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Positional numeration systems

Let U = (U,)n>0 be a base sequence, that is, an increasing sequence of integers such that Uy = 1 and

Un

i are bounded.
n—1

the quotients

A natural number x is represented by the finite word
repU(X) = a¢—1---4d0

obtained from the greedy algorithm:
-1

X = ZanUn.

n=0

A description of the numeration language
Ly = 0"{repy(x) : x € N}

strongly depends on the base sequence U.



Regularity of Ly

A fundamental question is the following:

» Given a positional system U, can we decide if the numeration language Ly is regular?

» And even more precisely, can characterize those systems U giving rise to a regular numeration

language Ly?



Linear systems

A necessary condition is that the sequence U = (Un)n>o is linear, i.e., it must satisfy a linear recurrence

relation with integer coefficients: there exist integers ci, ..., ¢k such that
Ur=cUs-1+cUp—2--++ ckUs—k, forall n> k.
A way to see this is:

» Note that, for each n, U, is the number of words of length nin L.

S= Zunx"

n>0

» This implies that the formal series

is Z-rational, i.e., S = g for polynomials P, Q € Z[X] with Q(0) = 1.

» This, in turn, implies that the sequence (U,)n>0 satisfies a linear recurrence relation over Z.



Hollander's study for dominant root systems

This question was studied by Hollander in 1998 in the case of positional systems U = (U,)n>0 with a

dominant root, i.e., such that the limit lim,_ o UUL exists and is greater than 1.

A clever observation he made was that it is sufficient to study the regularity of the language made of
words of maximal length.

Proposition (Hollander 1998)
Ly is regular <= Max(Ly) := {repy(U, — 1) : n > 0} is regular.
He also showed the following necessary condition:

Proposition (Hollander 1998)

If U has a dominant root 3 > 1 and if Ly is regular, then B is a Parry number.



Some intuition for these two arguments

Proposition (Hollander 1998)
Ly is regular <= Max(Ly) := {repy (U, — 1) : n > 0} is regular.

» The implication
L regular = Max(L) regular

is true for any language. See [Shallit 1994] for a nice short proof.
» The other direction does not work in general.

» The point here is to prove that the converse is true for numeration languages. This is due to the

following property of numeration languages:

w € Ly < for all s € Suff(w), s <iex repy(Ujs) — 1).



Proposition (Hollander 1998)

If U has a dominant root 3 > 1 and if Ly is regular, then (B is a Parry number.

Here, the key observation is:

> If dg(1) is infinite, then
lim rep, (U, — 1) = ds(1).

n—oo

» If dg(1) = di - - de with d; # 0, then for all lengths L and all large enough indices n, there exists
j > 0 such that
Pref; (repy(Un — 1)) = Pref(w;)

where wj = (di -+ - de—1(de — 1))jd1 - dp0v.

We will refer to these words w; as the "intermediate" (-representations of 1.



[-polynomials

In order to give Hollander's full statement, we need to introduce the notion of 3-polynomials.
Suppose that dj(1) = t1--- tg(tg+1 - - tg+r)*, then the polynomial

q+r q
Pa.qr = (x‘”’ -> t,-x‘”’") - (X" -> t,xq"> .
i=1

i=1

is called a B-polynomial.

For g, r minimal, we get the canonical 3-polynomial, simply denoted Pg.

Note that in the case where d3(1) = d1 - - - d; with d¢ # 0, then as d3(1) = (di - - - de—1(de — 1))“, we

simply get
¢

Py =X"=> dX.

i=1



Theorem (Hollander 1998)

Let U be a positional numeration system with a dominant root 3 > 1.
» If Ly is regular, then B is a Parry number.
» Case where ds(1) is infinite.

» Ly is regular if and only if U satisfies a linear recurrence relation of characteristic polynomial
Pg q,r for some q, r.

» Case where dg(1) = dy ... dp with dp # 0.

» If U satisfies a recurrence relation of characteristic polynomial Pg q . for some q,r, then Ly is
regular.

» If Ly is regular, then the base sequence U satisfies a linear recurrence relation of characteristic
polynomial (X* — 1)Pg 4, for some q,r.



Getting rid of the dominant root condition
First step: Exploit the positiveness of the generating series.

> If Ly is regular, then the series " _ U,X" is N-rational (and not just Z-rational).

n>0

> By a result of Soittola from 1976, we know that if a Z-rational series has nonnegative coefficients

and a dominating eigenvalue, then it is N-rational.

» Conversely, we can derive from another result of Soittola that if a series Zi>0 spX" is N-rational,
then there exists some p > 1 such that for each i € {0,...,p — 1}, the limit

. Spn—i
lim =2
n—+00 Spp—i—1

exists.

» Consequently, if Ly is regular, then we can associate a p-tuple of real numbers (fo, ..., Bp—1)

where for each i,
. Upn—i
,Bi = |lim —=P—

n—+oo Upp—i—1



Alternate bases

Second step: Introduce alternate bases and link them with maximal words of each length in Ly.

» For a tuple B = (fo,...,8p—1), we consider representations of real numbers of the form

a0 al an

~ B * BoBr * BoB152

X

where B, := Bnmod p for all n > 0.
> We use a greedy algorithm to define greedy B-expansions of real numbers dg(x).
» We define the quasi-greedy B-expansion of 1 as dg(1) = lim,_,;- dg(x).

> We get a Parry-kind characterization of allowable sequences: a sequence agaiaz - - - is the
B-expansion of a real number in [0,1) if and only if for all n > 0, one has
@nan+1ant2 - <lex dsn(g)(1) where S"(B) is the shifted base (Bn, Bnt1, - ).

[C-Cisternino 2021]



Lemma
Let U = (Us)n>0 be a positional numeration system with an associated alternate base (o, . . ., Bp—1)-
For all i € {0,...,p — 1}, all lengths ¢ and all large enough indices n, there exists j such that

Pref,(repy(Upn—i — 1)) = Prefo(wi ;)

where the infinite words w; ; are (Bi, . .., Bitp—1)-representations of 1 which are "intermediate" between

the greedy and the quasi-greedy one.

Proposition

Let U be a positional numeration system with a regular numeration language Ly, and let
(Bo, - .., Bp—1) be an associated alternate base.

Then for each i € {0, ..., p — 1}, the quasi-greedy expansion d*,-(B)(l) is ultimately periodic.

Such alternate bases are called Parry.

[C-Kreczman 2025+ ]



Intermediate representations of 1

Let U = (Us)n>0 be defined by Up110 = 16Unys — 9U, for n > 0 and the following initial conditions.

n|0 123 4 5 6 7 8 09
U, |1 2 3 6 10 19 29 48 96 151
Then for i € {0,...,4}, the limits
Bi = lim Usn—i
n—+o0 Usn—i—1

exist, and can be effectively computed.

Set B = (fo, ..., ).



We get the following greedy and quasi-greedy S'(B)-expansions of 1:

i | dsig)(1) i | dsigg(1)

0 [ 11107 0 [ (11010)°

1 11000(10000)“ 1| 11000(10000)*
2 | 20¢ 2 | 1(10110)*

3| 110 3 | (10110)

4| 110¢ 4 | 1011000(10000)“

For i = 0, the intermediate representations are given by
wo1 = 110 - 110¥
woo = 110-10-1110%
wo3 = 110-10-110-110“

We encode the possible interactions of the remainders i € {0,...,p — 1} in a graph G:

© @ @&——0 (®)



Third step: Suppose that U is a positional numeration system with an associated Parry alternate base
(Bos - -+, Bp—1). Then study the regularity of the sub-languages

Ly, :={w € Max(Ly) : |w|=—i (mod p)}
= {repy(Upn—i — 1) : n > 1}

by analyzing all possible interactions between remainders as encoded in the graph G.

© @ @&——0 (®)



Suppose that dsig)(1) = ti1-- - tiq (tig+1- - tigrr)”. Then we define a sequence A; 4, by

q+r

q
(Ai,q,r)n = Upnfi - E ti,sUpnfifs - Upnfifr - E ti,sUpnfifrfs
s=1 s=1

Case 1
Suppose that i has no outgoing edge in the graph G, i.e., dsi(g)(1) is infinite.
The language Ly,; is regular if and only if there exist some q, r such that the sequence Aj g, is

ultimately zero.



Suppose that dgi(g)(1) = ti1-- - tie. Then we define a sequence A; by

4
(Ai)n - Upnfi - Z ti,sUpnfifs~

s=1

Case 2
Suppose that there is a path from i to some vertex with no outgoing edge in the graph G, i.e.,
there exist i1 = i, 2, ..., ix such that

> dSJ(B( ) =ti1- sty forallje{l,...,k—1}

> dsik(B)(l) - d;lk B)( )

* k—1
» de(B)(l) = (Hj:l (tij,l N tijqzijfl(t"jvéij — 1))) dSik(B)(l)'

Suppose that the languages Ly, are regular for all j € {2,..., k}.
The language Ly,; is regular if and only if the sequence A; is ultimately periodic.



Case 3
Suppose that i belongs to a cycle in the graph G, i.e., that there exists i1 = i, i, ..., ik such that

> dSif(B)(l) =t b for all j € {1, .. .,k}

J
« k «
> dsi(B)(l) = (Hj:l(t"jvl "' t"jvfrl(t"jvffj - 1))) .
The languages Ly,i, ..., Lu,i, are all regular if and only if

> the sequences Aj, ..., A, are all ultimately periodic j € {1,..., k}, with a common period M
such that Mp is a multiple of £, + .- + ¢,

» forall j € {1,...,k}, the M sums
(A’j)” + (A"jﬂ)"*’"j,l +oeet (A"j+mk—l)"7’"j,mk—1

Mp

e i
Lip 4+ ’

are all ultimately nonnegative, where m = -

and m;, =

(Here, the indices j in ij are considered modulo k).



Case 4
Suppose that there is a path from i to a cycle in the graph G, i.e., that there exists

=1k, ... 0k, 0k+1,-.., ik such that

> dgi gy (1) =ty -t

sii(8) i forallje{l Sk + K}

* k kK’ @
> dsig(1) = (szl(ti/,l ety (e, — 1))) : (Hj:k+1(f:',-,1 sty -1 (b, — 1))) :

Suppose that the languages Ly, are regular for all j € {2,..., k+ k'}.
The language Ly,; is regular if and only if "a complicated condition holds, but nice enough so that it
can be effectively checked".



Summing up
» All in all, we obtain a characterization of positional numeration systems with a regular
numeration language.
» This characterization is effective.
» It also fills the gap in Hollander's result in the case of a simple Parry dominant root .

Indeed, suppose that ds(1) = d1 - - d; and if U satisfies a linear recurrence relation of
characteristic polynomial (X¢ — 1)Pg 4., for some q, r.

Define the sequence A = (Ap)n>¢ by Ap = Uy — diUn—1 — - -+ — d¢Un—g. In this situation, this
sequence A is ultimately periodic with period r = m¢, which is a multiple of /.

We then get that the numeration language Ly is regular if and only if the £ sums
Dn+Dn o+ + Dy (m1)

are ultimately nonnegative.



Thank youl!



