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Motivation

✤ Batalin-Vilkovisky (BV) quantization & Geometry⇝ AKSZ construction of TFTs.
2D: Poisson Sigma Model⇝ A- and B-model; 3D: Courant Sigma Model⇝ Chern-Simons; QP manifolds

✤ Topological Field Theory (TFT) is important in a variety of physical problems.
diverse dimensions; topological strings, Chern-Simons, BF & topological states in quantum matter ...

✤ Wess-Zumino (WZ) terms require twisted structures & vanilla AKSZ doesn’t work.
2D: WZW-Poisson Sigma Model Klimcik, Strobl ’01 3D: 4-form-twisted (pre-)Courant Sigma Model Hansen, Strobl ’09

✓ The Q-vs-QP problem: it can happen that Q∪ P̸= QP for the target space, or even �P.
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Motivation

✿ For the 2D twisted Poisson sigma model, the BV action beyond AKSZ was found.

Also its relation to E-geometry for E = T∗M. Ikeda, Strobl ’19

✿ More examples? Specifically, more generic examples?

✓ Beyond 2D & beyond 1-forms ... (higher reducibilities).

E.g. Twisted (pre-)Courant sigma models in 3D.

✓ Still 2D but beyond twisted Poisson, e.g. Dirac sigma models.

ThCh, Jonke, Strobl, Šimunić ’22 discussed in Šimunić’s talk

Relation to higher structures? A dictionary?

✿ Are Poisson and twisted Poisson sigma models just a 2D story? (no)

✿ Strings on general flux backgrounds & duality⇝ “R-flux” (3-vector)
world volume pov: Halmagyi ’08; Mylonas, Schupp, Szabo ’12; Heller, Ikeda, Watamura ’16; ThCh, Jonke, Khoo, Szabo ’18

✓ Understand their global formulation.

⇝ Twisted R-Poisson structures & their induced WZ-TFTs
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R-Poisson structure & twists

H-twisted R-Poisson manifold (M,Π,R,H) of order p + 1: 2- & (p + 1)-vectors Π & R; (p + 2)-form H

[Π,Π]SN = 0 [Π,R]SN = (−1)p+1⟨⊗p+2Π,H⟩ , dH = 0 .

for H = 0⇝ (untwisted) R-Poisson; for H = 0 = R⇝ Poisson.

Recall: there exists the notion of C-twisted Poisson manifold (M,Π,C) Ševera, Weinstein ’01

This is not a C-twisted R-Poisson for p = 1 ...

1
2
[Π,Π]SN = ⟨⊗3Π,C⟩ and dC = 0 .

Bi-twisted R-Poisson manifold (M,Π,R,C,H): 2-vector Π, 3-vector R, 3-form C, 4-form H s.t.

1
2
[Π,Π]SN = R + ⟨Π⊗ Π⊗ Π,C⟩ ,

dC = H .

For R = 0 = H reduces to C-twisted Poisson manifold with a closed 3-form C.
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C-Twisted Poisson & Q-manifold

Lie algebroids (E π→ M, [·, ·]E, ρ : E → TM) ⇔ Q-manifolds (E[1],Q E). Vaintrob ’97

Twisted Poisson structure (M,Π,C)⇝ Lie algebroid on T∗M⇝ (T∗[1]M,Q T∗M):

Coordinates (xµ, aµ) of degree (0, 1) ,

Q T∗M = Πµν(x)aµ
∂

∂xν
− 1

2
(∂ρΠ

µν +ΠµκΠνλCκλρ)aµaν
∂

∂aρ
,

Q 2
T∗M = 0 ⇔ 1

2
[Π,Π]SN = ⟨⊗3Π,C⟩ .



Covariantization Warm-Up

Rewrite the Q-vector in covariant form in terms of an affine connection ∇ on M

Q T∗M = ΠµνaµD(0)
ν − 1

2
∇̊ρΠ

µνaµaν
∂

∂aρ
, (D(0)

ν =
∂

∂xν
+ Γσνρaσ

∂

∂aρ
)

where Γ are coefficients of ∇ and ∇̊ is the torsionless piece. They differ by the torsion

T = ⟨Π,C⟩
(

that is Γρµν = Γ̊ρµν −
1
2
ΠρσCµνσ

)
.

One may now ask what is the other object, namely −∇̊Π, in geometrical terms.

It’s the E-torsion of an E-connection on the Lie algebroid (T∗M, [·, ·]K,Π♯ : T∗M → TM)

E∇ : Γ(E ⊗ V ) → Γ(V ) , E∇e(fv) = f E∇ev + ρ(e)f v , e ∈ Γ(E) , v ∈ Γ(V ) .

(V = E) , E∇ee′ := ∇Π♯(e)e
′, ET (e, e′) = E∇ee′ − E∇e′e − [e, e′]K .

N.B. One can unite ET and ⟨Π, T⟩ as components of the Gualtieri torsion tensor on a Courant algebroid ...
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H-twisted R-Poisson & Q-manifold

Similarly, for a H-twisted R-Poisson structure (M,Π,R,H)⇝ (T∗[p]T∗[1]M,Q):

Coordinates (xµ, aµ, yµ, zµ) of degreee (0, 1, p − 1, p) .

(
There exists a cohomological Q-vector

Q = Πνµaν
∂

∂xµ
−

1
2
∂ρΠ

µνaµaν
∂

∂aρ

+

+

(
(−1)pΠνµzν − ∂νΠ

µρaρyν +
1
p!

Rµν1...νp aν1 . . . aνp

)
∂

∂yµ
+

+

(
∂ρΠ

µνaνzµ −
(−1)p

2
∂ρ∂σΠ

µνyσaµaν +
(−1)p

(p + 1)!
f
µ1...µp+1
ρ aµ1 . . . aµp+1

)
∂

∂zρ
,

where f
µ1...µp+1
ρ = ∂ρRµ1...µp+1 +

p+1∏
r=1

Πµr νr Hρν1...νp+1 .

)

Q2 = 0 ⇔ [Π,Π]SN = 0 and [Π,R]SN = (−1)p+1⟨⊗p+2Π,Hp+2⟩ .
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Covariantization

Introduce an affine connection without torsion ∇̊ on M and rewrite the Q-vector as
subject to the redefinition z∇̊µ = zµ + Γ̊ρµνyνaρ and in terms of suitable “Ds” of corresponding degree; R̊ is the curvature of ∇

Q = ΠµνaµD(0)
ν − 1

2
∇̊ρΠ

µνaµaνDρ
(−1)

+

(
(−1)pΠµνz∇̊

µ − ∇̊µΠ
νρaρyµ +

1
p!

Rνµ1...µp aµ1 . . . aµp

)
D(1−p)
ν

+

(
∇̊νΠ

µρaρz∇̊
µ − (−1)p

2

(
∇̊ν∇̊µΠ

ρσ − 2Πκ[ρR̊σ]
µκν

)
yµaρaσ

)
Dν

(−p)

− (−1)p

(p + 1)!

(
∇̊νRµ1...µp+1 +

p+1∏
r=1

Πµrνr Hνν1...νp+1

)
aµ1 . . . aµp+1 Dν

(−p) .

One may now ask what is the geometric interpretation of all these new objects?

Π, ∇̊Π

R, ∇̊R + ⟨⊗p+1Π,H⟩ and ∇̊∇̊Π− 2Alt⟨Π, R̊⟩



“Basic” E-curvature

Let us focus on the last of these objects, for which we already have the ingredients.

In general, equipped with an affine connection ∇ on M & a Lie algebroid on E, define

E∇eX := ρ(∇X e) + [ρ(e),X ] .

Then the basic E-curvature is a map Blaom ’06

ES : Γ(E ⊗ E ⊗ TM) → Γ(E)
ES(e, e′)X = ∇X [e, e′]E − [∇X e, e′]E − [e,∇X e′]E −∇E∇e′X e +∇E∇eX e′ .

For E = T∗M it turns out that ES = −∇(ET )− 2Alt⟨Π,R⟩⇝ precisely the desired term.
see Kotov, Strobl ’16

Lessons:

✿ E-geometry (E-connections, E-torsion, basic E-curvature) controls the Q-structure.

✿ Basic E-curvature ES has more content than E-curvature ER of an E-connection.



Q ∪ P ̸= QP

We work on a cotangent bundle⇝ equipped with a (graded) symplectic (P) structure.

QP-manifolds: dg symplectic with compatibility of the vector Q & the symplectic form ω

LQ ω = 0 .

In general, for twisted Poisson & twisted R-Poisson: LQ ω ̸= 0 when Hp+2 ̸= 0 .

Lesson: Twists (WZ terms in the TFT) obstruct QP-ness.



Enter Field Theory



Goals and main pointers

✤ Construct WZ-TFTs induced by twisted R-Poisson structure in any dimension ≥ 2.

***

✿ General class of TFTs in (p + 1)D with “nonlinear openness” & high reducibility
Gauge algebra closes on products of field equations / forms of degree > 1

✿ BV operator and BV action very demanding no QP, no AKSZ

✓ Fully solved for D = 3⇝ 1st example of BV for a pre-Courant sigma model

✓ Closed formulas for any D in the untwisted case, alternative to AKSZ with advantages ...

✿ Target space covariance Role of E-geometry and Ep-geometry (connections, torsion and basic curvature)

✿ “Islands” of TFTs in special D by deformation⇝ ex: bi-twisted R-Poisson 3D TFT.
in the present context, only in low dimensions, 2, 3 and 4



Warm-Up: The C-twisted Poisson Sigma Model
Klimcik, Strobl ’01; Ikeda, Strobl ’19

2D TFT with scalars & 1-forms (Xµ,Aµ) & C-twisted Poisson manifold as target space
X : Σ2 → M & A ∈ Ω1(Σ2, X∗T∗M).

SC-PSM =

∫
Σ2

(
Aµ ∧ dXµ +

1
2
Πµν(X )Aµ ∧ Aν

)
+

∫
Σ3

X∗C .

Symmetries/EOMs scalar ϵµ ; the gauge algebra is “soft” and “open” even for C = 0 , [δ1, δ2]A = δ12A + (. . . )F

δXµ = Πνµϵν , δAµ = dϵµ + ∂µΠ
νρAνϵρ+

1
2
ΠνρCµνσ(dXσ − ΠσλAλ)ϵρ .

Fµ := dXµ +ΠµνAν = 0 , Gµ := dAµ +
1
2
∂µΠ

νρAν ∧ Aρ +
1
2

CµνρdXν ∧ dXρ = 0 .

The covariant transformation of A and its manifestly covariant field strength are

δ∇A = Dϵ− ET (A, ϵ) and G∇ = DA − 1
2

ET (A,A) ,

Recall that E T does not see C; all C-dependence is through D, the fully covariant exterior derivative



H-twisted R-Poisson Sigma Models

TFTs on Σp+1 with X : Σp+1 → M and a WZ term from a closed (p + 2)-form H on M.

Field content (Xµ,Aµ,Yµ,Zµ) (chosen as to accommodate a 2-vector background)

A ∈ Ω1(Σp+1,X∗T∗M) Y ∈ Ωp−1(Σp+1,X∗TM) Z ∈ Ωp(Σp+1,X∗T∗M) .

The general classical action functional for p > 0 with target (M,Π,R,H) of order p + 1
N.B. for R = 0 = H, this is a Poisson sigma model in any dimension ...

S(p+1) =

∫
Σp+1

(
Zµ ∧ dXµ − Aµ ∧ dYµ +Πµν(X )Zµ ∧ Aν −

1
2
∂ρΠ

µν(X )Y ρ ∧ Aµ ∧ Aν +

+
1

(p + 1)!
Rµ1...µp+1(X )Aµ1 ∧ · · · ∧ Aµp+1

)
+

∫
Σp+2

X∗H .

Even the action functional does not look very covariant at first sight in this case.



Gauge symmetries & nonlinear openness

Three gauge parameters (ϵµ, χ
µ, ψµ) of form degrees (0, p − 2, p − 1),

δXµ = Πνµ
ϵν ,

δAµ = dϵµ + ∂µΠ
νρAνϵρ ,

δYµ = dχµ + terms(Π, ∂Π,R)

δZµ = dψµ + terms(Π, ∂Π, ∂∂Π, ∂R) −
1

(p + 1)!
ΠρνHµνλ1...λp ϵρ

p+1∑
r=1

(−1)r
r−1∏
s=1

dXλs
p∏

t=r

Πλtκt Aκt .

4 EOMs, Fµ ⊃ dXµ , Gµ ⊃ dAµ , Fµ ⊃ dYµ , Gµ ⊃ dZµ . . .= 0.

A “soft”, “open” and highly reducible constrained Hamiltonian system. Notably:

[δ1, δ2]Zµ ≈ δ12Zµ + (. . . )νµ Gν + (. . . )µνFν + (. . . )µνF ν +

+(. . . )µνρF νFρ + · · ·+ (. . . )µν1...νp F ν1 . . .F νp .



Unveiling target space covariance

Introduce an ordinary connection ∇̊ (without torsion) on TM. Then, e.g.
Recall: Z∇̊

µ = Zµ + Γ̊ρµνYν ∧ Aρ

F∇̊ = D̊Y − ET (A,Y ) + (−1)pΠ(Z ∇̊)− 1
p!

R(A, . . . ,A) ,

G∇̊ = (−1)p+1D̊Z ∇̊ − ET (Z ∇̊,A) +
1
2

ES(Y ,A,A) +
1

(p + 1)!
(∇̊R + T )(A, . . . ,A) .

⇝ T∗M-torsion, basic T∗M-curvature and T := ⟨⊗p+1Π,Hp+2⟩ ∈ Γ(T∗M ⊗
∧p+1 TM).

The action may be expressed in covariant form as pull-backs understood ...

S(p+1) =

∫
Σp+1

(
⟨Z ∇̊,F ⟩ − ⟨Y ,G∇̊⟩+ 1

(p + 1)!
R(A, . . . ,A)

)
+

∫
Σp+2

X∗H .

In 3D/4D, the geometric completion of local patch results for string/M-theory fluxes.
Mylonas, Schupp, Szabo ’12; Th. Ch, Jonke, Lechtenfeld ’15; Heller, Ikeda, Watamura ’16; Th. Ch., Jonke, Lüst, Szabo ’19



Enter BV



Classical BV in a nutshell

Given the classical action S0 and its gauge symmetries,

✤ Enlarge the configuration space by ghosts, ghosts for ghosts &c. and antifields.

✤ Define an odd symplectic structure on this space, the BV (anti)bracket (·, ·)BV.

✤ Extend S0 with all possible terms with ghosts/antifields to an action S.

✤ Solve the Classical Master Equation (CME) (S,S)BV = 0.

NB: the BRST operator s0 is not nilpotent off-shell, but the BV operator s = (S, ·)BV is.



��QP

Once WZ terms are turned on, AKSZ does not apply. Example: Twisted PSM

TPSM: no higher form gauge parameters, or ghosts for ghosts, or nonlinear openness

The twisted R-Poisson class in arbitrary dimensions features all the above. 4(p + 2) fields

Field/Ghost Xµ Aµ Yµ Zµ ϵµ χµ
(r) ψ(r)

µ

Ghost
degree 0 0 0 0 1 r + 1 r + 1

Form
degree 0 1 p − 1 p 0 p − 2 − r p − 1 − r

Antifield X+
µ Aµ

+ Y+
µ Zµ

+ ϵµ+ χ+
µ
(r) ψµ

+(r)

Ghost
degree −1 −1 −1 −1 −2 −r − 2 −r − 2

Form
degree p + 1 p 2 1 p + 1 r + 3 r + 2



BV operator and action

✿ Now the action would be SBV = S(0) + S(1) + · · ·+ S(p+1) ⇝ tough ...

✿ Instead use a “refinement strategy” to determine the BV operator on all fields
starting from the known BRST operator on the classical fields

sφ such that s2φ = 0 .

Turns out to be much more tractable due to repeating patterns.

✿ Essentially sφ = sAKSZφ+ (∆sφ)(H,F ) unlike TPSM, all but one ψ-ghosts receive EOM-corrections

✤ Worth noting: in the twisted Poisson s2
0Aµ ∝ ESρσµνϵρϵσF ν (basic curvature).

Here the square of s0 on the highest-form contains, covariantly & schematically:

s2
0Z ∇̊ ⊃

[
∇̊(∇̊R + ⟨⊗p+1Π,H⟩)− (p + 1)Alt⟨R, R̊⟩

]
(ϵ, ϵ,A, . . . ,A,F ) .

✤ Reflect the openness, as usual in BV they appear along with “4-fermion” terms.
Recall the BV action of the topological A- and B-models
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3D Twisted R-Poisson-Courant Sigma Model

Out of the 8 fields and ghosts, 4 unmodified w.r.t. AKSZ: Xµ,Aµ, ϵµ, χµ.

2 modified only with H-components but not with field equations: indices of H raised with Π

∆s Yµ =
1
4

Hσµνρ Zσ+ ϵνϵρ , ∆sψ(1)
µ =

1
3!

Hµνρσ ϵνϵρϵσ .

2 modified also by HF-dependent terms:

∆sψµ =

(
1
4

Hµνρσ F ν +
1
2

Hµρσν Aν −
1
3!
∂(λHµ)

ρσνZλ+ ϵν
)
ϵρϵσ ,

∆s Zµ =

{
1
3!

Hµκλν FκFλ +
1
2

Hµλνκ AκFλ +
1
2

Hµνκλ (AκAλ − 1
2
ϵκY+

λ )

+
1
3!
∂(µHρ)λ

νκFλZ ρ+ϵκ +
1
3!
∂(ρHµ)

νκλ (ϵλψ
ρ
+ + 3AλZ ρ+) ϵκ

−
(

1
2 · 3!

∂(ρ∂σHµ)
νκλ +

1
8
∂(ρ∂σΠ

ντHµ)τ
κλ

)
ϵκϵλZ ρ+Zσ+

}
ϵν .

Remarkably, the BV action is then fully and uniquely determined. details in ThCh, Ikeda, Šimunić



Deformations
or

Can we twist the twisted R-Poisson?

dimΣp+1 Admissible deformations

2 fµν(X ,Y )Zµ ∧ Zν , fµν(Y )Aµ ∧ Aν

3 fµνρ(X )Yµ ∧ Y ν ∧ Y ρ, fµν (X )Zµ ∧ Y ν , f ρµν(X )Yµ ∧ Y ν ∧ Aρ

4 fµν(X )Yµ ∧ Y ν



Island TFTs & Bi-twisted R-Poisson

✿ 2D⇝ different choices of the deformation action yield: Generically doubled sigma models

✤ Ex1: H-twisted R-Poisson of order 2, Ex2: H-twisted Poisson + BF theory

✿ 3D⇝ R is a 3-vector & the theory extends Courant sigma models by a WZ term.
cf. Hansen, Strobl ’09

✤ Bi-twisted R-Poisson (M,Π,R,C,H)

✤ The covariant formulation requires a connection with torsion. Q-structure is modified.

✿ 4D⇝ aside the TRPSM, a theory with a symmetric term
cf. Ikeda, Uchino ’10

S(4)
def =

∫
Σ4

1
2

gµν(X )Yµ ∧ Y ν .

A strong necessary condition: Πµνgνρ = 0. (Would be interesting to relax it.)



Enter Ep-Geometry
work in progress



The geometric remains as Ep-tensors

E-geometrically, Π, ∇̊Π,∇∇̊Π+ 2Alt⟨Π,R⟩: anchor, E-torsion, basic E-curvature.

Still require explanation: R, ∇̊R + ⟨⊗p+1Π,H⟩, ∇̊(∇̊R + ⟨⊗p+1Π,H⟩)− (p + 1)Alt⟨R, R̊⟩.

The (p+1)-vector R ∈ Γ(∧p+1TM) induces a map R♯ : ∧pT∗M → TM:

R♯(ê) =
1
p!

Rµ1...µp+1 êµ1...µp∂µp+1 , ê ∈ Γ(∧pT∗M) .

For our twisted R-Poisson purposes it suffices to focus on decomposable p-forms:

ê = e(1) ∧ . . . ∧ e(p+1) , e(r) ∈ Γ(T∗M) .

In any case, one can define an “Ep-connection” by means of the identification

Ep∇êe = ∇R♯(ê)e ,

with good Leibniz rule provided with the assistance of map R♯.
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Ep-torsion

The Ep-torsion of the higher Ep-connection is a map EpT : Γ(⊗p+1T∗M) → Γ(T∗M),

EpT (e(1), . . . , e(p+1)) =

p+1∑
r=1

(−1)p−r+1 Ep∇ê[r ]e
(r) − [e(1), . . . , e(p+1)]Kp ,

where e(r) ∈ Γ(T∗M) and ê[r ] is the decomposable p-form

ê[r ] = e(1) ∧ . . . e(r−1) ∧ e(r+1) ∧ . . . ∧ e(p+1) ,

and the generalized (p + 1)-ary twisted Koszul bracket is given as

[e(1), . . . , e(p+1)]Kp =

p+1∑
r=1

(−1)p−r+1LR♯(ê[r ])e
(r) − 1

(p − 1)!
d(R(e(1), . . . , e(p+1))) + Tw(e(r)) ,

Tw(e(1), . . . , e(p+1)) =
1
2

p+1∑
r=1

(−1)p−r ⟨e(r),T ⟩(R♯(ê[r ]), ·) .

For p = 1⇝ E1T = ET & [·, ·]K1 = [·, ·]K. For T = ⟨Π,C⟩, Tw = C(Π♯(e(1)),Π♯(e(2))).
Therefore it reproduces the known results of Poisson for p = 1.



Ep-torsion and Q-structure / BV

For arbitrary p, the Ep-torsion is EpT = −∇̊R.

A near-miss? No; for twisted R-Poisson, use the Π too in the (p + 1)-ary bracket:

[·, . . . , ·]Kp −→ [·, . . . , ·]Kp + H(Π♯(e(1)), . . . ,Π♯(e(p+1))) .

Then the Ep-torsion is precisely the appearing tensor in the Q-structure and in the BV

EpT = −∇̊R − ⟨⊗p+1Π,H⟩ .



Basic Ep-curvature

First introduce the induced Ep-connection on TM given by

Ep∇êX = R♯(∇X ê) + [R♯(ê),X ] .

The basic Ep-curvature is a map EpS : Γ(⊗p+1T∗M ⊗ TM) → Γ(T∗M) given by
for p = 1, E1S = ES

EpS(e(1), . . . , e(p+1))X = ∇X [e(1), . . . , e(p)]Kp −
p+1∑
r=1

(−1)p−r∇Ep∇ê[r ]X
e(r) −

−
p+1∑
r=1

[e(1), . . . , e(r−1),∇X e(r), e(r+1), . . . , e(p+1)]Kp .

A direct computation leads to the result

EpS = −∇(EpT )− (p + 1)Alt⟨R,R⟩ ,

which is the final object encountered in the Q-structure & the BV of twisted R-Poisson.



Take-home messages

✓ New examples of solutions to the Classical Master Equation for��QP TFTs.
✓ First example in more than 2D.

✤ Twisted R-Poisson TFTs encompass all generic features of gauge theory.
✤ Even the unorthodox nonlinear openness.

✿ E- and Ep-geometry are the backbones of twisted R-Poisson TFTs and their BV.
✿ Notably, the corresponding notions of torsion and basic curvature.

Some open questions

Systematics of WZ-AKSZ-BV? Systematics of Ep-geometry?

Quantum BV action of twisted R-Poisson / relation to deformation quantization?

TFTs for general homotopy Poisson (P∞) structures? Th. Voronov ’05; Cattaneo, Felder ’07

Beyond T [1]Σ world volumes? cf. ThCh, Karagiannis, Schupp ’20



Enter Back-Up Slides
mostly long formulas



The BV action of 3D H-twisted R-Poisson

S(3)
BV = S(3) −

∑
α

∫
(−1)gh(φ)φ+

α s0φ
α +

∫ (
Lµ Zµ+ + Mκλ Zκ+Zλ+ + Nκλµ Zκ+Zλ+Zµ+

)
,

Lκ = −∂κΠµν ψ̃νY+
µ + ∂κ∂λΠ

µν(
1
2
ϵµϵνAλ+ − ϵνχ

λY+
µ + ϵµψ̃νψ

λ
+) +

+
1
2
∂κ∂λ∂µΠ

ρσϵρϵσχ
λψµ+ − 1

2
(∂κRρσλ +

1
2

Hκρσλ)ϵσϵλY+
ρ +

+
1
6
∂(κfµ)

ρσλϵρϵσϵλψ
µ
+ ,

Mκλ =
1
2
∂κ∂λΠ

ρσ(ϵρψσ − Aρψ̃σ) +
1
2
∂κ∂λ∂µΠ

ρσ(ϵρAσχµ +
1
2
ϵρϵσYµ)−

− 1
4
∂(κfλ)

ρσµϵρϵσAµ − 1
12
∂(κHλ)µ

ρσϵρϵσFµ ,

Nκλµ = −1
6
∂κ∂λ∂µΠ

ρσϵρψ̃σ − 1
12
∂κ∂λ∂µ∂νΠ

ρσϵρϵσχ
ν −

−
(

1
36
∂(κ∂λfµ)

ρσν +
1

24
∂(κ∂λΠ

ρτHµ)τ
σν

)
ϵρϵσϵν .



BV operator for all χ-ghosts in any dimension
up to factors and limits, see ThCh, Ikeda, Šimunić

Full untwisted BV operator including Y ∼ χ(−1):

sχµ
(r) = dχµ

(r+1) +
∑

s
# ∂κ∂λ1

. . . ∂λs Π
µν

∑
s′

(−1)s
′
Oλ1...λs (s, s′)Xκ

ν (s, s′) +

+
∑

s
# ∂λ1

. . . ∂λs Π
µν

∑
s′

(−1)s
′
Oλ1...λs (s, s′)ψ(r+s+s′+1)

ν +

−
∑

t,s,s′,t

# ∂λ1
. . . ∂λs Rµν1...νaκ1...κp−aOλ1...λs (s, s′)Õκ1...κt (t, t′)ϵν1 . . . ϵνa Aκt+1 . . . Aκp−a ,

where we denote a := r + s + s′ + t + t′ + 2 and we define the following operators,

Oλ1...λs (s, s′) =

s′−1∑
mi=−1

1≤i≤s−1

s−1∏
u=1

ψ
λu
+ (mu )

ψ
λs
+ (s′−s−

∑s−1
i=1 mi )

,
(
O(0, s′) = δ0,s′

)
,

Õκ1...κt (t, t′) =

t′−1∑
mi=−1

1≤i≤t−1

(−1)
∑⌊t/2⌋−1

q=0 (1+mt−1−2q )

t−1∏
u=1

χ
+
κu

(mu )

χ
+
κt (t′−t−

∑t−1
i=1 mi )

,
(
Õ(0, t′) = δ0,t′

)

X
k
j (s, s′) =

p−r−s−s′−2∑
u=0

Õj (1, u − 2)χk
(r+s+s′+u) ,



BV operator for all ψ-ghosts in any dimension
up to factors and limits, see ThCh, Ikeda, Šimunić

Full untwisted BV operator including Z ∼ ψ(−1):

sψ(r)
µ = dψ(r+1)

µ +
∑

s
# ∂µ∂λ1

. . . ∂ls Π
νρ

∑
s′

(−1)s
′
Oλ1...λs (s, s′)X̃νρ(s, s′) +

+
∑

s,s′,t,t′
# ∂µ∂λ∂λ1

. . . ∂λs Π
νρOλ1...λs (s, s′)Õν (1, t′ − 2)Õk (1, t − t′ − 2)χl

(t+r+s+s′−1) +

+
∑

t,s,s′,t′
# ∂λ1

. . . ∂λs∂µRν1...νaκ1...κp−a+1Oλ1...λs (s, s′)Õκ1...κt (t, t′)ϵν1 . . . ϵνa Aκt+1 . . . Aκp−a+1 ,

where the only new operator that appears is defined as

X̃νρ =

p−r−s−s′−1∑
u=0

Õν (1, u − 2)ψ(r+s+s′+u)
ρ .
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