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Given a Laplace operator we use the noncommutative residue
to define certain functionals of vector fields which yield metric
and Einstein tensors. Alternatively, given a Dirac operator we
define dual metric and Einstein functionals of differential forms,
and also Ricci and torsion functionals. We generalise these
concepts in non-commutative geometry and show e.g. that for
the conformally rescaled noncommutative 2-torus the Einstein
and the torsion functionals vanish. Also the Hodge-de Rham,
Einstein-Yang-Mills and quantum SU(2) group spectral triples
are torsion free, while the quantum 2-sheeted space has torsion.
[Adv.Math. 427, 1091286, 2023; Commun.Math.Phys. 130, 2024
andDOI 10.4171/JNCG/573 (2024) with A. Sitarz and P. Zalecki].
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Spectral Geometry:

Can one hear the shape of a drum?

An eminent spectral scheme that generates geometric objects
on Riemannian manifolds (volume, scalar curvature . . . )
is t ↘ 0 asymptotic expansion of the trace of heat kernel

Tr e−t∆ ≈
∞∑
ℓ=0

t
ℓ−n
2 aℓ.

Here the scalar laplacian ∆ for metric g = {gjk} reads

∆ = − 1√
det(g)

∂j
(√

det(g)gjk∂k
)
. (1)

The coefficients aℓ can be transmuted into some values or residues

of the zeta function of ∆, and in turn expressed using the
noncommutative (Wodzicki) residue W

W(P ) :=
1

vol(Sn−1)

∫
M

(∫
|ξ|=1

tr σ−n(P )(x, ξ) Vξ

)
dnx. (2)

♠

→ residues
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Geometry from residues:

Then, for P = ∆
W(∆−m) = vol(M),

and in the localized form (as a functional of f ∈ C∞(M))

V(f) := W(f∆−m) =

∫
M

f volg.

A. Connes divulged in 90s a startling result, confirmed by Kastler
and by Kalau-Walze:

W(∆−m+1) =
n− 2

12

∫
M

R volg, (3)

which is ∝ the Einstein-Hilbert action functional (of g)
for the Riemannian general relativity (in vacuum).
Here R is the scalar curvature

R = R(g) = gjkRjk = gjkRℓjℓk.

A localised form of (3) is the scalar curvature functional on C∞(M)

R(f) := W(f∆−m+1) =
n− 2

12

∫
M

fR volg. (4)
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↬ This is related to the asymptotic growth of eigenvalues of ∆;
clear e.g. from the Connes ”trace thm.” that W= Tr+. ↫

↬ We have uncovered few new spectral ’localised’ functionals,
by placing some differential operators in place of f .
Let’s start e.g. with a pair of vector fields V and W on M ,
viewed as derivations of C∞(M):

→ new fnls
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New functionals

Def/Thm: Metric functional

The functional
g∆(V,W) := W

(
VW∆−m−1

)
is a bilinear, symmetric map, whose density is proportional to the
metric g evaluated on V,W

g∆(V,W ) = − 1

n

∫
M

g(V,W ) volg.

Def/Thm: Einstein functional

The functional
G∆(V,W ) := W

(
VW∆−m

)
, (5)

is a bilinear, symmetric map, whose density is proportional to the
Einstein tensor G := Ric− 1

2Rg evaluated on V,W

G∆(V,W ) =
1

6

∫
M

G(V,W ) volg.

→ pf
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”Proof ”

Algebra of symbols of pseudodifferential operators:

σ(PQ)(x, ξ) =
∑
β

(−i)|β|

|β|!
∂

∂ξβ
σ(P )(x, ξ)

∂

∂xβ
σ(Q)(x, ξ). (6)

Taylor expansion in normal coordinates x:

metric
gab = δab −

1

3
Racbdx

cxd + o(|x|2), (7)

volume element√
det(g) = 1− 1

6
Rabx

axb + o(|x|2), (8)

and Levi-Civita symbol

Γa
bc(x) = −1

3
(Rabcd +Racbd)x

d + o(|x|2). (9)

where Racbd and Rab are the values at x = 0.

→ pf2
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”Proof ” 2

Consequently, σ(∆) = a2 + a1, where

a2 =
(
δab +

1

3
Racbdx

cxd
)
ξaξb + o(|x|2),

a1 =
2i

3
Rabx

aξb + o(|x|2).
(10)

Next we compute the first three leading symbols of ∆−1,
and then of ∆−k, k > 0, up to order resp. o(|x|2), o(|x|), o(1):

σ(∆−k) = c2k + c2k+1 + c2k+2 + . . . ,

c2k = ||ξ||−2k−2

(
δab −

k

3
Racbdx

cxd
)
ξaξb + o(|x|2),

c2k+1 =
−2ki

3||ξ||2k+2
Rabx

bξa + o(|x|),

c2k+2 =
k(k + 1)

3||ξ||2k+4
Rabξaξb + o(1).

(11)

Now the composition with σ(VW ) shows the statements. □

→ Laplace-type 8/29



Laplace-type, Spin Laplacian, squared Dirac
More generally, we’ve treated Laplace-type operators

∆T,E = −gab(∇a∇b − Γc
ab∇c) + E

on a vector bundle Ξ with connection ∇ and E ∈ End Ξ.

A particular interesting case is a spinc manifold M with Ξ
a spinor bundle Σ of rank 2m and the spin Laplacian

∆(s) := ∇(s)∗∇(s) = −∇(s)
ei ∇

(s)
ei +∇(s)

∇eiei
, (12)

where ∇(s) is the spin connection and ej is ON frame:

Proposition

g∆
(s)
(V,W ) := W

(
∇(s)

V ∇(s)
W (∆(s))−m−1

)
= 2mg∆(V,W ),

G∆(s)
(V,W ) := W

(
∇(s)

V ∇(s)
W (∆(s))−m

)
= 2mG∆(V,W )+0.

(13)

or squared Dirac (coupled do U(1)-gauge 1-form A):

Proposition

gD
2
A(V,W ) := W(∇(s)

V ∇(s)
W |DA|−n−2) = 2mg∆(V,W ),

GD2
A(V,W ) := W(∇(s)

V ∇(s)
W |DA|−n)

= 2m
(
G∆(V,W ) + 2−3

∫
M
Rg(V,W )volg

)
.

→ Dirac
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Go quantum (= noncommutative)

Noncommutative tori are prominent examples of quantum spaces.
Their smooth algebra A = C∞(Tn

θ ), generated by n unitaries Uj ,
UjUk = δjke

iθUkUj ,
has a faithful state τ invariant under derivations δj , δjUk = δjkUk,
which are interpreted as noncommutative vector fields.

One regards ∆ =
∑

j δ
2
j on H=L2(T2

θ, τ) as ’flat’ Laplace operator,

D =
∑

j γ
jδj on H = L2(T2

θ, τ)⊗C2m as ’flat’ Dirac operator
and the A-bimodule ΩD(A) generated by [D,A], as 1-forms. ♠

They generalise to the (non-flat) conformally rescaled geometry:

For simplicity consider the strictly irrational Tn
θ (i.e.,Z(A)=C)

with τ extended to Â := A⊗Ao as τ(a⊗bo) = τ(a)τ(bo),
where Ao is a copy of A in the commutant A′ of A in B(H).
Such τ is still invariant under the extended derivations.
We use it to define the tracial state W on Â-valued symbols σ(ξ)
(where δa 7→ ξa much the same as for M).

→ torus
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Rescaled NC 2-torus: vector fields

Given 0 < h ∈ C∞(T2
θ), by a conformally rescaled ∆ on T2

θ

we mean the selfadjoint operator on H = L2(T2
θ, τ):

♠

∆h = h−1∆h−1.

Accordingly, as vector fields we take

Vh =
∑
a=1,2

V ahδah
−1, V a ∈ C.

Proposition

g∆h(Vh,Wh) = W
(
VhWh∆

−2
h

)
= πτ(h4)V aW a,

whereas
G∆h(Vh,Wh) = W

(
VhWh∆

−1
h

)
= 0 .

We have also computed T4
θ.

Can do also θ-deformed spaces, or NC spaces with derivations.
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Alternatively ...

→ 1-forms 12/29



Spectral functionals on 1-forms

Now use D on spinors in a two-fold way to get (in terms of W)
certain ”dual functionals”which are bilinear on 1-forms (co-vectors)
and yield contravariant tensors (with ”raised indices”).

For that need to represent 1-forms v as differential operators.
On a spincc manifold M use the Clifford representation of v as
0-order differential operators ν̂ ∈ End(Σ).
As known they form a C∞(M)-bimodule Ω1

D ≃ Ω1(M)
generated by commutators of D with functions.
Thus the spinorial Dirac operator is self-sufficient for our purposes
(and NCG-ready when assembled to a spectral triple of A. Connes),
so comes now in its grandeur

→ fnls
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Metric and Einstein functionals on 1-forms

Thm

The spectral functionals of one-forms on M

gD(v, w) := W
(
v̂ŵD−n

)
,

GD(v, w) := W
(
v̂(Dŵ + ŵD)D−n+1

)
= W

(
(Dv̂ + v̂D)ŵD−n+1

)
,

(14)

read

gD(v, w) = 2m
∫
M

g(v, w) volg,

GD(v, w) =
2m

6

∫
M

G(v, w) volg,

(15)

where G = Ric− 1
2Rg is the contravariant Einstein tensor.

They perfectly (dually) match g∆ and G∆ up to 2m.

Actually,

RicD(v, w) := W
(
v̂(Dŵ+ n−4

n−2 ŵD)D−n+1
)
= 2m

6

∫
M Ric(v, w) volg.

→ torus
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Rescaled noncommutative 2-torus: 1-forms

The above functionals extend to NC spaces:
As the conformal rescaling of D on Tn

θ we take on H

Dk = kDk,

following Connes-Moscovici, however with 0 < k ∈ Ao ⊂ A′,
which assures that (A,Dk, H) is a spectral triple and ∃ Ω1

Dk
(A). ♠

In effect, Ω1
Dk

(A) is freely generated by k2γj .

For n=2, γj=σj , and for T2
θ we have

Proposition

For v = k2vjσj and w = k2wjσj , vj , wj ∈ A,

gDk
(v, w) = τ(vjwj),

whereas
GDk

(v, w)= 0 .

We have also computed T4
θ.
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Spectral Torsion

In principle connections not needed for abstract ∆ or D.
Thanks to our gD we can now ’control’ the metricity condition.
Instead what about the zero-torsion condition ?
Not clear if any (enigmatic & complicated) minimization procedure
could be employed for that.
But the contribution of torsion can contaminate our g & G (!).

Fortunately, for a n-summable regular (A, D,H), using W coming
from the ΨDO calculus and tracial state by Connes-Moscovici’95,
we found:

Def/Thm: Torsion functional

Torsion functional is a trilinear functional of u, v, w ∈ Ω1
D(A),

TD(u, v, w) := W(uvwD|D|−n).

We say that D is torsion-free if TD ≡ 0. For the Dirac operator
DT with torsion T on a closed spin manifold of dimension n

TDT
(u, v, w) = −2[

n
2
]i

∫
M

uavbwcTabcvolg. (16)
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Examples

T = 0 for:
• Hodge-de Rham:

(
C∞(M), L2(Ω•

M ), d+ d∗
)
.

• Einstein-Yang-Mills:
(
C∞(M)⊗MN (C), L2(Σ)⊗MN (C)

)
, D̃),

where D̃ = D ⊗ idN +A+ JAJ−1 with A=A∗∈ Ω1
D̃

and
J = C⊗∗, with C being the charge conjugation on spinors in Σ.
• conformally rescaled noncommutative tori.
• quantum SU(2):

(
A(SUq(2)),H, D

)
, where H and D are

isomorphic to the classical case q = 1.

T ≠ 0 for:

• almost commutative M × Z2: (C
∞(M)⊗ C2, L2(Σ)⊗ C2,D),

where D =

(
D χϕ
χϕ∗ D

)
, with D on Σ graded by χ, and ϕ ∈ C.

Now, Ω1
D ∋ ω=

(
w+ ϕχf+

ϕ∗χf− w−

)
for w±∈ Ω1(M), f±∈ C∞(M).

Then, W
(
ωo
1ω

o
2ω

o
3DD−2m

)
= W

(
|ϕ|4(f+

1 f−
2 f+

3 + f−
1 f+

2 f−
3 )D−2m

)
= |ϕ|4

∫
M (f+

1 f−
2 f+

3 + f−
1 f+

2 f−
3 )volg.
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Spectral vs. Algebraic Torsion

[L.D., Y. Liu, S. Mukhopadhyay] in preparation

The torsionful case M × Z/2Z requires some subtle adjustments,

but can work out the inner spectral triple

(
C2,C2,

[
0 ϕ
ϕ∗ 0

])
.

Here e = (1, 0) ∈ C2 is represented on C2 as diag(1, 0),

de := [D, e] =

[
0 −ϕ
ϕ∗ 0

]
∈ Ω1 =

{[
0 h+ϕ

h−ϕ∗ 0

] ∣∣∣ h± ∈ C
}
,

(de)2 = −
[
ϕϕ∗ 0
0 ϕ∗ϕ

]
∈ Ω2. An arbitrary (left) connection reads

∇ : Ω1 → Ω1 ⊗A Ω1, de 7→
[
c+ 0
0 c−

]
de⊗ de, c± ∈ C

and its torsion

T∇ := m ◦ ∇ − d : Ω1 → Ω2, de 7→ −
[
c+ϕϕ∗ 0

0 c−ϕ∗ϕ

]
.

Then, for u, v, w ∈ Ω1:

T ∇(u, v, w) := Tr
(
uvT∇(w)

)
= Tr(uvwD) for c± = ±1

= TD(u, v, w) as limn→0W(xD−n) = Trx.
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Outlook

• The spectral formulation of geometric objects g, G, Ric & T
should be beneficial for global study on the analytic/operator level
of manifolds as well as generalized geometries, like NCG.

• Recently Yong Wang et. al. extended our functionals to manifolds
with boundaries.

• Further ’quantum’ directions to study:
- metric spaces, orbifolds and manifolds with singularities
- flat manifolds
- Einstein manifolds (↔spectral triples) for which GD ∝ gD

Conjecture: For a 2-dimensional regular spectral triple GD = 0.

- relation of TD to other settings (algebraic, differential) for T
and quantum analogues of Levi-Civita connection in the literature
- relation to W.Ugalde differential forms & conformal gometry
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THANK YOU !
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Let E be a finite dimensional complex vector bundle over a closed
compact manifold M of dimension n. Recall that the
non-commutative residue of a pseudo-differential operator
P ∈ ΨDO(E) can be defined by

W(P ) := (2π)−n

∫
S∗M

tr
(
σP
−n(x, ξ)

)
dxdξ,

where S∗M ⊂ T ∗M denotes the co-sphere bundle on M and σP
−n

is the component of order −n of the complete symbol
σP :=

∑
i σP

i of P , cf [W]. In his thesis, Wodzicki has shown that
the linear functional res : ΨDO(E,F ) → C is in fact the unique
trace (up to multiplication by constants) on the algebra of
pseudo-differential operators ΨDO(E).
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Now let P ∈ ΨDO(E) be elliptic with ord P = d > 0.
It is well-known (cf. [Gi]) that its zeta function ζ(P, s) is
holomorphic on the half-plane Re s > n/d with meromorphic

continuation to C with simple poles at { (n−k)
d |k ∈ N \ {n} }.

For n− k > 0 with k ∈ N one has [W]:

W(P−(n−k
d

)) = d ·Ress=n−k
d
ζ(P, s),

and using the Mellin transform∫ ∞

0
ts−1e−λtdt = λ−s

∫ ∞

0
(λt)s−1e−λtd(λt) = λ−sΓ(s),

also [Gi]:
Ress=n−k

d
ζ(P, s) = ak(P ) · Γ(n−k

d )−1.

Here Γ is the gamma function and ak(P ) denotes the the

coefficient of t
k−n
d in the asymptotic expansion of TrL2e−tP .

Consequently:

ak(P ) = d−1 · Γ(n−k
d ) · W(P−(n−k

d
)).
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Laplace-type operators

♠ More generally, let
∆T,E = −gab(∇a∇b − Γc

ab∇c) + E
be a Laplace-type operator on a vector bundle Ξ of rank r,
where ∇a = ∂a − T with T ∈ End Ξ, and E ∈ End Ξ.
By a lengthy computation:

Thm

The functional

g∆T,E (V,W ) := W(∇V ∇W∆−m−1
T,E )

equals = r g∆(V,W ).

The functional
G∆T,E (V,W ) := W(∇V ∇W∆−m

T,E)
equals

=
1

6

∫
M

(
rG(V,W ) + 3F (V,W ) + 3TrE g(V,W )

)
volg,

where F (V,W ) = Tr V aW bFab and Fab is the curvature of ∇a.

→ Spin Laplace
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Spin Laplacian

A particular interesting case is a spinc manifold M with Ξ
a spinor bundle Σ of rank 2m. The spin Laplacian

∆(s) := ∇(s)∗∇(s) = −∇(s)
ei ∇

(s)
ei +∇(s)

∇eiei
, (17)

where ∇(s) is the spin connection and ej is ON frame;
biexpands in the order/normal coordinates as

∆(s) = −∂i∂i +
1

3
Rijkℓ x

jxk∂i∂ℓ + o(|x|2)

+
2

3
Rij x

i∂j +
1

4
Riℓjk x

ℓγjγk∂i + o(|x|)

+ o(1),

(18)

where γj ∈ M2m(C) satisfy γjγk+γkγj = δjk.

Now, ∆(s) = ∆T,E for T = 1
8Rabjkγ

jγkxaxb & E = 0. Hence,

Proposition

g∆
(s)
(V,W ) := W

(
∇(s)

V ∇(s)
W (∆(s))−m−1

)
= 2mg∆(V,W ),

G∆(s)
(V,W ) := W

(
∇(s)

V ∇(s)
W (∆(s))−m

)
= 2mG∆(V,W )+0.

(19)

→ Dirac
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Hodge-de Rham spectral triple

.. back to M (not necess. spinc).
Another well known classical Dirac-type operator is D = d+ d∗

on the (rank 2n) bundle Ω(M) of differential forms,
where d is the exterior derivative and d∗ is its (formal) adjoint.
In normal coordinates

σ(D)= i(λp
+−λp

−)ξp−
i

3
λp
−Rsapbx

axbξs−
1

3
λp
−λ

r
+λ

s
−(Rsrpa+Rspra)x

a+o(|x|2),

where the matrices λp
+, λ

p
− satisfy

λp
+λ

r
+ + λr

+λ
p
+ = 0 = λp

−λ
r
− + λr

−λ
p
−, λp

+λ
r
− + λr

−λ
p
+ = δpr id.

Their components labelled by a pair of multi-indices (λp
+)

I
J , (λ

p
−)

I
J ,

are equal to (−)|π| if the juxtaposed index pJ (resp. pI) is a
permutation π of I (resp. J) and 0 otherwise.
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Squared Dirac operator

We already spin, so take on Σ the Dirac operator
(coupled do U(1)-gauge 1-form A):

DA = iγj∇(s)
ej +A,

and employ its square D2
A, which by the Lichnerowicz thm

D2
A = ∆(s) +

1

4
R+ F,

where F = γjγkFjk, and Fjk is the curvature of A.

Then

Proposition

gD
2
A(V,W ) := W(∇(s)

V ∇(s)
W |DA|−n−2) = 2mg∆(V,W ),

GD2
A(V,W ) := W(∇(s)

V ∇(s)
W |DA|−n)

= 2m
(
G∆(V,W ) +

1

8

∫
M
R(g)g(V,W )volg

)
.

→ go quant
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Hodge-de Rham2: symbols

The 3 symbols of D2:

a2 =
(
δab +

1

3
Racbdx

cxd
)
ξaξb + o(|x|2),

a1 =
2

3
iRabξax

b − 2

3
iλp

+λ
r
−(Rrpab +Rrapb)x

bξa + o(|x|),

a0 =
2

3
λa
+λ

b
−Rab +

1

3
λp
+λ

r
+λ

s
−λ

t
−(Rtsrp +Rtrsp) + o(1).

The 3 leading symbols of D−2k up to the appropriate order in x:

c2k = ||ξ||−2k−2

(
δab −

k

3
Racbcx

cxd
)
ξaξb + o(|x|2),

c2k+1=−2

3
ki||ξ||−2k−2Rabx

bξa+
2

3
ki||ξ||−2k−2λr

+λ
s
−
(
Rsrba+Rsbra

)
xaξb+o(|x|)

c2k+2 =
k(k + 1)

3
||ξ||−2k−4Rabξaξb

− 2

3
k(k + 1)||ξ||−2k−4 λr

+λ
s
−(Rsrab +Rsarb)ξaξb

+
1

3
k||ξ||−2k−2λp

+λ
q
−λ

r
+λ

s
−(Rsqrp +Rsrqp) + o(1).

→ Then 28/29



Proposition

For v, w ∈ Ω1(M),

gd+d∗(v, w) := W(uw|d+d∗|−n) = 2n
∫
M

g(v, w) volg,

where g is the contravariant metric tensor,

Gd+d∗(v, w) := W(u{d+d∗, w}(d+d∗)−n+1) =
2n

6

∫
M

G(v, w) volg,

where G is the contravariant Einstein tensor.

Thus for the spinc manifolds our spectral functionals for the
Hodge-de Rham spectral triple are equal (up to the bundle rank)
to those for the canonical spinc spectral triple.

→ Outlook
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