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Pure spinor sigma-model in ads; x s*: Main Action
Let G = PSU(2,2|4) be the superconformal group, g = LieG, it has some Z, grading:
g§=8 +81+8& 18
The zero grading part gj is the Lie algebra of:
SO(1,4) x SO(5)
The AdSs x S° is a coset space:

PSU(2,2/4)
SO(1,4) x SO(5)

[o(r\\e X (,%ne X PSU (Q)/Z(%

S0(14)xS0(5)

W AT .
Consider the cone

in the spin bundle over AdSs x S°, parametrized by A3 and ); satisfying the pure spinor
constraints:

SIS = ATTa5A] =0 (1)

We will call this space M . It is parametrized by coordinates g € PSU(2,2|4) modulo the
equivalence relation g ~ hg (the AdSs x S°) and A3, \; .

The coordinates of the base (i.e. g, \3, A1) are “fields”. The coordinates of the fiber are

“antifields”. The BV Main Action is a functional on this space of maps. It consists of two
terms:

SBV:SO—FQ

where Sy depends on fields only, while 6 is a function of the fields and antifields, linear
in the antifields.

The structure of Q

We think of (AQ as a generating function of a nilpotent vector field Q on the space of
maps:

i xXx—=M



In fact, this vector field comes from a vector field on M which we also call Q . It is:

Q € Vect(M)
Qg = (A3+X)g

The structure of s,

The Sg depends on fields only, it is often denoted “ S ”. In our “minimalistic” sigma-
model it is equal to the pullback to ¥ of some two-form B on M :

o [ 5
>

This two-form is given by the formula:

B e QX M)
B = STr((dgg Y)3 A (1 — 2Py3)(dgg )1)

where Pq3 is a projector on the tangent space to the pure spinor cone at the point \;
along the subspace generated by expressions of the form [v,, A3] when v, € g,.

The main property of B is that dB is Q -base:
LQdB =0

Perhaps we can say that dB represents a cohomology class of M/ R%! where RY! is
generated by Q.

On the other hand we can consider the restriction to the fiber:
V = Blgn

This is called “unintegrated vertex operator”.

Global symmetries

Global symmetries act on g by constant right shifts:

Rag = gt,
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Problems with sg,

We observe the following problems:

1. The ghost field A\ lives on a cone — singular target space!

2. Action is not a polynomial function of \

3. The ghost field A enters without derivatives (no kinetic term?)

4. The action for g is weird (only contains a 2-form, no usual kinetic term)

We will not repair item 1.

But we will repair items 2,3,4 by introducing extra fields and choosing an appropriate
Lagrangian submanifold.

Structure of denominators in 5

This B has denominator, but only of a very special kind. The denominator only enters
through:
Pi3Ji
where J = —dgg™!

and a similar expression with 1 «» 3. These expressions have one crucial property: the
BRST variation of them does not have denominators. Namely:

QP13J1 = —Do);

This hints at how the denominators can be actually removed. Let us first discuss some
general construction. Suppose I have a BV action Sgy whose expansion in powers of

antifields terminates at the linear terms. Suppose that we are given a set of local
operators {Os, ...,Oy}, which are built only from fields (i.e. do not contain antifields).

Suppose that we can construct out of them a volume element ;(Os, ...,0Oy) on X . (For
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example, if O; and O, are one-forms, we may take u(O1,0;) = O1 A O, .) Then,
consider the following half-density:

N
Prew = €XP (sm / u«ol,...,oN)) 5oy (4)
2 i=1

(while pyq was just ¥ ). Then Prew Satisfies the Main Equation.

Adding w and w*

General construction

We will now interpret Eq. (4) as a field theory by introducing the Lagrange multipliers.

Namely, we represent:
I(QO) = /[dwi] exp (/ w' Q(Di)
X

This is a different theory. Moreover, different sets {0, ..., Oy} and choices of
1(Oq, ..., On) give different theories. We can think of it as introducing an extra field-
antifield pair w',w’ for each ; with Sév\v,} = /z pu(wy, .. .,wy) and then taking the

Lagrangian submanifold where w; = 0 and deforming it with the gauge fermion:

\U:/ WiOi
>

Applying to the pure spinor sigma-model
Now, we choose:
1st approx: {O;} = {P31J; and Py3J;}

And the construction of p is the following. As we explained, all denominators come either
via P31J3 or via Py3J;. We just replace:

P3iJ; — wj (5)
Pi3sJi — wf (6)

Literally doing this is wrong, because the kinetic terms becomes:
STr(wi A dA3) + STr(ws A dAq)

But I want chiral kinetic terms: left-moving A3 and right-moving \; . I could have said,

let us restrict w3 to only have dz -component, and w; to only have dz-component. But I

dont want to break diffeomorphism invariance at the level of the BV Main Action. In string
theory the Main Action should be invariant under diffeomorphisms. Therefore, I will leave
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w and w* generic 1-forms on ¥ .

Just to completely fix the notations, the odd sympectic form is:

WRY = / STr (0wj A dwi + 6wl A dws)
T

The full Main Action

We define the BV Main Action as follows:
Sgy = / "B+ Q+ / STr(w} A w?) (7)
by by
and gauge fermion:

(tentative) ¥V = / STr (w3 A P13J1 + w1 A P31J3)
%

Naively this seems to be the sum of two non-interacting theories (one for g, A\ and

another for w), but there is an important subtlety. I want w and w” to live in a nontrivial
vector bundle over AdS, namely in g 4.

Gluing charts

Vector bundle

Let M be a manifold, parameterized by ¢, and Sgy on [MTM* of the form:

Sev(¢, ¢") = Sa(9) + Q" ()9},

Let H be a Lie group. Suppose that we are given some vector bundle over M with a fiber
W — a symplectic linear space with the action of H . Consider the action which in a local
trivialization looks like:

> 1 * — a *
Stot = S(g) + Sw) = Sa(9) + Q"(9)9;, + Ewa(Q )Pwy

where Q) is the symplectic form of W .
Transition functions

We want the transition functions to be canonical transformations preserving S;,: . We can
choose the transition functions to be {S;., _} -exact:

Xa = {St0t7 Fa} (8)

where F, = —%Wbp*(a(¢))i Qac W (9)



1
Yo = p(a(O)R00 W) — SwPp.(Qa(6))iewt

Notice that:
{Fa,Fs} =0 (10)
{X()él bl Faz} — _F[Oél,()tz] (11)

This canonical transformation does not touch ¢*, it only acts on ¢*, w, w”* . We identify
(¢, @7, wi,w]) on chart Ug) with (¢, 7, wj,w") on chart Uy when (¢7,wj,w)) is the flux
of (¢, w;,w) by the time 1 along the vector field {x,;, —} where ¢ is the log of uj,

i.e. u; = e . Explicitly:

w? = p(up)pw (12)

Wj*a = p(uﬁl): W?L — Qab Qp(Uji)g Wic (13)

* * * 5 — 1 a 0 —1\b ¢

P = P~ Wiahs (“ﬁ D i 1) W= 5w, ab 5P+ (Qujuz ™) wj (14)
b

Given these transition functions, how can we construct a Lagrangian submanifold? The
“standard” construction ¢* = w* = 0 does not work because w* = 0 is not invariant

under transition functions. On every chart, let us pass to a new set of Darboux
coordinates, by doing the canonical transformation with the following gauge fermion:

Vi = 298 2y Q)0 (A(6))

The new Sgy will contain the term W*Q*p,(Aj,)W , which means that the action of the

BRST operator on w involves the connection. On the other hand, the transition functions
simplify:

W= p(ui(9))p WP (15)
W = p(ui(9) ) Wi (16)
7 7 [« 3 5 ~

o, = &, —Wip (ui(¢) )] (p(uji(¢))b 3o ) Wy (17)

These are the usual transition functions of the odd cotangent bundle MT*W, where W is
the vector bundle with the fiber W, associated to the principal vector bundle E "B

In particular, the “standard” Lagrangian submanifold w* = gg* = 0 is compatible with

gluing. The corresponding BRST operator is defined by the part of the BV action linear in
the antifields:



L a v a~b a
QprsT = Q/ aor + Q"p«(A)pW e

Lagrangian submanifold mixes w with » and breaks piff(x)

Let us choose vector fields V, V — some sections of C ® T'X (i.e. complex vector fields
on the worldsheet).

We assume that V and V form a basis. In other words exist complex 1-forms « and @
such that:

Vea+Vea=1: TE — TX (18)
that is: (V)@ = 1(V)a =0 and «(V)a = ((V)a=1

(Example: V =0, and o« = dz.)

We define the Lagrangian submanifold as the odd conormal bundle of the following
constraint surface:

(1-P)wr = 0 (19)
(1-P3)ws = 0 (20)
t(V)w; = 0 (21)
(Vws = 0 (22)

The last two break the diffeomorphism invariance. The purpose of this constraint is to Kkill half
of the components of w in the direction tangent to the cone.

In other words:
w1 = Ppwiia

w3 = P3wz_a

The fiber of the conormal bundle can be parameterized by fermionic 1-form fields vj, vi,

and fermionic scalar fields wj and wj :

wi; = (1=P3)vi+Psuwi a
A3 =

wi = (1 —=Py3)vi + Pwj @
A1

We need to remove the denominator due to P3; . This is done by the following gauge
fermion:

\— / STr (w3 A P13(dgg_1)1 + w1 A P31(dgg_1)3)
Y

This generates the kinetic term for A s:



/ STr(ws_a AdA; +wiraAdA3) = / aNaSTr (W3_V)\1 + W1+v)\3)
b b

(pops up when we hit dgg™! with Q). At the same time / STr(w; Awj) gives:
pa

/z STr ((w§ + P31(dgg—1)3) A (w{ + P13(dgg_1)1)) .

— /): STr (((1 — P31)V§ + P31(W§+Oé + (dgg_l)g)) A ((1 — P13)VI + P13(WI+04 + (dgg_l)l)))

Integration over v* decouples. Integration over w§ 4 brojects P31(dgg’1)3 to

P31(Vgg !)sa . Integration over w}_ projects Pi3(dgg™); to P13(Vgg 1)1 . We are left
with:

/ aAa STr((Veg-1)1 A P31(Veg-1)3) (23)
¥

This term should cancel the denominators — see Eq. (3). But it is not antisymmetric under
+ > —.

It turns out that we can further deform the Lagrangian submanifold, so that effectively

B—B+¢G

where G is worldsheet parity even. (See [The b -ghost is a target space symmetric
tensor].) It is important for us that the term in G containing P3; combine with the term
in B containing P3; into the expression given by Eq. (23). This expression is rather
special. Indeed, it has the form:

/ dz® A dz” Y9(z, Z)Vgl(z, Z) A(x) Ouxt'Opix”
b

where
detY = detY =0
and
det(Y @Y) =1 : A°C? — AN°C?

)

(Indeed, Y = V® a and Y = V ® @.) This implies that ijvg]/ is of the form:

(o' o'f
Yio Yy = €apV'hh?

[

In other words, the parity-even part of Eq. (23) is of the form:
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/ d?zv/hhe? G 0ax! 0px”

As in the case of bosonic string this is not of the most general form / d2zaaﬁgw,8ax“8gx” ,

as a®? is restricted to be of the form \/ﬁ h®® _ a nonlinear constraint. The mechanism,
however, is quite different from what it was in bosonic string.

The b-ghost is a target space symmetric tensor

First of all, sigma-models whose action is an integral of a two-form over the worldsheet (of

the type / Biy(x)04x'0_x" with antisymmetric 5 J(x) ) are degenerate and cannot be

immediately quantized. We need a term symmetric under + < — . Such a term is

generated by the shift of the standard Lagrangian submanifold by a gauge fermion of the
form:

/ d?z byy(x)a*?9,x' 9’
by

where a®? is a symmetric tensor-density on > and b, is a symmetric tensor on the

target space. It is unfortunate that we must call it b because letter B usually suggests the
Kalb-Ramond B-field, an antisymmetric tensor. But we do insist on calling it b because
it is actually the BV prototype of the pure spinor b -ghost. (For an antisymmetric tensor,
we use B.)

The BV "origin'" of the b-ghost is a fermionic symmetric tensor field b on the target
space

(See: Target space b ) We introduce
Qi'b =i* (EQb)

Then the deformation of the action is:

1
Q / (a,i"b) = / <a, STr <§ @i+ i ®@i"(1— P31)J3)> (24)
T pX

Finally

S:/d2zL

1
L = STr (5 Jordo + 3

1
ZJ1+J37 + ZJ’HJP + w14 Do-A3 +wz_Do A1 — N0+N0>

where NOJr = {W1+, )\3} and NO, = {W3,, )\1} .
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Diffeomorphisms

Example when diffeomorphisms are exact
Let M be some manifold. Consider the space of maps:

Map(X, NTM)
An element of Map(X,MTM) is a map

T xR~ M

We parameterize R%! by (¢, so elements of Map(X,NTM) are functions ¢(z,() with

values in M. There is a cohomological vector field Q induced by d on [NTM . The flux by
odd time 6 of Q is:

(e"9)(z,¢) = ¢(z,¢ +6)
There is a canonical map:

v : Vect(X) — Vect (Map(X,NMTM))

For any ¢ € Vect(X), by definition:

(e"99)(z.¢) = #(e"2.¢)
We observe that v is covariantly Q -exact, in the following sense. Exists a map
i Vect(X) — Vect (Map(X,NTM))
such that:

v(§) = [Q,i(&)] (25)
[v(&),i(m)] = i([&,n]) (26)

This map is defined as follows:

(€"9¢)(z, Q) = p(e"*2,)
Differential ideals in PDFs

Suppose that we are given a submanifold (possibly singular):
Ccnmt™m

such that the vector field d is tangent to it. Then d induces on C a nilpotent vector field
Q . This is same as specifying a differential ideal in the supercommutative algebra of
PDFs.



We can then consider the space of maps Map(X, C) . It still has Q and v. But does it
have i such that Eq. (25) is satisfied?

Example: pure spinors in AdS

Consider, again, the pure spinor cone over AdSs x S

[o(r\\e X (,%ne X PSU (Q)/Z(%

S0(14)xS0(5)
VW AT

Let us associate to it a differential ideal in PDFs on PSU(2,2|4) in the following way. In a
local chart MT(AdSs x S5) is parameterized by:

g, Ji=—(dgg ™)1, Jo=—(dgg )2, J3=—(dgg™')3

with d acting as follows:

dg = —(A0+J1+J2+J3)g
dJi = [J2, J3] + [Ao, Ji]
dJ, = {Jl, Jl} + {J3, Jg} + [Ao, J2]

where A, is some so(1,4) @ so(5) connection. The differential ideal is given by:

Jb=0 (27)
{Jla Jl} - {J37 J3} =0 (28)

Let us call this CAdS (“cone bundle of AdS”):
CAdS c MT(AdSs x S°) solving Eqgs (27) and (28)
On this constraint, we denote:
A3=J3, =4

In this case the map i was partially constructed in my paper.
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