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The Rauzy-Veech continued fraction

The Brun continued fraction

Aim of the talk

I Continued fractions : a way to approximate numbers (or
vectors) by a particular type of fractions;

I But also a way to zoom on a family of recurrent dynamical
systems stable by induction,

I associated with a scenery flow and an explicit symbolic coding.

I Two classical examples : the geodesic flow on the modular
surface and the Teichmüller geodesic flow

I A new example: Brun’s continued fraction
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The traditional (projective) viewpoint

I Write x as

x = a0 +
1

a1 +
1

a2 +
1

· · ·
I Hence a0 = [x ], x0 = x − [x ] = {x}
I an = [ 1

xn−1
] and xn = { 1

xn−1
}

I T (x) = { 1x } Gauss map

I And lots of classical formulas
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The linear viewpoint

I Consider two lengths (or quantities) u, v , with u > v

I We want to find a common measure m (if possible)

I Use Euclid’s algorithm and measure u by v :

I a0 = [u/v ], u1 = u − a0v , v1 = v

I Exchange the role of u and v and iterate
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The linear viewpoint

I We obtain(
u
v

)
=

(
1 a0
0 1

)(
1 0
a1 1

)(
1 a2
0 1

)(
1 0
a3 1

)(
u4
v4

)
I and so on

I projectivising these equalities, we recover the previous formula.

I Euclid’s algorithm extended to the incommensurable case.

I We get the best approximations of the direction

(
u
v

)
by

integer vectors
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The dynamical viewpoint

I A rotation on the circle can be seen as an exchange of two
intervals

I

I The first return map to the largest interval is again a rotation!

I We can zoom in the dynamics of the rotation

I and recover the previous formulas
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The dynamical viewpoint

I Two very different dynamics:

I The rotation (one-to-one, invertible, entropy zero)

I The Gauss map, zooming in on the rotation

I many-to-one, not invertible, chaotic, unstable, positive entropy
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Natural extension and suspension (1)

I We want to zoom out

I Add a second dimension, as suspension of the rotation

I and get a linear flow on a flat torus with a cutting and
stacking dynamics

I We get a model of the natural extension of the Gauss map.

I Explicit formula : (x , y) 7→ ({ 1x }, x − x2y)

I which preserves Lebesgue measure
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Natural extension and suspension (2)

I We build a suspension of this natural extension

I Domain of the flow turns out to be SL(2,Z)\SL(2,R)

I Unit tangent bundle of the modular surface

I The link between continued fraction and the modular surface
has been known for at least one century:

I Artin (1924), followed by Adler, Flatto, Series and many
others
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Symbolic dynamics : sturmian sequences

I One can build a completely symbolic model :

I coding by the two intervals = sturmian sequences

I sequences of minimal complexity, rotation sequences, square
billiard sequences ...

I Any sturmian sequence has an isolated letter

I it can be recoded to a shorter sequence by removing the letter
following the isolated letter
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Symbolic dynamics : adic systems

I Denote σ0 : 0 7→ 0 1 7→ 10 and σ1 : 0 7→ 01 1 7→ 1

I Any sturmian sequence u can be (up to the first letter)
written u = σiv , with i = 0 or i = 1.

I We can recode v , and so on, and get a sequence σa00 σ
a1
1 σ

a2
0 . . .

I A discrete version of the usual continued fraction

I Here, we only recover all known classical results

12 / 30



The usual continued fraction and the modular surface
The Rauzy-Veech continued fraction

The Brun continued fraction

Symbolic dynamics : adic systems

I Denote σ0 : 0 7→ 0 1 7→ 10 and σ1 : 0 7→ 01 1 7→ 1

I Any sturmian sequence u can be (up to the first letter)
written u = σiv , with i = 0 or i = 1.

I We can recode v , and so on, and get a sequence σa00 σ
a1
1 σ

a2
0 . . .

I A discrete version of the usual continued fraction

I Here, we only recover all known classical results

12 / 30



The usual continued fraction and the modular surface
The Rauzy-Veech continued fraction

The Brun continued fraction

Symbolic dynamics : adic systems

I Denote σ0 : 0 7→ 0 1 7→ 10 and σ1 : 0 7→ 01 1 7→ 1

I Any sturmian sequence u can be (up to the first letter)
written u = σiv , with i = 0 or i = 1.

I We can recode v , and so on, and get a sequence σa00 σ
a1
1 σ

a2
0 . . .

I A discrete version of the usual continued fraction

I Here, we only recover all known classical results

12 / 30



The usual continued fraction and the modular surface
The Rauzy-Veech continued fraction

The Brun continued fraction

Symbolic dynamics : adic systems

I Denote σ0 : 0 7→ 0 1 7→ 10 and σ1 : 0 7→ 01 1 7→ 1

I Any sturmian sequence u can be (up to the first letter)
written u = σiv , with i = 0 or i = 1.

I We can recode v , and so on, and get a sequence σa00 σ
a1
1 σ

a2
0 . . .

I A discrete version of the usual continued fraction

I Here, we only recover all known classical results

12 / 30



The usual continued fraction and the modular surface
The Rauzy-Veech continued fraction

The Brun continued fraction

Symbolic dynamics : adic systems

I Denote σ0 : 0 7→ 0 1 7→ 10 and σ1 : 0 7→ 01 1 7→ 1

I Any sturmian sequence u can be (up to the first letter)
written u = σiv , with i = 0 or i = 1.

I We can recode v , and so on, and get a sequence σa00 σ
a1
1 σ

a2
0 . . .

I A discrete version of the usual continued fraction

I Here, we only recover all known classical results

12 / 30



The usual continued fraction and the modular surface
The Rauzy-Veech continued fraction

The Brun continued fraction

Some images

Three views of the geodesic flow on the modular surface,
by Edmund Harriss

I As a cutting and stacking construction

I As a geodesic flow on the hyperbolic plane

I As a flow of deformation of lattices
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From rotation to IET

I Instead of permuting 2 intervals (rotations), why not permute
3, 4, . . . , k, . . . intervals?

I We get interval exchanges on k intervals, (k-IET) studied
since at least the 60s, first in Russia

I as an interesting generalisation of rotations AND first return
map of the flow of a closed 1-form (already known to
Poincaré)

I This is linked to the conformal structures on Riemann surface

I And the theory of deformations of flat singular surfaces
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I This is linked to the conformal structures on Riemann surface

I And the theory of deformations of flat singular surfaces

14 / 30



The usual continued fraction and the modular surface
The Rauzy-Veech continued fraction

The Brun continued fraction

From rotation to IET

I Instead of permuting 2 intervals (rotations), why not permute
3, 4, . . . , k, . . . intervals?

I We get interval exchanges on k intervals, (k-IET) studied
since at least the 60s, first in Russia

I as an interesting generalisation of rotations AND first return
map of the flow of a closed 1-form (already known to
Poincaré)
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I This is linked to the conformal structures on Riemann surface

I And the theory of deformations of flat singular surfaces

14 / 30



The usual continued fraction and the modular surface
The Rauzy-Veech continued fraction

The Brun continued fraction

Rauzy-Veech induction

I A fundamental observation is that the first return map on a
suitable intervals of a k-IET is again a k-IET.

I This gives a continued fraction, linear in dimension k (or
projective in dimension k − 1)

I This is the Rauzy - Veech induction (with all its many
variants).

I Here, we start from a family stable by induction

I to build a Gauss map and a new continued fraction.
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Natural extension and suspensions: flat surfaces and the
Teichmüller geodesic flow

I We can suspend the IET to obtain Zippered Rectangles and
flat surfaces

I In this way, we obtain any conformal structure on an
orientable surface, and any closed 1-form.

I acting by the diagonal flow, we can zoom in the IET

I and recover an explicit model of the elusive Teichmüller
geodesic flow.

I The periodic orbits are of course specially interesting
(pseudo-Anosov maps)
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Brun continued fraction: the linear version

I Brun continued fraction in dimension 3 acts on triple of
positive numbers (x , y , z)

I It substracts the second largest from the largest; if x > y > z ,
then

I T (x , y , z) = (x − y , y , z)

I and similar formula in the 5 other cases.

I one can define an associated projective map on the simplex
x + y + z = 1 by

I (x , y , z) 7→ ( x−y
1−y ,

y
1−y ,

z
1−y )

I or many other possible formulas
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The usual continued fraction and the modular surface
The Rauzy-Veech continued fraction

The Brun continued fraction

Sequences of matrices (1)

I To any initial triple P0 = (x0, y0, z0), one can associate a
sequence of points Pn = (xn, yn, zn) = T n(P0)

I and a sequence of matrices M1, . . . ,Mn such that
Pn = MnPn+1 (subject to a Markov condition)

I The Mn are positive elementary matrices, hence the products
Mj ,n = MjMj+1 . . .Mn−1 are growing for fixed j

I For almost any P0, the sequence Mn is primitive: for any j ,
Mj ,n is strictly positive for n large enough.
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Sequences of matrices (2)

I Hence, we have a generalised Perron-Frobenius theorem:

I for almost all P0, the image by M0,n of the positive cone is a
decreasing sequence of cones converging to a line

I This defines the generalised Perron eigenvector associated
with the sequence Mn.

I A small miracle: under weak conditions, this eigenvector is
totally irrational!
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The usual continued fraction and the modular surface
The Rauzy-Veech continued fraction

The Brun continued fraction

A family of dynamical systems: the problem

I We would like to associate a family of dynamical systems
which is stable by induction;

I The simplest idea would be to consider the rotations of the
2-torus

I But there is a problem: Any periodic trajectory for Brun’s
algorithm will define a self-induced translation on the 2-torus

I And by a simple construction, a Markov partition for a linear
automorphism of the 3-torus

I But a theorem of Bowen says that any such partition has
fractal boundary

I So, any such domain cannot be defined by a simple explicit
formula.
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A family of dynamical systems: a possible solution

I The solution is known for some particular matrices in the
periodic case: use symbolic dynamics (Rauzy fractal).

I To any elementary matrice M, associate the unique
substitution σM which fixes the first letter

I To a sequence Mn of matrices given by Brun’s algorithm, one
can associate a sequence of substitution σn

I By primitivity, this defines a unique generalised fixed point
starting with a given letter a, and a unique minimal symbolic
system.

I To the fixed point, one can associate a stepped line in R3

I Which admits the generalised eigenvector as asymptotic
direction.
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A family of dynamical systems: a possible solution
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Sequences of matrices (3) : Pisot condition

I the sequence Mn satisfies a much stronger condition : the
generalised Pisot condition

I for such a sequence Mn, one can define the Lyapunov
exponents, constant a.e. by ergodicity

I for Brun’s algorithm in projective dimension 2 and 3, the
second exponent is strictly negative a.e.

I This is the generalised Pisot condition

I It implies that the stepped line stays within bounded distance
from the bounded line

I Hence its projection on a transversal plane along the
asymptotic line is a bounded set with compact closure
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Sequences of matrices (4) : irrationality

I Since the generalised eigenvector is totally irrational

I the projection π of Z3 along this vector on any transverse
plane is dense
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S-adic sequences: covering property

I Let ∆ the diagonal subgroup of Z3

I Let L be the stepped line associated to a fixed point

I The stepped lines L + δ, for δ ∈ ∆, form a partition of Z3

I Hence the closure of the projection R = π(L) has a nonempty
interior,

I and the R+ δ cover the plane with a finite degree
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Rotations (1)

I Let H be the diagonal plane x + y + z = 0

I H/∆ is a torus

I All the basis vectors project to the same element v of H/Delta

I Hence the projection of the stepped line is the orbit of the
rotation by v on this torus.
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