & C & \downarrow \ A & o & M \end{array}$$

The core $C \to M$ is ker $(D \to B) \cap \text{ker}(D \to A)$.

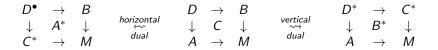
Example

Given $E \rightarrow M$ a vector bundle, the tangent and cotanget:

ΤE	\rightarrow	TM	T^*E	\rightarrow	E*
\downarrow	Ε	\downarrow	\downarrow	T^*M	\downarrow
Ε	\rightarrow	М	Ε	\rightarrow	М

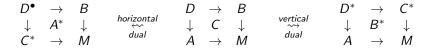
Proposition: Every double vector bundle splits (though non-canonically) $D \cong A \oplus B \oplus C$ $m_{\lambda}^{v}(a, b, c) = (a, \lambda b, \lambda c)$ $m_{\mu}^{h}(a, b, c) = (\mu a, b, \mu c)$

3.2 Duality and triality



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

3.2 Duality and triality



Proposition: There is a non-degenerate pairing

$$\mathrm{fl}(D^*) \times_{C^*} D^{\bullet} \to \mathbb{R} \qquad \langle \alpha, \beta \rangle = \langle \alpha, d \rangle - \langle \beta, d \rangle$$

inducing an isomorphism $D^{\bullet} \cong \mathrm{fl}(D^*)^{\bullet}$

3.2 Duality and triality

Proposition: There is a non-degenerate pairing

$$\mathrm{fl}(D^*) \times_{C^*} D^{\bullet} \to \mathbb{R} \qquad \langle \alpha, \beta \rangle = \langle \alpha, d \rangle - \langle \beta, d \rangle$$

inducing an isomorphism $D^{\bullet} \cong \mathrm{fl}(D^*)^{\bullet}$

The group of dualizing operations for double vector bundles has order 6:

$$D \mapsto D, D^{ullet}, D^*, \operatorname{fl}(D), \operatorname{fl}(D^{ullet}), \operatorname{fl}(D^*)$$

For triple vector bundles this group was studied by Mackenzie, Gracia-Saz, Metha, and it has order 96!

3.3 Compatible Poisson structures

One Poisson str: VB-algebroids / double linear Poisson structure

3.3 Compatible Poisson structures

One Poisson str: VB-algebroids / double linear Poisson structure

Two Poisson str: PVB-algebroids / double Lie algebroids

$$(D^{ullet},\pi)
ightarrow B \qquad D
ightarrow B \qquad (D^*,\pi)
ightarrow C^* \ \Downarrow A^* \ \Downarrow \qquad \leftrightarrow \qquad \Downarrow \ C \ \Downarrow \ \leadsto \qquad \downarrow \qquad B^* \ \downarrow \ C^*
ightarrow M \qquad A
ightarrow M \qquad A
ightarrow M$$

3.3 Compatible Poisson structures

One Poisson str: VB-algebroids / double linear Poisson structure

Two Poisson str: PVB-algebroids / double Lie algebroids

$$(D^{ullet},\pi)
ightarrow B \qquad D
ightarrow B \qquad (D^*,\pi)
ightarrow C^* \ \downarrow A^* \ \downarrow \qquad \longleftrightarrow \qquad \downarrow \qquad C \ \downarrow \qquad \leadsto \qquad \downarrow \qquad B^* \ \downarrow \ C^*
ightarrow M \qquad A
ightarrow M \qquad A
ightarrow M \qquad A
ightarrow M$$

Three Poisson str: double Lie bialgebroids [BCdH, J. Geom. Mech. 2022]

18 / 21

3.4 Main Theorems

Theorem (BCdH, J. Geom. Mech. 2022)

If (D, π) is a double Lie bialgebroid and π is symplectic then $D \cong T^*A$ is the cotangent of a Lie bialgebroid (Drinfeld double).

3.4 Main Theorems

Theorem (BCdH, J. Geom. Mech. 2022)

If (D, π) is a double Lie bialgebroid and π is symplectic then $D \cong T^*A$ is the cotangent of a Lie bialgebroid (Drinfeld double).

Theorem (BCdH, J. Geom. Mech. 2022)

Poisson double groupoids Σ (introduced by Mackenzie) differentiate to double Lie bialgebroids $\operatorname{Lie}^2(\Sigma)$. Integration is possible under topological assumptions.

3.4 Main Theorems

Theorem (BCdH, J. Geom. Mech. 2022)

If (D, π) is a double Lie bialgebroid and π is symplectic then $D \cong T^*A$ is the cotangent of a Lie bialgebroid (Drinfeld double).

Theorem (BCdH, J. Geom. Mech. 2022)

Poisson double groupoids Σ (introduced by Mackenzie) differentiate to double Lie bialgebroids $\operatorname{Lie}^2(\Sigma)$.

Integration is possible under topological assumptions.

Theorem (Meinrenken-Pike, IMRN 2021)

Given a double vector bundle D, a double Lie bialgebroid structure on D is the same as a pair $(W(D), d_h + d_v, \{\})$ where $d = d_h + d_v$ is a differential and $\{,\}$ is a deg (-1, -1) bracket satisfying Leibniz.

A Lie 2-bialgebra is a Poisson LA-groupoid over a point:

$$egin{array}{rcl} (\mathfrak{g}_1,\pi)&
ightarrow&\mathfrak{g}_0\ & & \Downarrow\ & & \Downarrow\ & & & \#\ & & & & \#\ & & & \Rightarrow\ & & & & & & & & & \end{array}$$

This gives a clean simple approach to the theory of Lie 2-bialgebras:

A Lie 2-bialgebra is a Poisson LA-groupoid over a point:

This gives a clean simple approach to the theory of Lie 2-bialgebras:

Thm: Lie 2-bialgebras can be described as crossed modules.

A Lie 2-bialgebra is a Poisson LA-groupoid over a point:

$$egin{array}{ccc} (\mathfrak{g}_1,\pi)& \rightrightarrows & \mathfrak{g}_0\ & & & \Downarrow\ & & & \Downarrow\ & & & \Rightarrow & * \end{array}$$

This gives a clean simple approach to the theory of Lie 2-bialgebras:

Thm: Lie 2-bialgebras can be described as crossed modules.

Thm: A Lie 2-bialgebra structure on $V = (V_1 \Rightarrow V_0)$ is the same as a differential and a Gerstenhaber bracket on W(V) (\Rightarrow connection with L_{∞} -algebra approach [Bai-Sheng-Zhu, Comm. Math. Phys. 2013])

A Lie 2-bialgebra is a Poisson LA-groupoid over a point:

$$egin{array}{ccc} (\mathfrak{g}_1,\pi)& \rightrightarrows & \mathfrak{g}_0\ & & & \Downarrow\ & & & \Downarrow\ & & & \Rightarrow & * \end{array}$$

This gives a clean simple approach to the theory of Lie 2-bialgebras:

Thm: Lie 2-bialgebras can be described as crossed modules.

Thm: A Lie 2-bialgebra structure on $V = (V_1 \Rightarrow V_0)$ is the same as a differential and a Gerstenhaber bracket on W(V) (\Rightarrow connection with L_{∞} -algebra approach [Bai-Sheng-Zhu, Comm. Math. Phys. 2013])

Thm: Lie 2-bialgebras can be integrated to Poisson 2-groups. [Chen-Stienon-Xu, J. Differential Geom. 2013] Thanks!

