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Motivation: Uncertainty

Quantification



An Epistomological Hiccup

“All models are wrong but some models are more wrong than others”

–George Cox/Orwell
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Thinning for Multilevel Monte Carlo
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� Which samples to pick

for higher levels?

� Simple random sampling

of lower–level samples

may lead to

unquantifiable bias.

� Need optimal empirical

approximation of the

parameter distribution.
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Thinning for Multi-Fidelity Models
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Thinning

� Low–fidelity model is relatively cheap and allows for running

MCMC.

� High–fidelity model is very expensive and can only be solved a few

times.

� Need highly compressed approximation of the posterior.

Image sources: Papadimas and Dodwell (2021), The Alan Turing Institute
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https://www.turing.ac.uk/research/research-projects/digital-twin-worlds-first-3d-printed-stainless-steel-bridge


Stein Thinning

The Devil is in the Detail

Method proposed by Riabiz et al. (2020) achieves optimal thinning, but

their kernel requires the gradient of the posterior distribution:

� The gradient not readily available in the context of many

PDE–constrained problems.

� Potentially very large kernel matrix for MCMC samples, if all

k(x , y) are evaluated.

⇒ Develop a simple, fast and gradient–free method for optimal

thinning of MCMC output.
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DaFT Theory



Maximum Mean Discrepancy

� Need measure of distance between empirical distributions.

� MMD can be defined by a feature map φ : X → H where H is a

RKHS:

MMD(P,Q) := ‖EX∼P [φ(X )]− EY∼Q [φ(Y )]‖H (1)

� Using the “kernel trick” k(x , y) = 〈φ(x), φ(y)〉H we get

MMD2(P,Q) = ‖EX∼P [φ(X )]− EY∼Q [φ(Y )]‖2H
= EX ,X ′∼P [k(X ,X ′)] + EY ,Y ′∼Q [k(Y ,Y ′)]

− 2 EX∼P,Y∼Q [k(X ,Y )]

� But evaluating the kernel directly is costly and very memory

intensive for (typically) large samples sizes.
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Random Kernel Embeddings

� Following Rahimi and Recht (2007), the data is pushed through a

random feature map z : Rd → RD to a low–dimensional Euclidean

inner product space, where the inner product approximates the

kernel:

k(x , y) = 〈φ(x), φ(y)〉H ≈ z(x)T z(y). (2)

� Some popular shift–invariant kernels can be approximated by

z(x) =

√
2

D
[cos(ωT

1 x + b1), . . . , cos(ωT
D x + bD)]T . (3)

For example, for a Gaussian kernel we use ω ∼ N (0, 1) ∈ Rd and

b ∼ U(0, 2π).
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An approximate MMD

� Putting all this together, we get an approximate MMD:

MMD(P,Q) ≈

∥∥∥∥∥∥1

n

n∑
i=1

z(xi )−
1

m

m∑
j=1

z(yj)

∥∥∥∥∥∥
2

(4)

where X = {xi}ni=1 ∼ P is the entire MCMC sampling history and

Y = {yj}mj=1 ∼ Q is a subset of the MCMC sampling history.

� Given some method for assigning weights {wj}mj=1 to the subset

{yj}mj=1, we can also construct an approximate weighted MMD:

MMDw (P,Q) ≈

∥∥∥∥∥1

n

n∑
i=1

z(xi )−
∑m

j=1 wjz(yj)∑m
j=1 wj

∥∥∥∥∥
2

(5)
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Minimising the MMD

Y ? = arg min
Y∈X

MMDX (Y ) (6)

� Discrete optimisation problem with n!/(n −m)! possible states!

� Possibly many near–optimal solutions.

� Genetic Algorithm heuristically yields a population of solutions.

� Not rigorous but it works.
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Genetic Algorithm

� Population of candidates Y = {Yi}Ni=1 with size N.

� Fitness function f (Yi ) = MMDX (Yi )
−1.

� Highest fitness chromosomes are preserved across generations.

� Mating/mutation selection probabilities ps(Yi ) = f (Yi )∑N
i=1 f (Yi )

.

77 69 82 93 97 88

88 78 28 25 43 81

46 15 17 22 77 38

94 85 31 16 29 13

Po
pu

la
ti

on Chromosome

Gene (sample index) Mating

88 78 28 25 43 81

46 15 17 22 77 38
88 15 28 25 77 81

94 85 31 16 29 13

Mutation

94 5 31 16 47 13
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Results and a Synthetic Example



Convergence of the approximate MMD

Two samples from a banana distribution.
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Figure 1: Two samples from a banana–shaped distribution, with (left)

n = 10000 and (right) m = 1000 datapoints.
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Convergence of the approximate MMD

Some numerical evidence of convergence.
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Figure 2: Convergence of the approximate MMD with increasing feature space

dimension (D) using the samples shown in Figure 1. Each line represents a

random feature space, each constructed as described above.
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Thimomenos Distribution

Figure 3: Random samples from the famous Thimomenos [greek: “angryman”]

distribution. All samples (blue), weighted DaFT samples (orange) and simple

random samples (red).
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Future Directions and Discussion



3D Printed Bridge

� Posterior distribution of

material parameters from

laboratory experiments.

� Very expensive bridge model

and a limited computational

budget.

� Quantify the uncertainy in Q
(e.g. maximum stress/strain or

displacement) with few model

evaluations.

⇒ Choose samples from posterior

using DaFT.
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Discussion

� A simple and flexible approach to thinning of samples.

� Applications to MLMC, MCMC, multi-fidelity and surrogate models.

� Very fast approximate MMD with a choice of different kernels.

� Genetic algorithm yields a population of near–optimal solutions.

� Required dimension of the feature space is problem–dependent and

currently unclear.

� The genetic algorithm approach works well but it is not the most

rigorous approach. ⇒ Alternatives?

� Samples are no longer random. ⇒ Consequences?
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Questions?

m.lykkegaard@exeter.ac.uk
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