Galen Dorpalen-Barry joint with Joshua Maglione and Christian Stump

arXiv:2301.05904 + JLMS (2025) + FPSAC extended abstract (2024)

ESI Workshop: Recent Perspectives on Non-crossing Partitions 19 Feb 2025

1/23

Outline

Motivation

Igusa Zeta Functions & their Poles

- Grunewald, Segal, and Smith (1988) define "subgroup zeta function" of a finitely-generated group
- Du Sautoy and Grunewald (2000) general method to compute zeta functions
- Maglione and Voll (2023) in the case where the input polynomial is a product of linear things:
 - Calculation only depends on the intersection poset of the corresponding hyperplane arrangement
 - Result has only one pole: t = 1
 - Conjecture: multiplicity of this pole is the rank of the arrangement

Igusa Zeta Functions & their Poles

- Grunewald, Segal, and Smith (1988) define "subgroup zeta function" of a finitely-generated group
- Du Sautoy and Grunewald (2000) general method to compute zeta functions
- Maglione and Voll (2023) in the case where the input polynomial is a product of linear things:
 - Calculation only depends on the intersection poset of the corresponding hyperplane arrangement
 - Result has only one pole: t = 1
 - Conjecture: multiplicity of this pole is the rank of the arrangement

Goal for Today: Prove Maglione–Voll's conjecture.

Igusa Zeta Functions & their Poles

- Grunewald, Segal, and Smith (1988) define "subgroup zeta function" of a finitely-generated group
- Du Sautoy and Grunewald (2000) general method to compute zeta functions
- Maglione and Voll (2023) in the case where the input polynomial is a product of linear things:
 - Calculation only depends on the intersection poset of the corresponding hyperplane arrangement
 - Result has only one pole: t = 1
 - Conjecture: multiplicity of this pole is the rank of the arrangement

Goal for Today: Prove Maglione–Voll's conjecture.

Key Tool: a combinatorially-defined polynomial with connections to poset topology and Chow rings of matroids.

For connections to the Chow ring of a matroid, check out Stump's paper "Chow and augmented Chow polynomials as evaluations..."

Galen Dorpalen-Barry (Texas A&M)

Main Objects

Arrangements of Hyperplanes in \mathbb{R}^d

- A hyperplane is an affine linear subspace of codimension 1.
- A collection of finitely-many (distinct) hyperplanes is an **arrangement**.

Arrangements of Hyperplanes in \mathbb{R}^d

- A hyperplane is an affine linear subspace of codimension 1.
- A collection of finitely-many (distinct) hyperplanes is an arrangement.

Today we'll focus on **intersections** (= nonempty intersections of some of the hyperplanes).

Thanks, Emily for defining these already!

Arrangements of Hyperplanes in \mathbb{R}^d

A hyperplane is an affine linear subspace of codimension 1.
A collection of finitely-many

(distinct) hyperplanes is an

The set of intersections of this arrangement is

 $\mathbb{R}^2, H_1, H_2, H_3, H_1 \cap H_2 \cap H_3$

Today we'll focus on **intersections** (= nonempty intersections of some of the hyperplanes).

arrangement.

Poset of Intersections

- Let \mathcal{A} be an arrangement in $V \cong \mathbb{R}^d$ with intersections $\mathcal{L}(\mathcal{A})$.
 - The elements of $\mathcal{L}(\mathcal{A})$ form a poset under reverse inclusion.
 - A theorem of Zaslavsky relates the Möbius function values of lower intervals [V, X] ⊆ L(A) to the number of regions of the arrangement.

The poset of intersections is

Poset of Intersections

- Let \mathcal{A} be an arrangement in $V \cong \mathbb{R}^d$ with intersections $\mathcal{L}(\mathcal{A})$.
 - The elements of $\mathcal{L}(\mathcal{A})$ form a poset under reverse inclusion.
 - A theorem of Zaslavsky relates the Möbius function values of lower intervals [V, X] ⊆ L(A) to the number of regions of the arrangement.

The poset of intersections is

Let \mathcal{A} be a central, essential hyperplane arrangement and \mathcal{L} its lattice of intersections.

Definition

The Poincaré polynomial of ${\mathcal L}$ is

$$\mathsf{Poin}(\mathcal{L}; y) = \sum_{x \in \mathcal{L}} |\mu(\hat{0}, x)| \ y^{\mathsf{codim}(x)},$$

where codim(x) denotes the codimension of x.

Let \mathcal{A} be a central, essential hyperplane arrangement and \mathcal{L} its lattice of intersections.

Definition

The Poincaré polynomial of ${\mathcal L}$ is

$$\mathsf{Poin}(\mathcal{L}; y) = \sum_{x \in \mathcal{L}} |\mu(\hat{0}, x)| \ y^{\mathsf{codim}(x)},$$

where codim(x) denotes the codimension of x.

Similar to the characteristic polynomial $\chi(\mathcal{A}, t) = (-1)^{\operatorname{rank}(\mathcal{A})} T_{\mathcal{A}}(1-t, 0).$

Let \mathcal{A} be a central, essential hyperplane arrangement and \mathcal{L} its lattice of intersections.

Definition

The Poincaré polynomial of \mathcal{L} is

$$\mathsf{Poin}(\mathcal{L}; y) = \sum_{x \in \mathcal{L}} |\mu(\hat{0}, x)| \ y^{\mathsf{codim}(x)},$$

where codim(x) denotes the codimension of x.

Similar to the characteristic polynomial $\chi(\mathcal{A}, t) = (-1)^{\operatorname{rank}(\mathcal{A})} T_{\mathcal{A}}(1-t, 0).$

Tells us the Hilbert series of the Orlik-Solomon and Cordovil algebras.

Let \mathcal{A} be a central, essential hyperplane arrangement and \mathcal{L} its lattice of intersections.

Definition

The Poincaré polynomial of \mathcal{L} is

$$\mathsf{Poin}(\mathcal{L}; y) = \sum_{x \in \mathcal{L}} |\mu(\hat{0}, x)| \ y^{\mathsf{codim}(x)},$$

where codim(x) denotes the codimension of x.

Note. We can define the Poincaré polynomial for any *graded poset*.

Recap: Graded Posets

Let *P* be a poset with $\hat{0}$ and $\hat{1}$.

- A **chain** is a subset of the ground set which is totally ordered with respect to *P*.
- A chain C = C₁ < C₂ < · · · C_n is maximal if C_i covers C_{i+1} for all i = 1, . . . , n − 1.
- *P* is **graded** if every maximal chain from $\hat{0}$ to $\hat{1}$ has the same length.
- For $x, y \in P$, the **interval** between x and y is

$$[x,y] = \{z \mid x \le z \le y\}.$$

Definition

The (Poincaré-)extended ab-index of a graded poset P is

$$\mathsf{ex}\Psi(\mathcal{L};y,\mathbf{a},\mathbf{b}) = \sum_{\mathcal{C}:\mathsf{chain of } \mathcal{L}\setminus\{\hat{1}\}} \mathsf{Poin}(\mathcal{L},\mathcal{C},y) \; \mathsf{wt}_{\mathcal{C}}(\mathbf{a},\mathbf{b}) \, .$$

This definition requires some explanation!

Definition

The (Poincaré-)extended ab-index of a graded poset P is

$$\mathsf{ex}\Psi(\mathcal{L}; y, \mathbf{a}, \mathbf{b}) = \sum_{\mathcal{C}: \mathsf{chain of } \mathcal{L} \setminus \{\hat{1}\}} \mathsf{Poin}(\mathcal{L}, \mathcal{C}, y) \; \mathsf{wt}_{\mathcal{C}}(\mathbf{a}, \mathbf{b}) \, .$$

This definition requires some explanation!

$$\begin{split} \mathsf{ex}\Psi(\mathcal{L}; y, \mathbf{a}, \mathbf{b}) &= (\mathbf{a} - \mathbf{b})^2 + (1 + 3y + 2y^2)\mathbf{b}(\mathbf{a} - \mathbf{b}) + 3 \cdot (1 + y)(\mathbf{a} - \mathbf{b})\mathbf{b} + 3 \cdot (1 + y)^2\mathbf{b}^2 \\ &= \mathbf{a}^2 + (3y + 2y^2)\mathbf{b}\mathbf{a} + (2 + 3y)\mathbf{a}\mathbf{b} + y^2\mathbf{b}^2 \end{split}$$

Definition

The (Poincaré-)extended ab-index of a graded poset P is

For the poset on the left:

$$\mathsf{ex}\Psi(\mathcal{L};y,\mathbf{a},\mathbf{b}) = \sum_{\mathcal{C}:\mathsf{chain of }\mathcal{L}\setminus\{\hat{1}\}}\mathsf{Poin}(\mathcal{L},\mathcal{C},y)\;\mathsf{wt}_{\mathcal{C}}(\mathbf{a},\mathbf{b})\,.$$

$$ex\Psi(P; y, \mathbf{a}, \mathbf{b}) = \mathbf{a}^3 + (3y+2)\mathbf{a}^2\mathbf{b} + (3y^2+6y+2)\mathbf{a}\mathbf{b}\mathbf{a} + (3y^2+3y+1)\mathbf{a}\mathbf{b}^2 + (y^3+3y^2+3y)\mathbf{b}\mathbf{a}^2 + (2y^3+6y^2+3y)\mathbf{b}\mathbf{a}\mathbf{b} + (2y^3+3y^2)\mathbf{b}^2\mathbf{a} + y^3\mathbf{b}^3.$$

Definition

The (Poincaré-)extended ab-index of a graded poset P is

$$\mathsf{ex}\Psi(\mathcal{L};y,\mathbf{a},\mathbf{b}) = \sum_{\mathcal{C}:\mathsf{chain of } \mathcal{L}\setminus\{\hat{1}\}} \mathsf{Poin}(\mathcal{L},\mathcal{C},y) \; \mathsf{wt}_{\mathcal{C}}(\mathbf{a},\mathbf{b}) \, .$$

Conjecture (Maglione-Voll)

If *P* is the *intersection poset* of an arrangement of hyperplanes, then (a harmless modification of) $ex\Psi(\mathcal{L}; y, 1, t)$ has nonnegative coefficients.

Their conjecture is true, even for $ex\Psi(\mathcal{L}; y, \mathbf{a}, \mathbf{b})$, and holds for an even bigger class of posets!

Results

R-labelings (same as in Katerina's talk)

Let P be a graded poset, and let $\mathcal{E}(P) = \{(x, y) \mid x, y \in P, x \leq y\}$ denote the set of cover relations of P.

A labeling $\lambda : \mathcal{E}(P) \to \mathbb{Z}$ is an *R*-labeling if for every interval [x, y], there is a unique maximal chain $\mathcal{M} = \{x = C_0 < C_1 < \cdots < C_{k-1} < C_k = y\}$ such that the labels *weakly* increase, i.e.,

R-labelings

Theorem (Björner, 1980)

Upper-semimodular, lower-semimodular, and supersolvable arrangements admit R-labelings.

R-labelings

Theorem (Björner, 1980)

Upper-semimodular, lower-semimodular, and supersolvable arrangements admit R-labelings.

Upshot: Geometric lattices always have *R*-labelings.

Bonus: The noncrossing partition lattices also have *R*-labelings. (We saw this Matthieu and Katerina's talks)

Let P be a graded poset of rank n with an R-labeling λ .

Theorem ((DB)MS, 2025)

The extended **ab**-index of P is

$$ex\Psi(P; y, \mathbf{a}, \mathbf{b}) = \sum_{(\mathcal{M}, E)} y^{\#E} mon(\mathcal{M}, E)$$

where the sum ranges over all pairs (\mathcal{M}, E) where \mathcal{M} is a maximal chain and E is a subset of its edges.

Let P be a graded poset of rank n with an R-labeling λ .

Theorem ((DB)MS, 2025)

The extended **ab**-index of P is

$$ex\Psi(P; y, \mathbf{a}, \mathbf{b}) = \sum_{(\mathcal{M}, E)} y^{\#E} mon(\mathcal{M}, E)$$

where the sum ranges over all pairs (\mathcal{M}, E) where \mathcal{M} is a maximal chain and E is a subset of its edges.

This immediately implies a Maglione–Voll's conjecture.

Surprise Bonus Upshot: This polynomial is nonnegative for noncrossing partition lattices.

Example

Computing $ex\Psi(\mathcal{L}; y, \mathbf{a}, \mathbf{b})$ using the theorem instead of the definition.

, î	Ε	<i>y</i> ^{#E}	$\hat{0} \lessdot \alpha_1 \lessdot \hat{1}$	$\hat{0} \lessdot \alpha_2 \lessdot \hat{1}$	$\hat{0} \lessdot \alpha_{3} \lessdot \hat{1}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\{ \} \\ \{1\} \\ \{2\} \\ \{1, 2\} \\$	$ \begin{array}{c} 1\\ y\\ y\\ y\\ y^2 \end{array} $	aa ba ab bb	ab ba ab ba	ab ba ab ba

 $ex\Psi(\mathcal{L}; y, \mathbf{a}, \mathbf{b}) = \mathbf{a}\mathbf{a} + (3y + 2y^2)\mathbf{b}\mathbf{a} + (2 + 3y)\mathbf{a}\mathbf{b} + y^2\mathbf{b}\mathbf{b}$

Example

Computing $ex\Psi(\mathcal{L}; y, \mathbf{a}, \mathbf{b})$ using the theorem instead of the definition.

,î	Е	<i>y</i> ^{#E}	$\hat{0} \lessdot \alpha_1 \lessdot \hat{1}$	$\hat{0} \lessdot \alpha_2 \lessdot \hat{1}$	$\hat{0} \lessdot \alpha_{3} \lessdot \hat{1}$
$\begin{array}{c c} 2 & 1 \\ \hline \alpha_1 & \alpha_2 & \alpha_3 \end{array}$	$\{\}\ \{1\}$	1 y	aa ba	ab ba	ab ba
1 2 3 Ô	$\{2\}$ $\{1,2\}$	y y ²	ab bb	ab ba	ab ba

 $ex\Psi(\mathcal{L}; y, \mathbf{a}, \mathbf{b}) = \mathbf{a}\mathbf{a} + (3y + 2y^2)\mathbf{b}\mathbf{a} + (2 + 3y)\mathbf{a}\mathbf{b} + y^2\mathbf{b}\mathbf{b}$

New! Hoster-Stump have a better pair of statistics for partition lattices.

Example

Computing $ex\Psi(\mathcal{L}; y, \mathbf{a}, \mathbf{b})$ using the theorem instead of the definition.

, î	E	<i>y</i> ^{#E}	$\hat{0} \lessdot \alpha_1 \lessdot \hat{1}$	$\hat{0} \lessdot \alpha_2 \lessdot \hat{1}$	$\hat{0} \lessdot \alpha_{3} \lessdot \hat{1}$
$\begin{array}{c c} 2 & 1 \\ \alpha_1 & \alpha_2 & \alpha_3 \end{array}$	$\{\}$ $\{1\}$	1 V	aa ba	ab ba	ab ba
1 2 3 Ô	${2} {1,2} {1,2}$	$\frac{y}{y^2}$	ab bb	ab ba	ab ba

$$ex\Psi(\mathcal{L}; y, \mathbf{a}, \mathbf{b}) = \mathbf{a}\mathbf{a} + (3y + 2y^2)\mathbf{b}\mathbf{a} + (2 + 3y)\mathbf{a}\mathbf{b} + y^2\mathbf{b}\mathbf{b}$$

New! Hoster–Stump have a better pair of statistics for partition lattices. **Question**: Is there a better version for noncrossing partition lattices?

Danke!

Some Relevant Papers

Galen Dorpalen-Barry, Joshua Maglione, and Christian Stump. The Poincaré-extended **ab**-index.

J. Lond. Math. Soc. (2), 111(1):Paper No. e70054, 2025.

Elena Hoster and Christian Stump. The coarse flag Hilbert-Poincaré series of the braid arrangement arXiv:2402.19175, 2025.

Christian Stump.

Chow and augmented Chow polynomials as evaluations of Poincaré-extended ab-indices *arXiv:2406.18932*, 2024.

Joshua Maglione and Christopher Voll.

Flag Hilbert–Poincaré series of hyperplane arrangements and Igusa zeta functions.

Israel Journal of Mathematics (to appear), 2023.

23 / 23