Geometric tensors via spectral functionals

Ludwik Dabrowski
SISSA, Trieste (1)

Given a Laplace operator we use the noncommutative residue
to define certain functionals of vector fields which yield metric
and Einstein tensors. Alternatively, given a Dirac operator we
define dual metric and Einstein functionals of differential forms,
and also Ricci and torsion functionals. We generalise these
concepts in non-commutative geometry and show e.g. that for
the conformally rescaled noncommutative 2-torus the Einstein
and the torsion functionals vanish. Also the Hodge-de Rham,
Einstein-Yang-Mills and quantum SU(2) group spectral triples
are torsion free, while the quantum 2-sheeted space has torsion.
[Adv.Math. 427,1091286, 2023; Commun.Math.Phys. 130, 2024

and DOI10.4171/JNCG/573 (2024) with A.Sitarz and P. Zalecki].
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Spectral Geometry:

Can one hear the shape of a drum?
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Spectral Geometry:

Can one hear the shape of a drum?

An eminent spectral scheme that generates geometric objects
on Riemannian manifolds (volume, scalar curvature ...)
is t \, 0 asymptotic expansion of the trace of heat kernel

—tA > £—n
Tre %Zt 2 ay.
=0

Here the scalar laplacian A for metric g = {g;1} reads
1 :
A= ————0;(\/det(g)g""0}). (1)

\/det(g)
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Spectral Geometry:

Can one hear the shape of a drum?

An eminent spectral scheme that generates geometric objects
on Riemannian manifolds (volume, scalar curvature ...)
is t \, 0 asymptotic expansion of the trace of heat kernel

—tA > £—n
Tre %Zt 2 ay.
=0

Here the scalar laplacian A for metric g = {g;1} reads

A= _dit@aj( det(g)g’* 0. (1)

The coefficients ay can be transmuted into some values or residues

of the zeta function of A, and in turn expressed using the
noncommutative (Wodzicki) residue W

1 mn
W(P) = wl(S‘)/M </|£:1tra_n(P)(:c,§) v§> &'z, (2)

— residues 3/29



Geometry from residues:

Then, for P = A
W(A™™) = vol(M),

and in the localized form (as a functional of f € C*°(M))

V(f):=W(fA™™) = /Mf voly.
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Geometry from residues:

Then, for P = A
W(A™™) = vol(M),

and in the localized form (as a functional of f € C*°(M))
V(f) =W(A™) = /Mf voly.

A. Connes divulged in 90s a startling result, confirmed by Kastler
and by Kalau-Walze:
, )
wa-mHy =1 / R wvol,, (3)
12 )y
which is o the Einstein-Hilbert action functional (of g)
for the Riemannian general relativity (in vacuum).

Here R is the scalar curvature ' '
R = R(9) = ¢*Rjx = ¢* Reju.

A localised form of (3) is the scalar curvature functional on C*(M)
R(f) :== W(fA~™ ) 7 / fRwvol,. (4)
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% This is related to the asymptotic growth of eigenvalues of A;
clear e.g. from the Connes "trace thm.” that W= TrT. P
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% This is related to the asymptotic growth of eigenvalues of A;
clear e.g. from the Connes "trace thm.” that W= TrT. P

% We have uncovered few new spectral 'localised’ functionals,
by placing some differential operators in place of f.

Let's start e.g. with a pair of vector fields V' and W on M,
viewed as derivations of C*°(M):

— new fnls 5/29



New functionals

Def/Thm: Metric functional

The functional

g2 (V, W) := W(VWA™™)

is a bilinear, symmetric map, whose density is proportional to the
metric g evaluated on V,W

1
VW)=~ [ gv.w)ool,
nJM
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New functionals
Def/Thm: Metric functional

The functional

g2 (V, W) := W(VWA™™)

is a bilinear, symmetric map, whose density is proportional to the
metric g evaluated on V,W

1
g2 (V, W) :—/ g(V, W) wol,,.
nJm

Def/Thm: Einstein functional

The functional

GA(V,W) :=W(VIWA™™), (5)

is a bilinear, symmetric map, whose density is proportional to the
Einstein tensor G:= Ric— lRg evaluated on V. W

CAV, W) = /GVW)UOZ

w
B 6/29



Algebra of symbols of pseudodifferential operators:

—)8l
o(PQ)w.6) = 3 T 5o (P8 550 (6)
B
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Algebra of symbols of pseudodifferential operators:

—)8l
o(PQ)w.6) = 3 T S0 (P)w.8) 550 Q)w.6)
B

Taylor expansion in normal coordinates z:

metric 1
Gab = 5ab - gRacbdl‘de + 0(‘$|2),

volume element
1
det(g) = 1~ = Rapa®a® + ofjaf?),
and Levi-Civita symbol
be(®) = _g(Rabcd + Rocpa)® + o(|z[?).

where R,qpq and Ry, are the values at = = 0.

(6)

— pf2
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Consequently, o(A) = ag + a1, where

1
as =(5ab + *Racbdlicxd)faéb + o(|z[?),
3 (10)

21
ai :§Rab$a§b + 0(‘53‘2)-

Next we compute the first three leading symbols of A1,
and then of A™%, & > 0, up to order resp. o(|z|?),o(|z]),o(1):

o(AF) = cop + copp1 + Coppa + ..o,

ok ko oo
ok = |Ig)I 7 <6ab— 3 Racha :cd> €abo +o(|2]),
o 2k
T slggpre

E(k+1
C2k42 = 3|T§H%+)4Rab§a§b + o(1).

Rapz"€q + o(|z]), (11)

Now the composition with o(V' W) shows the statements. [J

— Laplace-type 8/29



Laplace-type, Spin Laplacian, squared Dirac
More generally, we've treated Laplace-type operators
Arp=—9"(VoVy —T5 V) + E
on a vector bundle = with connection V and F € End =.
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Laplace-type, Spin Laplacian, squared Dirac

More generally, we've treated Laplace-type operators
Arg=—g"(V,Vy, —T4 V) + E
on a vector bundle = with connection V and E € End =.
A particular interesting case is a spin, manifold M with =
a spinor bundle X of rank 2™ and the spin Laplacian
AW = vy = _yEvE 4 vE) (12)
where V(%) is the spin connection and ej is ON frame:

Proposition
(s) S S S)\—m— m

g (VW) = W(VPVR(A)m1) = 2mgt (v, ),

AV, W) == W(VP V(AL ™) = 2mGA(V, W) +0.

(13)
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Laplace-type, Spin Laplacian, squared Dirac

More generally, we've treated Laplace-type operators
Arg=—g"(V,Vy, —T4 V) + E
on a vector bundle = with connection V and E € End =.
A particular interesting case is a spin, manifold M with =
a spinor bundle ¥ of rank 2™ and the spin Laplacian
AW = vy = _yEvE 4 vE) (12)
where V(%) is the spin connection and ej is ON frame:

Proposition
g (VW) == W(VP Vi (A®) ™) = 2mgB (v, ),
G2V, W) = W(VE VD (A®)~™) = 2mGA(V, W)+0.
or squared Dirac (coupled do U(1)-gauge 1-form A):

(13)

Proposition

gPA(V, W)= WYV | DA "2) = 27 (V, W),
GPA(V, W) := WV V) DA™
—gm (GA(V, W) + 2—3/Rg(v, W)volg).
M
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Go quantum (= noncommutative)

Noncommutative tori are prominent examples of quantum spaces.

Their smooth algebra A = C*°(T}), generated by n unitaries Uy,
UjUk = (5jkei9UkU*,

has a faithful state 7 invariant under derivations ¢;, 0;U}, = ;U

which are interpreted as noncommutative vector fields.

Oneregards A = )~ 67 on H=L?(T,7) as 'flat’ Laplace operator,
D =3";476; on H = L*(Tj,7)®C*" as 'flat’ Dirac operator

and the A-bimodule Qp(A) generated by [D, A], as 1-forms. .
They generalise to the (non-flat) conformally rescaled geometry:
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Go quantum (= noncommutative)

Noncommutative tori are prominent examples of quantum spaces.

Their smooth algebra A = C“(’]I‘gg, generated by n unitaries U;
UjUk = jkez UkUj,

has a faithful state 7 invariant under derivations ¢;, 0;U}, = ;U

which are interpreted as noncommutative vector fields.

Oneregards A = )~ 67 on H=L?(T,7) as 'flat’ Laplace operator,
D =3";476; on H = L*(Tj,7)®C*" as 'flat’ Dirac operator

and the A-bimodule Qp(A) generated by [D, A], as 1-forms. .
They generalise to the (non-flat) conformally rescaled geometry:

For simplicity consider the strictly irrational T} (i.e., Z(A)=C)
with 7 extended to A:= A ® A° as 7(a®b°) = 7(a)7(b°),

where A° is a copy of A in the commutant A’ of A in B(H).
Such 7 is still invariant under the extended derivations.

We use it to define the tracial state YW on A-valued symbols a(€)
(where §, — &, much the same as for M).

10/29



Rescaled NC 2-torus: vector fields

Given 0 < h € C*(T%), by a conformally rescaled A on T?
we mean the selfadjoint operator on H = L?(T%,7):

L)
A =h"tARTL
Accordingly, as vector fields we take

Vi= Y V!, V*eC.
a=1,2

Proposition

g2 (Vi W) = W(ViWR A ?) = nr(RH)VeWe,
whereas
GA» (Vi Wh) = W(ViWR ALY = 0.
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Rescaled NC 2-torus: vector fields

Given 0 < h € C*(T%), by a conformally rescaled A on T?
we mean the selfadjoint operator on H = L?(T%,7):

'
Ay =h7'ARL

Accordingly, as vector fields we take

Vi= Y V!, V*eC.
a=1,2

Proposition

g2 (Vi W) = W(ViWR A ?) = nr(RH)VeWe,
whereas
GA» (Vi Wh) = W(ViWR ALY = 0.

We have also computed ']I‘f;.
Can do also 6-deformed spaces, or NC spaces with derivations.
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Alternatively ...

— 1-forms 12/29



Spectral functionals on 1-forms

Now use D on spinors in a two-fold way to get (in terms of W)
certain "dual functionals” which are bilinear on 1-forms (co-vectors)
and yield contravariant tensors (with "raised indices”).
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Spectral functionals on 1-forms

Now use D on spinors in a two-fold way to get (in terms of W)
certain "dual functionals” which are bilinear on 1-forms (co-vectors)
and yield contravariant tensors (with "raised indices”).

For that need to represent 1-forms v as differential operators.

On a spin.c manifold M use the Clifford representation of v as
O-order differential operators € End().

As known they form a C°%(M)-bimodule Q) ~ Q(M)

generated by commutators of D with functions.

Thus the spinorial Dirac operator is self-sufficient for our purposes
(and NCG-ready when assembled to a spectral triple of A. Connes),
so comes now in its grandeur

— fnls
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Metric and Einstein functionals on 1-forms

The spectral functionals of one-forms on M
gp(v,w) :=W(owD™™),
Gp(v,w) == W(&(Dw +wD)D ") (14)
= W((Dbd +9D)d D~ "),
read
gp(v,w) = Qm/ g(v,w) volg,
e (15)
Gp(v,w) = = /M G(v,w) volg,

where G = Ric — %Rg is the contravariant Einstein tensor.

They perfectly (dually) match g and G* up to 2™.
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Metric and Einstein functionals on 1-forms

The spectral functionals of one-forms on M
gp(v,w) :=W(owD™™),
Gp(v,w) == W(&(Dw +wD)D ") (14)
= W((Dbd +9D)d D~ "),
read
gp(v,w) = Qm/ g(v,w) volg,
e (15)
Gp(v,w) = = /M G(v,w) volg,

where G = Ric — %Rg is the contravariant Einstein tensor.

They perfectly (dually) match g and G* up to 2™.

Actually,
Ricp (v, w):= W(8(Db + 250 D)D~"+) = 22 [} Ric(v,w) voly. |

— torus 14/29



Rescaled noncommutative 2-torus: 1-forms

The above functionals extend to NC spaces:
As the conformal rescaling of D on T} we take on H

Dy, = kDE,

following Connes-Moscovici, however with 0 < k € A° C A/,
which assures that (A, Dy, H) is a spectral triple and 3 Q})k(A). .

In effect, Qbk(A) is freely generated by k2~7.
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Rescaled noncommutative 2-torus: 1-forms

The above functionals extend to NC spaces:
As the conformal rescaling of D on T} we take on H

Dy, = kDE,

following Connes-Moscovici, however with 0 < k € A° C A/,
which assures that (A, Dy, H) is a spectral triple and 3 Q})k(A). .
In effect, Qbk(A) is freely generated by k2~7.

For n=2, fyj:aj, and for Tg we have

Proposition

For v = k2vig9 and w = k2wio7, vj,wj €A,
gp, (v,w) = T(w’),

whereas
Gp, (v,w)=0.
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Rescaled noncommutative 2-torus: 1-forms

The above functionals extend to NC spaces:
As the conformal rescaling of D on T} we take on H

Dy, = kDE,

following Connes-Moscovici, however with 0 < k € A° C A/,
which assures that (A, Dy, H) is a spectral triple and 3 Q})k(A). .
In effect, Qbk(A) is freely generated by k2~7.

For n=2, fyj:aj, and for Tg we have

Proposition

For v = k2vig9 and w = k2wio7, vj,wj €A,
gp, (v,w) = T(w’),

whereas
Gp, (v,w)=0.

We have also computed ’]I'g.
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Spectral Torsion

In principle connections not needed for abstract A or D.

Thanks to our gp we can now 'control’ the metricity condition.
Instead what about the zero-torsion condition ?

Not clear if any (enigmatic & complicated) minimization procedure
could be employed for that.

But the contribution of torsion can contaminate our g & G (!).
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Spectral Torsion

In principle connections not needed for abstract A or D.

Thanks to our gp we can now 'control’ the metricity condition.
Instead what about the zero-torsion condition 7

Not clear if any (enigmatic & complicated) minimization procedure
could be employed for that.

But the contribution of torsion can contaminate our g & G (!).
Fortunately, for a n-summable regular (A, D, #), using WV coming
from the WDO calculus and tracial state by Connes-Moscovici'95,
we found:

Def/Thm: Torsion functional

Torsion functional is a trilinear functional of u,v, w € Q5 (A),
Tp(u,v,w) := W(wwwD|D|™").

We say that D is torsion-free if Tp = 0. For the Dirac operator

D7 with torsion T on a closed spin manifold of dimension n

To, (u,v,w) = —Q[Z]i/ U VWL b vOlg. (16)
M
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for

e Hodge-de Rham: (C’OO(M), L2(Q%,),d + d*).

e Einstein-Yang-Mills: (C>(M) ® My(C), L*(X) ® My(C)), D),
where D = D®idy + A+ JAJ ! with A=A*€ QL and

J = C®x*, with C' being the charge conjugation on spinors in 3.

e conformally rescaled noncommutative tori.

e quantum SU(2): (A(SU4(2)), H,D), where H and D are
isomorphic to the classical case ¢ = 1.
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for

e Hodge-de Rham: (C’OO(M), L2(Q%,),d + d*).

e Einstein-Yang-Mills: (C>(M) ® My(C), L*(X) ® My(C)), D),
where D = D®idy + A+ JAJ ! with A=A*€ QL and

J = C®x*, with C' being the charge conjugation on spinors in 3.

e conformally rescaled noncommutative tori.

e quantum SU(2): (A(SU4(2)), H,D), where H and D are
isomorphic to the classical case ¢ = 1.

e almost commutative M x Zy: (C(M) ® C?, L?(X) ® C2, D),

where D = < Xl;* % ) , with D on ¥ graded by x, and ¢ € C.
wt o oxfT 00
Now, Q%Bw:<¢*xf_ e for wt € QY (M), fFe C=(M).
Then, W(wfw3w§DD=2") = W(I0I'(F)"fy f35" + 1 f f5)D ")
=101* [y (F f3 £5 + 115 £5 Jvoly.
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Spectral vs. Algebraic Torsion

[L.D., Y. Liu, S. Mukhopadhyay] in preparation
The torsionful case M x Z/2Z requires some subtle adjustments,

but can work out the inner spectral triple <(C2,(C2, LZ?* (gD :
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Spectral vs. Algebraic Torsion

[L.D., Y. Liu, S. Mukhopadhyay] in preparation
The torsionful case M x Z/2Z requires some subtle adjustments,

but can work out the inner spectral triple <(C2,(C2, LZ?* (gD )
Here e = (1,0) € C? is represented on C? as diag(1,0),

— _ 10 —9¢ 1_ 0 K%, 4
de = [D,e] = [qﬁ* 0] €0 _{[h¢* . ’h ect,

(de)? = — [ﬁf ¢8 A €02
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Spectral vs. Algebraic Torsion

[L.D., Y. Liu, S. Mukhopadhyay] in preparation
The torsionful case M x Z/2Z requires some subtle adjustments,

but can work out the inner spectral triple <(C2,(C2, LZ?* (gD :
Here e = (1,0) € C? is represented on C? as diag(1,0),
— _ 10 —9¢ 1_ 0 K%, 4
de._[D,e]_[¢* O]eQ_{[h¢* . ’h ec!,
o_ _ 00" O 2 : -
(de)® = 0 o € Q°. An arbitrary (left) connection reads

VOl 5 0lel 0l deH[cO f_]de@de, cy €C

+

and its torsion

-+ *
vV o._ _g.01 2 _C¢¢ 0
TV :=moV—-d: Q" —Q° der [ 0 cqﬁ*qﬁ]'
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Spectral vs. Algebraic Torsion

[L.D., Y. Liu, S. Mukhopadhyay] in preparation

The torsionful case M x Z/2Z requires some subtle adjustments,
but can work out the inner spectral triple <(C2,(C2, LZ?* (gD :
Here e = (1,0) € C? is represented on C? as diag(1,0),

de::[D,e]:[O _ﬂeglz{[ 0 hgﬂ’hiec},

¢* 0 h7¢*
o _ 99" O 2 : -
(de)* = 0 o € Q°. An arbitrary (left) connection reads
.0l 1 1 c™ 0
Vi 520 040, der— 0 o de®de, cyeC

and its torsion

-+ *
vV o._ _g.01 2 _C¢¢ 0
TV :=moV—-d: Q" —Q° der [ 0 cqﬁ*qﬁ]'

Then, for u, v, w € Q'
TV (u,v,w) := Tr (wTV(w))
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Spectral vs. Algebraic Torsion

[L.D., Y. Liu, S. Mukhopadhyay] in preparation
The torsionful case M x Z/2Z requires some subtle adjustments,

but can work out the inner spectral triple <(C2,(C2, LZ?* (gD :
Here e = (1,0) € C? is represented on C? as diag(1,0),
— _ 10 —9¢ 1_ 0 K%, 4
de._[D,e]_[¢* O]eQ_{[h¢* . ’h ec!,
o_ _ 00" O 2 : -
(de)® = 0 o € Q°. An arbitrary (left) connection reads

VOl 5 0lel 0l deH[cO f_]de@de, cy €C

+

and its torsion

TV i=moV—d: Q' - Q% dews — [C+§¢*
Then, for u, v, w € Q'
TV (u,v,w) := Tr (wTV (w)) = Tr(uvwD) for ¢t = +1
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Spectral vs. Algebraic Torsion

[L.D., Y. Liu, S. Mukhopadhyay] in preparation

The torsionful case M x Z/2Z requires some subtle adjustments,
but can work out the inner spectral triple <(C2,(C2, LZ?* (gD :
Here e = (1,0) € C? is represented on C? as diag(1,0),

de::[D,e]:[O _ﬂeglz{[ 0 hgﬂ’hiec},

¢* 0 h7¢*
o _ 99" O 2 : -
(de)* = 0 o € Q°. An arbitrary (left) connection reads
.0l 1 1 c™ 0
Vi 520 040, der— 0 o de®de, cyeC

and its torsion
TV i=moV —d: Q' — Q2 det—)—[6+§¢* g¢]
Then, for u, v, w € Q' ‘
TV (u,v,w) := Tr (wTV (w)) = Tr(uvwD) for ¢t = +1
= Tp(u,v,w) as lim, ,oW(zD™") = Trz.
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« The spectral formulation of geometric objects g, G, Ric & T
should be beneficial for global study on the analytic/operator level
of manifolds as well as generalized geometries, like NCG.
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with boundaries.

19/29



« The spectral formulation of geometric objects g, G, Ric & T
should be beneficial for global study on the analytic/operator level
of manifolds as well as generalized geometries, like NCG.

« Recently Yong Wang et. al. extended our functionals to manifolds
with boundaries.

« Further 'quantum’ directions to study:
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- flat manifolds
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19/29



« The spectral formulation of geometric objects g, G, Ric & T
should be beneficial for global study on the analytic/operator level
of manifolds as well as generalized geometries, like NCG.

« Recently Yong Wang et. al. extended our functionals to manifolds
with boundaries.

« Further 'quantum’ directions to study:

- metric spaces, orbifolds and manifolds with singularities

- flat manifolds

- Einstein manifolds («>spectral triples) for which Gp x gp

Conjecture: For a 2-dimensional regular spectral triple Gp = 0. )

- relation of Tp to other settings (algebraic, differential) for T
and quantum analogues of Levi-Civita connection in the literature
- relation to W. Ugalde differential forms & conformal gometry

19/29



THANK YOU !
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Let F be a finite dimensional complex vector bundle over a closed
compact manifold M of dimension n. Recall that the
non-commutative residue of a pseudo-differential operator

P € UDO(E) can be defined by

WP) = (2m)™" / tr(afn(x,f)) dxdé,
S*M

where S*M C T*M denotes the co-sphere bundle on M and of,

is the component of order —n of the complete symbol

ol =3, oF of P, cf [W]. In his thesis, Wodzicki has shown that

the linear functional res: YDO(E, F') — C s in fact the unique

trace (up to multiplication by constants) on the algebra of

pseudo-differential operators YDO(E).
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Now let P € WDO(E) be elliptic with ord P = d > 0.

It is well-known (cf. [Gi]) that its zeta function ((P,s) is
holomorphic on the half-plane Re s > n/d with meromorphic
continuation to C with simple poles at { @ |k e N\ {n} }.
For n — k > 0 with k € N one has [W]:

Mp—(%)) =d- Resszn%kC(P, s),

and using the Mellin transform
/ t e Mgt = A7 / (M) te Md(At) = AT (s),
0 0

also [Gi]:

Res,_n-r((P,s) = ag(P) - T(*3%) 7"
Here T is the gamma function and ax(P) denotes the the
coefficient of " in the asymptotic expansion of Tr2e ¢,
Consequently:

ar(P) = d™" - T(n5k) - mP~7).
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Laplace-type operators

« More generally, let
Arp=—g®(V,Vy —TV,) + E
be a Laplace-type operator on a vector bundle = of rank 7,
where V, =0, — T with T € End =, and E € End =.

By a lengthy computation:
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Laplace-type operators

o More generally, let
Arp=—g®(V,Vy —TV,) + E
be a Laplace-type operator on a vector bundle = of rank 7,
where V, =9, — T with T € End Z, and FE € End E.
By a lengthy computation:

The functional

g TE(V, W) = W(VyVwATE™)
equals =rgt(V,W).
The functional

GATE(V, W) = W(Vy Vi AFR)
equals

1
== / (rG(V, W) + 3F(V,W) + 3TrE g(V, W))volg,
M

where F(V,W) = Tr V¢W?°FE,;, and F,;, is the curvature of V.

.y Chin | anlace 24 /29




Spin Laplacian

A particular interesting case is a spin. manifold M with =
a spinor bundle ¥ of rank 2. The spin Laplacian

AG) = ye)ryls) — —VS)VS) + V(Vsz.eiv (17)

where V() is the spin connection and e; is ON frame;
biexpands in the order/normal coordinates as

1 .
A®) = ~0,0; + 2 Rijre 2’2" 0,0, + ()
2

3

. 1 .
Rij ajlaj + ZRMjk xe’yj’ykai + 0(’3:‘)

. . - Fo(1),
where v/ € Moyn (C) satisfy 497F +~yF~7 = §7F,
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Spin Laplacian

A particular interesting case is a spin. manifold M with =
a spinor bundle ¥ of rank 2. The spin Laplacian

AG) = ye)ryls) — —VS)VS) + V(vsz.ey (17)

where V() is the spin connection and e; is ON frame;
biexpands in the order/normal coordinates as

1 .
A®) = ~0,0; + 2 Rijre 2’2" 0,0, + ()
2
3

(18)

. 1 .
+ Rij xzaj + ZRMjk xe’y]’ykaz‘ + O(’x‘)

. . - Fo(1),
where v/ € Moyn (C) satisfy 497F +~yF~7 = §7F,

Now, A®) = Ar g for T = %Rabjkvjykxaxb & E = 0. Hence,

Proposition

(s) S S —m— m
g2 (V, W) = w(VEIVE (AG) =1y — 9meA (),

A o () (8) f A (s)\—m\ _ omrnA (19)
G (V, W) = W(Vi/ Vit (AP ™™) = 2mG2(V, W) +0.
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Hodge-de Rham spectral triple

.. back to M (not necess. spin.).

Another well known classical Dirac-type operator is D = d + d*
on the (rank 2™) bundle (M) of differential forms,

where d is the exterior derivative and d* is its (formal) adjoint.
In normal coordinates

] 1
U(D) :Z()‘ﬁ—fxli)gp*%)\}i Rsapbxaxbgsfg)‘g )‘:_)\S_ (Rsrpa+Rspra)xa+0(|$’2):
where the matrices M, \” satisfy
NN AT = 0= NPAT AT AT, ARAT £ AT AR = 6 id.

Their components labelled by a pair of multi-indices (A%.)7, (A" )1,
are equal to (—)I™l if the juxtaposed index pJ (resp. pI) is a
permutation 7 of I (resp. J) and 0 otherwise.
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Squared Dirac operator

We already spin, so take on 3 the Dirac operator
(coupled do U(1)-gauge 1-form A):

Dy =iy V) + 4,
and employ its square DE‘, which by the Lichnerowicz thm
1
D% =A®) 4 REF

where ' = vjkujk, and Fjj, is the curvature of A.
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Squared Dirac operator

We already spin, so take on 3 the Dirac operator
(coupled do U(1)-gauge 1-form A):
Dy =iy V) + 4,

and employ its square DE‘, which by the Lichnerowicz thm
1
D% =A®) 4 JR+F

where ' = vjkujk, and F)j, is the curvature of A. Then

Proposition

gPA(V, W)= WV DA 72) = 22 (V, W),
GPA(V, W):= W(V V{3 [Dal ™)

— om <GA(V, W) + é/MR(g)g(V, VV)volg>.

— go quant
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Hodge-de Rham?: symbols

The 3 symbols of1D2:
as =(5ab + gRacbdxcxd)fafb + 0(’.%‘2),

2 2
ap :giRabgaxb - g

2 1

Z')\ﬁ_)\c (Rrpab + Rmpb)xbfa + o(|z|),

The 3 leading symbols of D=2 up to the appropriate order in z:

k
ot = 1617272 (0 = § Rt 8+ o),

2 . _ _ 2 . — — r S a
C2k+1:_§k1H§H 2 QRabxbfa-i-gklufH HT2NIAS (Rorbat+ Ropra) 26 +0(|2]

k(k+1
ED g2 Rt

2 —2k—4 yr s
- gk(k + 1)||§H 2h—d )‘+)‘— (Rsrab + Rsarb)gagb

k42 =

1 - - T S
+ SRl 2NN N (Rugry + Rarap) + 0(1).
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For v, w € Ql(M)

ga+ar (v, w) = W(uw|d+d*|™") = 2”/9(11, w) volg,
M
where g is the contravariant metric tensor,
2n
Gapg-(v,w):= W(u{d+d*, w}(d+d*) ™) = 6/G(v,w) volg,
M

where G is the contravariant Einstein tensor.
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For v, w € Ql(M)

8dtar (v, w) = W(uw|d+d*|™") = 2”/9(11, w) volg,
M

where g is the contravariant metric tensor,
2n
6/G(v,w) volg,

M

Garar (v, w):= W(u{d+d*, w}(d+d") ") =

where G is the contravariant Einstein tensor.

Thus for the spin. manifolds our spectral functionals for the
Hodge-de Rham spectral triple are equal (up to the bundle rank)
to those for the canonical spin. spectral triple.
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