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+ Batalin-Vilkovisky (BV) quantization & Geometry ~~ AKSZ construction of TFTs.
2D: Poisson Sigma Model ~~ A- and B-model; 3D: Courant Sigma Model ~» Chern-Simons; QP manifolds

+ Topological Field Theory (TFT) is important in a variety of physical problems.

diverse dimensions; topological strings, Chern-Simons, BF & topological states in quantum matter ...

« Wess-Zumino (WZ) terms require twisted structures & vanilla AKSZ doesn’t work.
2D: WZW-Poisson Sigma Model Klimcik, Strobl ‘01 3D: 4-form-twisted (pre-)Courant Sigma Model Hansen, Strobl '09

v The Q-vs-QP problem: it can happen that QU P QP for the target space, or even V‘
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Motiwvation

« For the 2D twisted Poisson sigma model, the BV action beyond AKSZ was found.
Also its relation to E-geometry for E = T*M. Ikeda, Strobl 19

« More examples? Specifically, more generic examples?

v Beyond 2D & beyond 1-forms ... (higher reducibilities).
E.g. Twisted (pre-)Courant sigma models in 3D.

v~ Still 2D but beyond twisted Poisson, e.g. Dirac sigma models.

ThCh, Jonke, Strobl, Simunié¢ '22 discussed in Simunic’s talk

Relation to higher structures? A dictionary?
#« Are Poisson and twisted Poisson sigma models just a 2D story? (no)

# Strings on general flux backgrounds & duality ~~ “R-flux” (3-vector)
world volume pov: Halmagyi '08; Mylonas, Schupp, Szabo '12; Heller, lkeda, Watamura '16; ThCh, Jonke, Khoo, Szabo '18

v Understand their global formulation.

~ Twisted R-Poisson structures & their induced WZ-TFTs



R-Poisson structure & twists

H-twisted R-Poisson manifold (M, I, R, H) of order p + 1: 2-& (p + 1)-vectors N & R; (p + 2)-form H
[M,Msn=0 [M,Rlsn = (=17 (@P*2M,H), dH=0.

for H = 0 ~ (untwisted) R-Poisson; for H = 0 = R ~~ Poisson.



R-Poisson structure & twists

H-twisted R-Poisson manifold (M, N, R, H) of order p + 1: 2 & (p + 1)-vectors 1 & R; (p + 2)-form H
[M,Msn=0 [M,Rlsn = (=17 (@P*2M,H), dH=0.
for H = 0 ~ (untwisted) R-Poisson; for H = 0 = R ~~ Poisson.

Recall: there exists the notion of C-twisted Poisson manifold (M, M, C) Severa, Weinstein ‘01

This is not a C-twisted R-Poisson forp = 1 ...

1NNy = (&°N.C) and dC=0.



R-Poisson structure & twists

H-twisted R-Poisson manifold (M, N, R, H) of order p + 1: 2 & (p + 1)-vectors 1 & R; (p + 2)-form H
[M,Msn=0 [M,Rlsn = (=17 (@P*2M,H), dH=0.

for H = 0 ~ (untwisted) R-Poisson; for H = 0 = R ~~ Poisson.

Recall: there exists the notion of C-twisted Poisson manifold (M, M, C) Severa, Weinstein ‘01
This is not a C-twisted R-Poisson for p = 1 ...

1 IN.Mlsv = (&°1,C) and dC 0.

Bi-twisted R-Poisson manifold (M, nR,C, H) 2-vector I, 3-vector R, 3-form C, 4-form H s.t.

R+(MeneN,C),

1
E[nvn]SN
dC = H.

For R = 0 = H reduces to C-twisted Poisson manifold with a closed 3-form C.



C-Twisted Poisson & Q—-manifold

Lie algebroids (E = M, [-,]e,p: E — TM) <«  Q-manifolds (E[1], Qg). vaintrob 97

Twisted Poisson structure (M, 1, C) ~~ Lie algebroid on T*M ~» (T*[1]M, Qt+m):

Coordinates (x*,a,) ofdegree (0,1),

19} 1

S 9
oxv 2

oa,’

Qr+m = N*(x)a 8,M* + N**MN"*C..,)a.a,
1 P p)u

Q-|2—*M =0 = % [ﬂ, H]SN S <®3H,C> .



Covariantization Warm-Up

Rewrite the Q-vector in covariant form in terms of an affine connection V on M

1e d 3 9
)

wm=n*"aD® - Vv, nN*“a,a,-—, (DY= A T
Qrem 2 Ve audvgars oxv ¥ 5

where I are coefficients of V and V is the torsionless piece. They differ by the torsion

T — <|_|7 C> (that iS rﬁy = Fﬁy - %npoc,uvo') .

One may now ask what is the other object, namely —VT1, in geometrical terms.



Covariantization Warm-Up

Rewrite the Q-vector in covariant form in terms of an affine connection V on M

1e d 3 9
)

wm=n*"aD® - Vv, nN*“a,a,-—, (DY= A T
Qrem 2 Ve audvgars oxv ¥ 5

where I are coefficients of V and V is the torsionless piece. They differ by the torsion

T — <|_|7 C> (that iS rﬁy = Fﬁy - %npoc,uvo') .

One may now ask what is the other object, namely —VT1, in geometrical terms.
It's the E-torsion of an E-connection on the Lie algebroid (T*M, [+, -]x, N* : T*M — TM)
EVME® V)= T(V), EVe(fv)=fEVev+p(e)fv, ecT(E),vel(V).
(V=E), °Vee =V, T(e,€)="Vee' - Voe—[e k.

N.B. One can unite ET and (N, T) as components of the Gualtieri torsion tensor on a Courant algebroid ...



H-twisted R-Poisson & Q—-manifold
Similarly, for a H-twisted R-Poisson structure (M, M, R, H) ~ (T*[p]T*[1]M, Q):

Coordinates (x*,a,,y",z.,) ofdegreee (0,1,p—1,p).



H-twisted R-Poisson & Q—-manifold
Similarly, for a H-twisted R-Poisson structure (M, M, R, H) ~ (T*[p]T*[1]M, Q):

Coordinates (x*,a,,y",z.,) ofdegreee (0,1,p—1,p).

(There exists a cohomological Q-vector

a 1 a
Q=n""a, - -9,N""a,a, —
axn  2°° " 9a, *
1)PN**z, — 8,N" a,y” ! v o
+ (_) v — Ovp apy +E au1-~-aup W-F
(=1)° (=1)P 1o bipi 0
v uv o P+
" <ap” Bz = g 00 Y aua + gy Bur - Bupi1 ) Bz,

p+1
HA e Bpptl B Bptq Brvr
where f, = 9,R ptt 4TI Hovyovpyy -
=1

Q=0 & [MNsn=0 and [M,Rlsn=(—1)"" (RPN, Hp2).



Covariantization

Introduce an affine connection without torsion V on M and rewrite the Q-vector as

subject to the redefinition 2}7 =2z, + fﬁvy“ a, and in terms of suitable “Ds” of corresponding degree; R is the curvature of V
Q = n*aD? - 1v,na,a,0r
- v o Ve nAv (1)

+ ((—1)Pr|“"zf - V.M a,y" + %R”“"““‘Pam ...aup> D{!=P)

. o (-1 (e o do3
+ (vm“ﬂapzf - % (VUV“I‘I”” — 2r|“["R”];,m,) y“apag) D{_p

(_1)p v R/HA.A;JPJA ad p,rl/,H Dy
- m V. -‘an vgevper | 8uq - 8upiy D—py -
' r=1

One may now ask what is the geometric interpretation of all these new objects?
n,vn

R, VR + (&M, H) and WVVN —2Al(MN,R)



“Basic” E-curvature

Let us focus on the last of these objects, for which we already have the ingredients.
In general, equipped with an affine connection V on M & a Lie algebroid on E, define
EVeX := p(Vxe) + [p(e), X].
Then the basic E-curvature is a map Blaom ‘06
ES . M(E®E®TM) — I(E)
“S(e, &)X = Vxle, €]c — [Vxe, €]e — [e, Vx€'le — Veg x€+ Vey, €.

For E = T*M it turns out that ES = —V/(ET) — 2Alt(I, R) ~ precisely the desired term.

see Kotov, Strobl '16

Lessons:

« E-geometry (E-connections, E-torsion, basic E-curvature) controls the Q-structure.

« Basic E-curvature ES has more content than E-curvature ER of an E-connection.



Q UP # QP

We work on a cotangent bundle ~ equipped with a (graded) symplectic (P) structure.

QP-manifolds: dg symplectic with compatibility of the vector Q & the symplectic form w

Eo w=0.
In general, for twisted Poisson & twisted R-Poisson:  Lqw #0 when Hp» #0.

Lesson: Twists (WZ terms in the TFT) obstruct QP-ness.



Enter Field Theory



Goals and main pointers

Construct WZ-TFTs induced by twisted R-Poisson structure in any dimension > 2.

General class of TFTs in (p 4+ 1)D with “nonlinear openness” & high reducibility

Gauge algebra closes on products of field equations / forms of degree > 1

BV operator and BV action very demanding no QP no Aksz

v Fully solved for D = 3 ~~ 1st example of BV for a pre-Courant sigma model
v Closed formulas for any D in the untwisted case, alternative to AKSZ with advantages ...

Target space covariance Role of E-geometry and Ep-geometry (connections, torsion and basic curvature)

“Islands” of TFTs in special D by deformation ~~ ex: bi-twisted R-Poisson 3D TFT.

in the present context, only in low dimensions, 2, 3 and 4



Warm-Up: The C-twisted Poisson Sigma Model

Klimcik, Strobl '01; Ikeda, Strobl 19

2D TFT with scalars & 1-forms (X*, A.) & C-twisted Poisson manifold as target space
X:3 > M & AcQ'(Zp, X*T*M).

1 v *
sC_PSM:/ (A#/\dX“-i-fl'l“ (X)A#/\Ay)—k X*C.
Yo 2 par
Symmetries/EOMs scalar €, ; the gauge algebra is “soft” and “open” even for C = 0, [d1, 62]A = 61pA+ (... )F

SXM = M¥Me, A, = de, + 8, Ase, % M"°Cpue (dX7 — M7 Ax)e, .

Fro—dXP 4+ A, =0, G, = dA, + %aﬂn"ﬂAy NA, + %C,de” AdX? = 0.

The covariant transformation of A and its manifestly covariant field strength are

6VA=De— FT(Ae) and GY =DA-— %ET(A, A,

Recall that £ T does not see C; all C-dependence is through D, the fully covariant exterior derivative



H-twisted R-Poisson Sigma Models

TFTs on X1 with X : X,y — M and a WZ term from a closed (p + 2)-form H on M.

Field content (X”, Aw Y”, ZM) (chosen as to accommodate a 2-vector background)

A€ Q' (Tpir, X'T'M) Y €Q7 (5510, X'TM)  Z € Q°(Sp1, X' T'M).

The general classical action functional for p > 0 with target (M, N, R, H) of order p + 1

N.B. for R = 0 = H, this is a Poisson sigma model in any dimension ...

S<P+1>:/ (ZH/\dX“fAM/\dY“JrI'I‘“’(X)ZM/\Al,f%&ﬂ‘“’(X) YPAALNA, +
pi
1
—— R (X) AL, AN - ANA X*H.
MRS (X) As “”*‘>+ oo

Even the action functional does not look very covariant at first sight in this case.



Gauge symmetries & nonlinear openness

Three gauge parameters (€., x",,) of form degrees (0,p — 2,p — 1),
SX' = N,

6A, = deu+0,N"Avc,,
sYH = dx" +terms(N, 9N, R)
1 p+1 r—1 14
§Z, = d, +terms(N, aN,dan, oR) — mH’“’H,“,A1 ap€e (=) [T dx s [T n A, .
: r=1 s=1 t=r
4 EOMs, F* 5 dX*, G, D dA,, F* >dY*, G, > dZ, ...= 0.

A “soft”, “open” and highly reducible constrained Hamiltonian system. Notably:
01,0212, =~ 61220+ (... )nGo+ () F + () FY +
H( D)o F P+ (o g F P



Unveiling target space covariance

Introduce an ordinary connection V (without torsion) on TM. Then, e.g.
Recall: Z¥ = Z, + 2, Y A A,

£V

DY - ST(A V) + (-11(Z°) - JR(A....A),

1
(p+ 1)

~ T*M-torsion, basic T*M-curvature and 7 := (P11, Hp.2) € [(T*M @ APT' TM).

g¥ = (=1)"'DZY - ET(ZV, A) + %ES(Y,A,A)Jr (VR+T)A,...,A).

The action may be expressed in covariant form as pull-backs understood ...

S+ — /
b

In 3D/4D, the geometric completion of local patch results for string/M-theory fluxes.
Mylonas, Schupp, Szabo '12; Th. Ch, Jonke, Lechtenfeld '15; Heller, lkeda, Watamura '16; Th. Ch., Jonke, Lust, Szabo '19

¥ < 1 o
((Z ,F)—(Y,G )+WR(A,...,A))+ z,,+2X H.

p+1



Enter BV



Classical BV in a nutshell

Given the classical action S; and its gauge symmetries,
+ Enlarge the configuration space by ghosts, ghosts for ghosts &c. and antifields.
+ Define an odd symplectic structure on this space, the BV (anti)bracket (-, -)sv.
+ Extend Sy with all possible terms with ghosts/antifields to an action S.
+ Solve the Classical Master Equation (CME) (S, S)gy = 0.

NB: the BRST operator s is not nilpotent off-shell, but the BV operator s = (S, -)gv is.



oF

Once WZ terms are turned on, AKSZ does not apply. Example: Twisted PSM
TPSM: no higher form gauge parameters, or ghosts for ghosts, or nonlinear openness

The twisted R-Poisson class in arbitrary dimensions features all the above. 4(p + 2) fields

FieldGhost | x» | A, | v* | 2, | e, P ¥
Ghost
degree 0 0 0 0 1 r+1 r+1
Form 0 1 —1 0 —2—r =7 =F
degree P P » g
Antifield xto| A |y ze | e x5 e
Ghost _1 _1q 1 1 _2 —r—2 —r—2
degree
Form
Eoaie p+1 | p 2 1| p+1 r+3 r+2




BV operator and action

« Now the action would be Sgy = S© + 8™ 4 ... + 8P+ ., tough ...

# Instead use a “refinement strategy” to determine the BV operator on all fields

starting from the known BRST operator on the classical fields
sy suchthat s%p =0.
Turns out to be much more tractable due to repeating patterns.

-] Essentially S = Sakszy + (AS Lp)(H, F) unlike TPSM, all but one +-ghosts receive EOM-corrections



BV operator and action

Now the action would be Sgy = S© + 8" ... 4 8P+ ., tough ...

Instead use a “refinement strategy” to determine the BV operator on all fields

starting from the known BRST operator on the classical fields
sy suchthat s%p =0.
Turns out to be much more tractable due to repeating patterns.

Essentially S = Sakszy + (AS Lp)(H, F) unlike TPSM, all but one +/-ghosts receive EOM-corrections

Worth noting: in the twisted Poisson s3A,, ESﬁ‘;epeg F¥ (basic curvature).

Here the square of sy on the highest-form contains, covariantly & schematically:
£7¥ 5 [6(% +(@PTILH)Y) — (o + 1)A|t<R,7°z>] (e,¢, A, ..., AF).

Reflect the openness, as usual in BV they appear along with “4-fermion” terms.

Recall the BV action of the topological A- and B-models



3D Twisted R-Poisson—-Courant Sigma Model

Out of the 8 fields and ghosts, 4 unmodified w.r.t. AKSZ: X*, A,, €4, X
2 modified only with H-components but not with field equations: indices of H raised with 11

AsY! = %HO—W” Zleep, AS’L/JS) = %HH"M €v€p€q .

2 modified also by HF-dependent terms:

Asvy, = (%HW’M F“ + %Hup” A, — %B(AHu)pa"Zi‘e,,> €p€o s
1 V KA 1 VK A 1 VKA 1 -+
AsZ, = QHW FEFY + gHn™ AR + 2HL ™ (A — 5 YY)

i au A ”“FAZpe,@—F 379 Ho"" (et + 3ArZL) ex

1 vT K (e
(2 3'8(p8 HV«) +§6(paal'l Hu)’r >\> EHE)\Z+pZ+}€V

Remarkably, the BV action is then fully and uniquely determined. details in ThCh, Ikeda, Simuni¢



Deformations
or

Can we twist the twisted R-Poisson?

dim X Admissible deformations
2 (X, YYZuNZ,, PP (Y)ALNAL
3 fuvo(X)YENYYANYP (X)) Z AN Y, BL(X)YEAYYANA,

4 fun (X) Y™ A YV




Island TFTs & Bi-twisted R-Poisson

#« 2D ~~ different choices of the deformation action yield: Generically doubled sigma models
4+ Ex1: H-twisted R-Poisson of order 2, Ex2: H-twisted Poisson + BF theory

« 3D ~~ R is a 3-vector & the theory extends Courant sigma models by a WZ term.
cf. Hansen, Strobl '09

+ Bi-twisted R-Poisson (M, M, R, C, H)
+ The covariant formulation requires a connection with torsion. Q-structure is modified.

« 4D ~~ aside the TRPSM, a theory with a symmetric term
cf. lkeda, Uchino '10

of —

1 >
st 5 Gu(X)Y" A Y.
Pt

A strong necessary condition: M** g,,, = 0. (Would be interesting to relax it.)
P



Enter Ep—-Geometry

work in progress



The geometric remains as Ep-tensors

E-geometrically, 1, VI, VI 4 2Alt(I, R): anchor, E-torsion, basic E-curvature.

Still require explanation: R, VR + (&P, H), V(VR + (2PN, H)) — (p + 1)AIt(R, R).



The geometric remains as Ep-tensors

E-geometrically, 1, VI, VI 4 2Alt(I, R): anchor, E-torsion, basic E-curvature.

Still require explanation: R, VR + (&P, H), V(VR + (2PN, H)) — (p + 1)AIt(R, R).

The (p+1)-vector R € [(AP*'TM) induces a map R* : APT*M — TM:
R*(e) = %R‘””'“PH Gy ppOpry» € ET(APT'M).
For our twisted R-Poisson purposes it suffices to focus on decomposable p-forms:
e=en... AP &) er(TM).
In any case, one can define an “Ep-connection” by means of the identification
®PVse = Vi,

with good Leibniz rule provided with the assistance of map R?.



Ep-torsion

The Ep-torsion of the higher Ep-connection is a map 5T : [(@P'T*M) — [(T*M),
p+1
2T, .., 6P) = S (—1)P T EPye) — (60, 6P,
r=1
where el € I(T*M) and €[r] is the decomposable p-form
erl=eVA...e" VA A APt

and the generalized (p + 1)-ary twisted Koszul bracket is given as

p+1
= 1
[e(”, e e(p+1)]Kp — Z(_1)p r+1['Rﬁ('é[r])e(r) _ W d(R(e(”, o P+ ) + Tw(e r))7
r=1 '
g P
(1) p+1 el ta
Tw(e®™, ..., = Z e, T)(R¥(elr]). ).

Forp=1~5T=ET&[, ] = [, ]x. For T = (11, C), Tw = C(M*(eM), N(®)).

Therefore it reproduces the known results of Poisson for p = 1.



Ep-torsion and Q-structure / BV

For arbitrary p, the Ep-torsionis T = —VR.
A near-miss? No; for twisted R-Poisson, use the I too in the (p + 1)-ary bracket:

Lo dko — [ oo Jko + HOE (M), .., ¥ (ePT)y)

Then the Ep-torsion is precisely the appearing tensor in the Q-structure and in the BV

T = —VR— ("M, H).



Basic Ep-curvature

First introduce the induced Ep-connection on TM given by
EPVsX = R¥ (V@) + [R¥(8), X].

The basic Ep-curvature is a map %S : [(@P*'T*M ® TM) — I'(T*M) given by
forp = 1,EWS: Es

p+1
#S(e",...,ePX = Vx[eM,. .., 6Pl =D (1) Verg, x6" -
elr]
r=1
p+1
_Z[e N vyel, e(’+1),...,e(p+”]Kp

A direct computation leads to the result
BPS = —V(°T) — (b + 1) Alt(R, R),

which is the final object encountered in the Q-structure & the BV of twisted R-Poisson.



Take-home messages

v New examples of solutions to the Classical Master Equation for QP TFTs.
v First example in more than 2D.

« Twisted R-Poisson TFTs encompass all generic features of gauge theory.
+ Even the unorthodox nonlinear openness.

« E- and Ep-geometry are the backbones of twisted R-Poisson TFTs and their BV.
« Notably, the corresponding notions of torsion and basic curvature.

Some open questions
@ Systematics of WZ-AKSZ-BV? Systematics of Ep-geometry?
@ Quantum BV action of twisted R-Poisson / relation to deformation quantization?
@ TFTs for general homotopy Poisson (P) structures? Th. voronov '05; Cattaneo, Felder 07

@ Beyond T[1]X world volumes? ct. Thch, Karagiannis, Schupp ‘20



Enter Back-Up Slides

mostly long formulas



The BV action of 3D H-twisted R-Poisson
X [0 s+ [ (12t M ZE2 4 N, 22022

v v 1 s
Le = —0™§ Y} + 0031 (GeuenA} — e Vi +euthutid) +

1

+ %anaxauﬂpgepegxki/)ff_ — %(GHRPJ)‘ + EHRPU)\)EO-E)\ Y;r +

’
+ 200" epesartt

6
1 po 0 1 po i 1 (7
M. = Eaﬁam (epd)a—pra)—i—é@,ﬁ@A@Mﬂ (epAsx +§epng ) —
—18 7 e e A —la Hyy . e e F*
4(nA) p€op 12 (=) p€o ’
N, = _%anaAaunP“epng = %anakauaynpf’epegx" =

1 pov pT
<36 rOATL +ﬂ8 OAM""H,y, )epegey.



BV operator for all y—ghosts in any dimension

up to factors and limits, see ThCh, Ikeda, Simunié

Full untwisted BV operator including Y ~ x(_1):

/
Xy = Il T # 0D 00 D17 0N (s, )X (s, ) +
S
/ /
+ D # O, O MM I (=) OM A (s, )T
S S/

vy...V, L Kp_ Aq. A 'NA /
> # 0, o OagRHTI AR Bp—a M A8 (5, 6T) Oy iy (1 )eu o evgArgy g Ay

t,s,s’ ,t

where we denote @ := r + s + s’ 4 t + t’ 4 2 and we define the following operators,

s’ —1 s—1
Aq. A ’ A A /
O™ (s 5) = > (H Y (m )) ¢+s(s’7s—2.s:1 m)’ (O(O’ F)= 50,5’) ’
mj=—1 u=1 i=1
1<i<s—1
t—1 Lt/2] -1 t—1
~ DA (+mp_q _2q) + + =
Oy t) = 37 (=190 g (H xm,(m“)> X 1ot mpy? (00,1 =85)
mj=—1 u=1 i=1
1<i<t—1

p—r—s—s’ —2
k

P =
(s,s") = § Oj(1,u— 2)X(r+s+s’+u) s
u=0

xk



BV operator for all y-ghosts in any dimension

up to factors and limits, see ThCh, Ikeda, Simunié

Full untwisted BV operator including Z ~ 1(_1):

/ ~
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where the only new operator that appears is defined as
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