Regularity of positional numeration systems without a dominant root

Émilie Charlier Joint work with Savinien Kreczman

Département de mathématique, Université de Liège, Belgique

Workshop on Uniform Distribution of Sequences, Vienne 23 avril 2025

Positional numeration systems

Let $U = (U_n)_{n \ge 0}$ be a base sequence, that is, an increasing sequence of integers such that $U_0 = 1$ and the quotients $\frac{U_n}{U_{n-1}}$ are bounded.

A natural number x is represented by the finite word

$$\operatorname{rep}_U(x) = a_{\ell-1} \cdots a_0$$

obtained from the greedy algorithm:

$$x = \sum_{n=0}^{\ell-1} a_n U_n$$

A description of the numeration language

$$L_U = 0^* \{ \operatorname{rep}_U(x) : x \in \mathbb{N} \}$$

strongly depends on the base sequence U.

Regularity of L_U

A fundamental question is the following:

- Given a positional system U, can we decide if the numeration language L_U is regular?
- And even more precisely, can characterize those systems U giving rise to a regular numeration language L_U ?

Linear systems

A necessary condition is that the sequence $U = (U_n)_{n \ge 0}$ is linear, i.e., it must satisfy a linear recurrence relation with integer coefficients: there exist integers c_1, \ldots, c_k such that

$$U_n = c_1 U_{n-1} + c_2 U_{n-2} \cdots + c_k U_{n-k}, \quad \text{for all } n \geq k.$$

A way to see this is:

- Note that, for each n, U_n is the number of words of length n in L_U .
- This implies that the formal series

$$S=\sum_{n\geq 0}U_nX^n$$

is \mathbb{Z} -rational, i.e., $S = \frac{P}{Q}$ for polynomials $P, Q \in \mathbb{Z}[X]$ with Q(0) = 1.

▶ This, in turn, implies that the sequence $(U_n)_{n>0}$ satisfies a linear recurrence relation over \mathbb{Z} .

Hollander's study for dominant root systems

This question was studied by Hollander in 1998 in the case of positional systems $U = (U_n)_{n\geq 0}$ with a dominant root, i.e., such that the limit $\lim_{n\to\infty} \frac{U_n}{U_{n-1}}$ exists and is greater than 1.

A clever observation he made was that it is sufficient to study the regularity of the language made of words of maximal length.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Proposition (Hollander 1998)

 L_U is regular $\iff Max(L_U) := {rep}_U(U_n - 1) : n \ge 0 \}$ is regular.

He also showed the following necessary condition:

Proposition (Hollander 1998)

If U has a dominant root $\beta > 1$ and if L_U is regular, then β is a Parry number.

Some intuition for these two arguments

Proposition (Hollander 1998)

 L_U is regular $\iff Max(L_U) := {rep}_U(U_n - 1) : n \ge 0 \}$ is regular.

The implication

$$L$$
 regular $\implies Max(L)$ regular

is true for any language. See [Shallit 1994] for a nice short proof.

- The other direction does not work in general.
- The point here is to prove that the converse is true for numeration languages. This is due to the following property of numeration languages:

$$w \in L_U \iff$$
 for all $s \in Suff(w)$, $s \leq_{lex} rep_U(U_{|s|} - 1)$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Proposition (Hollander 1998)

If U has a dominant root $\beta > 1$ and if L_U is regular, then β is a Parry number.

Here, the key observation is:

lf $d_{\beta}(1)$ is infinite, then

$$\lim_{n\to\infty}\operatorname{rep}_U(U_n-1)=d_\beta(1).$$

▶ If $d_{\beta}(1) = d_1 \cdots d_{\ell}$ with $d_{\ell} \neq 0$, then for all lengths *L* and all large enough indices *n*, there exists $j \ge 0$ such that

$$\operatorname{Pref}_{L}(\operatorname{rep}_{U}(U_{n}-1)) = \operatorname{Pref}_{L}(\mathbf{w}_{j})$$

where $\mathbf{w}_j = (d_1 \cdots d_{\ell-1}(d_\ell - 1))^j d_1 \cdots d_\ell 0^\omega$.

We will refer to these words \mathbf{w}_i as the "intermediate" β -representations of 1.

β -polynomials

In order to give Hollander's full statement, we need to introduce the notion of β -polynomials. Suppose that $d_{\beta}^*(1) = t_1 \cdots t_q (t_{q+1} \cdots t_{q+r})^{\omega}$, then the polynomial

$$\boldsymbol{P}_{\boldsymbol{\beta},\boldsymbol{q},\boldsymbol{r}} = \left(\boldsymbol{X}^{\boldsymbol{q}+\boldsymbol{r}} - \sum_{i=1}^{\boldsymbol{q}+\boldsymbol{r}} t_i \boldsymbol{X}^{\boldsymbol{q}+\boldsymbol{r}-i} \right) - \left(\boldsymbol{X}^{\boldsymbol{q}} - \sum_{i=1}^{\boldsymbol{q}} t_i \boldsymbol{X}^{\boldsymbol{q}-i} \right).$$

is called a β -polynomial.

For q, r minimal, we get the canonical β -polynomial, simply denoted P_{β} .

Note that in the case where $d_\beta(1) = d_1 \cdots d_\ell$ with $d_\ell \neq 0$, then as $d^*_\beta(1) = (d_1 \cdots d_{\ell-1}(d_\ell - 1))^\omega$, we simply get

$$P_{eta}=X^{\ell}-\sum_{i=1}^{\ell}d_iX^{\ell-i}.$$

Theorem (Hollander 1998)

Let U be a positional numeration system with a dominant root $\beta > 1$.

- If L_U is regular, then β is a Parry number.
- Case where $d_{\beta}(1)$ is infinite.
 - L_U is regular if and only if U satisfies a linear recurrence relation of characteristic polynomial P_{β,q,r} for some q, r.
- Case where $d_{\beta}(1) = d_1 \dots d_{\ell}$ with $d_{\ell} \neq 0$.
 - If U satisfies a recurrence relation of characteristic polynomial $P_{\beta,q,r}$ for some q, r, then L_U is regular.
 - If L_U is regular, then the base sequence U satisfies a linear recurrence relation of characteristic polynomial (X^ℓ − 1)P_{β,q,r} for some q, r.

Getting rid of the dominant root condition

First step: Exploit the positiveness of the generating series.

- ▶ If L_U is regular, then the series $\sum_{n\geq 0} U_n X^n$ is \mathbb{N} -rational (and not just \mathbb{Z} -rational).
- By a result of Soittola from 1976, we know that if a Z-rational series has nonnegative coefficients and a dominating eigenvalue, then it is N-rational.
- ▶ Conversely, we can derive from another result of Soittola that if a series $\sum_{i\geq 0} s_n X^n$ is \mathbb{N} -rational, then there exists some $p \geq 1$ such that for each $i \in \{0, ..., p-1\}$, the limit

$$\lim_{n \to +\infty} \frac{s_{pn-i}}{s_{pn-i-1}}$$

exists.

Consequently, if L_U is regular, then we can associate a *p*-tuple of real numbers $(\beta_0, \ldots, \beta_{p-1})$ where for each *i*,

$$\beta_i := \lim_{n \to +\infty} \frac{U_{pn-i}}{U_{pn-i-1}}.$$

Alternate bases

Second step: Introduce alternate bases and link them with maximal words of each length in L_U .

For a tuple $B = (\beta_0, \dots, \beta_{p-1})$, we consider representations of real numbers of the form

$$x = \frac{a_0}{\beta_0} + \frac{a_1}{\beta_0\beta_1} + \frac{a_2}{\beta_0\beta_1\beta_2} + \cdots$$

where $\beta_n := \beta_{n \mod p}$ for all $n \ge 0$.

- We use a greedy algorithm to define greedy *B*-expansions of real numbers $d_B(x)$.
- We define the quasi-greedy *B*-expansion of 1 as $d_B^*(1) = \lim_{x \to 1^-} d_B(x)$.
- ▶ We get a Parry-kind characterization of allowable sequences: a sequence $a_0a_1a_2\cdots$ is the *B*-expansion of a real number in [0, 1) if and only if for all $n \ge 0$, one has $a_na_{n+1}a_{n+2}\cdots <_{\text{lex}} d^*_{S^n(B)}(1)$ where $S^n(B)$ is the shifted base $(\beta_n, \beta_{n+1}, \ldots)$.

[C-Cisternino 2021]

Lemma

Let $U = (U_n)_{n \ge 0}$ be a positional numeration system with an associated alternate base $(\beta_0, \ldots, \beta_{p-1})$. For all $i \in \{0, \ldots, p-1\}$, all lengths ℓ and all large enough indices n, there exists j such that

 $\operatorname{Pref}_{\ell}(\operatorname{rep}_{U}(U_{pn-i}-1)) = \operatorname{Pref}_{\ell}(\mathbf{w}_{i,j})$

where the infinite words $\mathbf{w}_{i,j}$ are $(\beta_i, \ldots, \beta_{i+p-1})$ -representations of 1 which are "intermediate" between the greedy and the quasi-greedy one.

Proposition

Let U be a positional numeration system with a regular numeration language L_U , and let $(\beta_0, \ldots, \beta_{p-1})$ be an associated alternate base. Then for each $i \in \{0, \ldots, p-1\}$, the quasi-greedy expansion $d^*_{S^i(B)}(1)$ is ultimately periodic.

Such alternate bases are called Parry.

[C-Kreczman 2025+]

Intermediate representations of 1

Let $U = (U_n)_{n \ge 0}$ be defined by $U_{n+10} = 16U_{n+5} - 9U_n$ for $n \ge 0$ and the following initial conditions.

Then for $i \in \{0, \ldots, 4\}$, the limits

$$\beta_i := \lim_{n \to +\infty} \frac{U_{5n-i}}{U_{5n-i-1}}$$

exist, and can be effectively computed.

Set $B = (\beta_0, \ldots, \beta_4)$.

We get the following greedy and quasi-greedy $S^{i}(B)$ -expansions of 1:

For i = 0, the intermediate representations are given by

$$\begin{split} \textbf{w}_{0,1} &= 110 \cdot 110^{\omega} \\ \textbf{w}_{0,2} &= 110 \cdot 10 \cdot 1110^{\omega} \\ \textbf{w}_{0,3} &= 110 \cdot 10 \cdot 110 \cdot 110^{\omega} \end{split}$$

We encode the possible interactions of the remainders $i \in \{0, ..., p-1\}$ in a graph *G*:

Third step: Suppose that U is a positional numeration system with an associated Parry alternate base $(\beta_0, \ldots, \beta_{p-1})$. Then study the regularity of the sub-languages

$$egin{aligned} & L_{U,i} := \{ w \in \operatorname{Max}(L_U) : |w| \equiv -i \pmod{p} \} \ & = \{ \operatorname{rep}_U(U_{pn-i}-1) : n \geq 1 \} \end{aligned}$$

by analyzing all possible interactions between remainders as encoded in the graph G.

Suppose that $d_{S^i(B)}(1) = t_{i,1} \cdots t_{i,q} (t_{i,q+1} \cdots t_{i,q+r})^{\omega}$. Then we define a sequence $\Delta_{i,q,r}$ by

$$(\Delta_{i,q,r})_n = \left(U_{pn-i} - \sum_{s=1}^{q+r} t_{i,s} U_{pn-i-s}\right) - \left(U_{pn-i-r} - \sum_{s=1}^{q} t_{i,s} U_{pn-i-r-s}\right).$$

Case 1

Suppose that *i* has no outgoing edge in the graph *G*, i.e., $d_{S^i(B)}(1)$ is infinite.

The language $L_{U,i}$ is regular if and only if there exist some q, r such that the sequence $\Delta_{i,q,rp}$ is ultimately zero.

Suppose that $d_{S^i(B)}(1) = t_{i,1} \cdots t_{i,\ell}$. Then we define a sequence Δ_i by

$$(\Delta_i)_n = U_{pn-i} - \sum_{s=1}^{\ell} t_{i,s} U_{pn-i-s}.$$

Case 2

Suppose that there is a path from *i* to some vertex with no outgoing edge in the graph *G*, i.e., there exist $i_1 = i, i_2, ..., i_k$ such that

$$d_{S^{i_j}(B)}(1) = t_{i_j,1} \cdots t_{i_j,\ell_{i_j}} \text{ for all } j \in \{1, \ldots, k-1\}$$
 $d_{S^{i_k}(B)}(1) = d^*_{S^{i_k}(B)}(1)$
 $d^*_{S^{i}(B)}(1) = \left(\prod_{j=1}^{k-1} (t_{i_j,1} \cdots t_{i_j,\ell_{i_j}-1}(t_{i_j,\ell_{i_j}}-1))\right) d_{S^{i_k}(B)}(1).$

Suppose that the languages L_{U,i_j} are regular for all $j \in \{2, ..., k\}$. The language $L_{U,i}$ is regular if and only if the sequence Δ_i is ultimately periodic.

Case 3

Suppose that *i* belongs to a cycle in the graph *G*, i.e., that there exists $i_1 = i, i_2, \ldots, i_k$ such that

$$\blacktriangleright \ d_{S^{i_j}(B)}(1) = t_{i_j,1} \cdots t_{i_j,\ell_{i_j}} \text{ for all } j \in \{1,\ldots,k\}$$

$$\blacktriangleright \ d^*_{\mathcal{S}^i(B)}(1) = \left(\prod_{j=1}^k (t_{i_j,1} \cdots t_{i_j,\ell_{i_j}-1}(t_{i_j,\ell_{i_j}}-1)) \right)^{\omega}.$$

The languages $L_{U,i_1}, \ldots, L_{U,i_k}$ are all regular if and only if

► the sequences $\Delta_{i_1}, \ldots, \Delta_{i_k}$ are all ultimately periodic $j \in \{1, \ldots, k\}$, with a common period M such that Mp is a multiple of $\ell_{i_1} + \cdots + \ell_{i_k}$

• for all
$$j \in \{1, \ldots, k\}$$
, the M sums

$$(\Delta_{i_j})_n + (\Delta_{i_{j+1}})_{n-m_{j,1}} + \cdots + (\Delta_{i_{j+mk-1}})_{n-m_{j,mk-1}}$$

are all ultimately nonnegative, where $m = \frac{Mp}{\ell_{i_1} + \dots + \ell_{i_k}}$ and $m_{j,h} = \frac{i_j + \ell_{i_j} + \dots + \ell_{i_{j+h-1}} - i_{j+h}}{p}$.

(Here, the indices j in i_j are considered modulo k).

Case 4

Suppose that there is a path from *i* to a cycle in the graph *G*, i.e., that there exists $i_1 = i, i_2, \ldots, i_k, i_{k+1}, \ldots, i_{k+k'}$ such that

$$\begin{array}{l} \bullet \quad d_{S^{i_{j}}(B)}(1) = t_{i_{j},1} \cdots t_{i_{j},\ell_{i_{j}}} \text{ for all } j \in \{1,\ldots,k+k'\} \\ \bullet \quad d^{*}_{S^{i}(B)}(1) = \left(\prod_{j=1}^{k} (t_{i_{j},1} \cdots t_{i_{j},\ell_{i_{j}}-1}(t_{i_{j},\ell_{i_{j}}}-1))\right) \cdot \left(\prod_{j=k+1}^{k+k'} (t_{i_{j},1} \cdots t_{i_{j},\ell_{i_{j}}-1}(t_{i_{j},\ell_{i_{j}}}-1))\right)^{\omega}. \end{array}$$

Suppose that the languages L_{U,i_j} are regular for all $j \in \{2, \ldots, k + k'\}$.

The language $L_{U,i}$ is regular if and only if "a complicated condition holds, but nice enough so that it can be effectively checked".

Summing up

- All in all, we obtain a characterization of positional numeration systems with a regular numeration language.
- This characterization is effective.
- \blacktriangleright It also fills the gap in Hollander's result in the case of a simple Parry dominant root β .

Indeed, suppose that $d_{\beta}(1) = d_1 \cdots d_{\ell}$ and if U satisfies a linear recurrence relation of characteristic polynomial $(X^{\ell} - 1)P_{\beta,q,r}$ for some q, r.

Define the sequence $\Delta = (\Delta_n)_{n \ge \ell}$ by $\Delta_n = U_n - d_1 U_{n-1} - \cdots - d_\ell U_{n-\ell}$. In this situation, this sequence Δ is ultimately periodic with period $r = m\ell$, which is a multiple of ℓ .

We then get that the numeration language L_U is regular if and only if the ℓ sums

$$\Delta_n + \Delta_{n-\ell} + \cdots + \Delta_{n-(m-1)\ell}$$

are ultimately nonnegative.

Thank you!

<□> <0</p>