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Context

o Euclidean Quantum Field Theories (QFT) model statistical physics.

o Physical content is encoded in expectation values of observables (fields), which are called correlation
functions.

o At critical temperature, such systems feature further conformal symmetries and are thus dubbed
Conformal Field Theories (CFT).

o Belavin-Polyakov-Zamolodchikov (Conformal Bootstrap, 1984) observed that this extra symmetry
constrains the system strongly and used this idea to classify CFTs. They gave explicit expressions for the
correlation functions of several CFTs in 2D (minimal models, e.g. critical Ising model).

o In 3D, Conformal Bootstrap has recently led to spectacular numerical predictions (e.g. 3D Ising model) by
Rychkov and collaborators.
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Two approaches of QFT/CFT

@ Axiomatic:
o Wightman'’s axioms, Osterwalder-Schrader, Segal’s axioms
o Conformal Bootstrap (BPZ): recursive construction of correlation functions recursively via Operator Product

Expansion.
= in maths: Vertex Operator Algebras (Borcherds, Frenkel,..) in representation theory.

@ Constructive:
o Find examples satisfying the axioms (Ising, P(¢#)7;...)
o Path integral (measure on the set of configurations of the system), renormalization group
Fs / F(6)e~S) D
Hard to extract quantitative information and to relate to axioms.

o Perturbative approach, approximative.
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o Wightman'’s axioms, Osterwalder-Schrader, Segal’s axioms
o Conformal Bootstrap (BPZ): recursive construction of correlation functions recursively via Operator Product

Expansion.
= in maths: Vertex Operator Algebras (Borcherds, Frenkel,..) in representation theory.

@ Constructive:
o Find examples satisfying the axioms (Ising, P(¢#)7;...)
o Path integral (measure on the set of configurations of the system), renormalization group
Fs / F(6)e~S) D
Hard to extract quantitative information and to relate to axioms.

o Perturbative approach, approximative.

This talk: From (2) to (1) in the context of a non trivial CFT: Liouville theory.
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Axiomatic of 2D CFTs on the Riemann sphere C U {oco}: conformal covariance

o If ¢ Mobius (¥ (z2) = ijifj, a,b,c,d € C, ad — bc = 1), n point correlation functions are related by

H Vo (0(20)) = (Hw 2)|7*2 ) ([ ] Ve (@)

where V,, are primary fields and A, € R are conformal weights.

o Hence, 3 point correlation functions are determined up to constants C(«1, a2, a3) called structure
constants:

(Vay (21) Voo (22) Voo (23))

= C(an, ap, a3)|2y — 25| Bea =B

17Aa2)‘21 _ ZS‘Z(AaZ*AmanS)lZZ _ ZS‘Z(AC” —Day,—RDag)

o Liouville theory: C(a1, az, a3) satisfies DOZZ formula CY9% (o, a2, a3).
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Axiomatic of 2D CFTs: OPE and bootstrap

o Operator Product Expansion (axiom):

V(’1(z1)vf’2(22) = Z 021,(12(217227621782_1)V04(Z1)7 ‘21 - 22| — o

acsS

holds when inserted in correlation functions

(Vo (21) Viy (22) Vg (28) - ) = D G20y (21, 22,02, 07) (Va (21) Viag (23) - . .)
a€S
where for z; =0
° Coq as (07 Z, 821 ) 62_1 ) = C(a1 ) 2, O_l)lz‘ZAO‘ T2hay ~2Reg (1 +
determined by structure constants.
o the sum runs over some subset S of indices, called the spectrum.

Aa+Ao<2_Aa1
2 (2371+2321)|z1 —o+---)are

o lterating the OPE =- Solving a CFT boils down to determining the spectrum and structure constants

o Considering two possible OPEs yields a quadratic relation for structure constants, which may be solved in
some cases (cf Ising 3D).

o Liouville theory: S=Q+ iR, and 3 = [.
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Plan of the talk

Probabilistic construction of Liouville CFT

Main result

Strategy of proof
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Liouville CFT

o Consider the metric |
g(Z): 15140 |Z|+:maX(17|Z|)
|z|%

o LCFT is formally a measure on some space ¥ of maps ¢ : C — R defined by

Fos /X F(¢)e 519Dy

wit D¢ putative Lebesgue measure on ¥ and

5.6) = 3= [ (I90(2) +2Qu(2)0(2) + 4mue™g(2)) dz. Q=

s

N2
+
21N
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Liouville CFT
o Consider the metric |
g(Z): 15140 |Z|+:maX(17|Z|)
|2|%
o LCFT is formally a measure on some space ¥ of maps ¢ : C — R defined by
Fos / F(¢)e 519Dy
pN
wit D¢ putative Lebesgue measure on ¥ and

sL(¢):;7 @(\V@(z)ﬁ+20¢(z)g(z)+4me""“‘)<z>g(z)) dz, Q=1+

Nl
21N

o David-Kupiainen-Rhodes-Vargas’ construction (2014) relies on 2 ingredients:
o the squared gradient term gives rise to a Gaussian measure called Gaussian free field (GFF).

o the term exp ( —pfo € 2 g(z) dz) is seen as a Radon-Nykodim derivative w.r.t. the GFF measure.
Exponential of the GFF = Gaussian multiplicative Chaos theory (GMC)
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Key ingredient 1: Gaussian Free Field

o let X be the GFF with vanishing g-average, namely a Gaussian centered distribution (in the sense of

Schwartz)
h test function on C — X}

with covariance
E[Xn Xy ] = //cz h(z)h' (2')G(z,2") 9(2)g(2")dzdZ'

where G the Green function of Laplacian on C w.r.t. metric g

1 1 1 ,
1~ 4n9(2) — g Ing(2)

G(Z’Z):lnpj

Formally
Xi =0, E[X(2)X(Z)]=G(z,Z')=In"—"""—"

o Definition of the Gaussian measure: for positive continuous functionals F on H™¢(C)
/ F(¢>)efﬁ Je Vel dZD¢> := Constant X / E[F(c+ X(:))]dc
> R
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Key ingredient 2: Gaussian multiplicative chaos
o Goal: construct the green term in

e St Dé = e’ﬁ fC(ZQ¢g(Z)+47r;Le'rO(Z)g(z))dze—ﬁ Jo IVo(2)? dZD¢ _

i.e. make sense of the term (where X GFF)

/ e 9g(z) dz.
c
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Key ingredient 2: Gaussian multiplicative chaos

o Goal: construct the green term in

e Si(9) D¢ _ efﬁ ‘/-C(ZQ¢Q(Z)+4‘/TH87 qﬁ(Z)g(z)) dze 47‘_ /C |V é(2) ‘2 dZD¢ _

i.e. make sense of the term (where X GFF)

/‘E e X(@)—3 Y Elx g(z)

o Gaussian Multiplicative Chaos (GMC, Kahane 85)
2
M, (dz) := eliLno eWXe(Z)*VT]E[Xe(Z)Z]g(Z) dz

with X. a regularization of the field X at scale ¢ > 0

1

|z—z’\+e+o(1)

E[X.(2)X(Z)] ~ In

Non trivial iff v € (0, 2), in which case total mass M, (C) is finite almost surely.
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Mathematical definition

Definition of Liouville functional measure for F bounded functional on H=¢(C)

Fr (= |

E [F(c +X(+) ef”ewM”(C)] e 2% dc
R

with X the GFF and M, the GMC random measure

2
E[X(2)X(Z)] = G(z,Z'), and M, (C)= / X~ TEX@ ) g 7) .

C

Liouville field:
®(z):=c+ X(z) —2QIng(z2).
This is the observable we will be interested in.
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Correlation functions

o Forz € C and a € R, vertex operators are

Va(2) i= €™

o Correlation functions in Liouville CFT are "Laplace cumulants” of the measure:

<H Vo (2k)) .
k=1

for arbitrary n € N, z1,...,z; € Cand o, ...,an € C

Remark: a proper definition requires a regularization as @ is a distribution and cannot be evaluated pointwise.
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Correlation functions

o Forz € C and a € R, vertex operators are

Va(2) i= €™
o Correlation functions in Liouville CFT are "Laplace cumulants” of the measure:

<H Vo (2k)) .
k=1

for arbitrary n € N, z1,...,z; € Cand o, ...,an € C

Remark: a proper definition requires a regularization as @ is a distribution and cannot be evaluated pointwise.

Theorem ( , 2014)

For~ € (0,2) and o, . .., an € R, one can define probabilistically the correlation functions (TTi_y Vi, (2k))~,u-
They are non trivial iff:

n
Vi,aj< Q and > a;>2Q (Seiberg bounds)
i=1

In particular, existence implies n > 3. Conformal covariance holds with weights A, = 5(Q —

).

n|R
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Correlation functions

o LCFT correlations are moments of GMC (DKRV 2014): for n > 3

A Verl@dw =071 ] —gmer) B2
k=1

1<j<k<n 12

ZF:1 a;j—2Q

where s = and

2= [ (I g2 )@

o For n = 3, do they satisfy DOZZ formula?
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o LCFT correlations are moments of GMC (DKRV 2014): forn > 3

A Verl@dw =071 ] —gmer) B2

k=1 1<j<k<n 12

ZF:1 a;j—2Q

where s = and

Z— / H z 'f';w )M, (dz)

o For n = 3, do they satisfy DOZZ formula? Yes!
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The DOZZ formula
Theorem ( ,2017)

AssumeVi, a;j < Q and Y.> ,a;>2Q. Then

(Vay (0) Ve (1) Vg (00)) s = 3 G20 (a2, )
with
CDOZZ(a1 )
i(%)z—wz)wf‘&x T30)T3(e)Ty(a

. 2)T 3 ()
Y-

(a
T3 (B2 T2 (25214 (2 2042)'Y-%(a—22a3)

with & = a1 + a2 + a3 and the function ’T% defined as analytic continuation of the following integral defined for
0 < R(2) < R(Q)

_~({,a 2, (sinh((§—-2)5)?) ot
In'T”%(Z)—/0 ((2 _Z) € _Siﬂh(tZZ)Sih(Z')>t
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Conformal bootstrap
Theorem ( , 2020)

Fory € (0,2) anda; < Q (i=1,...,4) satisfying
art+ax>Q and azt+as>Q
the following identity holds for |z| < 1
(Va; (0) Varp (2) Vg (1) Viay (00)) .10 (1

1 q ] ;
— / C (ar, a2, Q — iP)CI0 (0, aa, Q + iP)| 220 P =R =0e2) | Fio(2) 2P
R+

where Fp are the holomorphic conformal blocks given by Fp(z) = Y2, 82" where the 8, have
(complicated) combinatorial expressions in terms of Young diagrams.
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Conformal bootstrap
Theorem ( , 2020)
Fory € (0,2) anda; < Q (i=1,...,4) satisfying

ai+ap>Q and asz+as>Q

the following identity holds for |z| < 1

( a1(O)Vaz(Z)Vas(UVaA(oo)M,u (1)
— / C2%(aq, oz, Q — iP)CYY (0, cua, Q + iP)| 2|2 BariP =By ~Ra2)| Fp(7) |2 dP

where Fp are the holomorphic conformal blocks given by Fp(z) = Y2, 82" where the 8, have
(complicated) combinatorial expressions in terms of Young diagrams.

Remarks:
o This is a reformulation of the OPE at the level of 4 point correlation functions. Similar expressions for
higher (n > 5) order correlation functions hold.
o Equality between Fp(z) and Nekrasov partition function: Maulik-Okounkov (2012), Schiffmann-Vasserot
(2012). In these works, Fp(Zz) is a formal power series. Convergence is an output of our result.
o On torus, Ghosal-Remy-Sun-Sun (2020) have obtained a beautiful probabilistic representation of the

conformal blocks and proven their convergence. .



Conformal blocks

The conformal blocks are holomorphic
A"‘l iP Zﬁnz

where
© Bn =31 151=n V(Bays Bag, Barip, V) Qn o (1, D)V(Day, Dag, Dayip, 7)

o v= (ki > k; >...) Young diagram of size |[v| = >, k;
V(A A A v) = H,‘(kJ'A, +A" A+ Zu<j k)

—1

o
Ag+ip

(v, 7) Shapovalov matrix with central charge 1 + 6Q?, and K;-%—IP(V’ ) its inverse.
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Strategy of proof: the Hilbert space H

o Introduce Liouville Hilbert space #: set

2,2
_XntVn

[[&e 7 dxadyn.
n>1

Q := (R®)™",with proba P:

Then
H=L*R x Q;dc®P).
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Strategy of proof: the Hilbert space H

o Introduce Liouville Hilbert space #: set

2,2
_XntVn

[[&e 7 dxadyn.
n>1

Q := (R®)™",with proba P:

Then
H=L*R x Q;dc®P).

o Circular GFF: set

p(0)=> % (Xn cos(nf) — yn sin(na))

n>0
Under P, ¢ has the law of a Gaussian Free Field on the unit circle

1

E[p(0)p(0")] = In e — g’

16/20



Strategy of proof: the GFF decomposition

o Key decomposition
X = Py + Xp + Xpe

where Py harmonic extension of ¢ and Xp, Xpe two independent Dirichlet GFFs on ID and ID¢ (with
covariance Gp,Gpe ).

o Key invariance:
1
Xoe (E) 2 xo(2)

o Using above, one gets

(Ve (0) Vi (2) Vg (1) Viag (00)) .1 = (U(Vaay (0) Vaap (2)), U(Vaay (0) Vg (1)) 1

where

o2 [_32
U( \/(1(21)‘/6(22))(07 (p) _ e(a+,3—Q)Ce<xP<p(Z1)+[3P<p(22)+0</36|_)(21 ,22)(1 _ |Z1 |2)T(1 _ |22|2)T

x E, {exp ( _ Mevc/ e7Gp(z:2 )+’Y/BGD(ZvZ2)M’Y(dz)):|
D
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Strategy of proof: the general scheme
o Step 1: write 4 point function as a scalar product on Hilbert space H

(Ve (0) Vi (2) Vg (1) Viag (00)) .10 = (U(Vaay (0) Vaap (2)), U(Vaay (0) Vg (1)) 2

o Step 2: Spectral resolution where “(Vo.ip 1.5, Voiip v o)1 = 2m8p—pr Qag, o (Vs V') Qag, (7, 7')"

(= ge [ UV (0)Ver @) Woris)eVouimnor, UVeg (1) Ve 0

v, v D

X Qag,p(v, V) OZC‘MP(ﬂ, ') dP

o Step 3: Conformal Ward
<w0+/P,V,Df U( VOq (0) Vf’z (z))>7‘i = V(A&1 ) Aazv AO+iPa D) V(Aoq ) Aag: AQ+I'P7 V)

1 . 5 A —
~ ECBSLZZ((X17(12,O+IP)Z'V‘Z‘V||Z|Z(AO+1P Aoy —Day)
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Strategy of proof: Hamiltonian of Liouville CFT

o On the Hilbert space L3(RR x Q, dc ® P), the Hamiltonian H of Liouville theory is the Schrédinger type
operator
1. @ c
H:—Ec?c—k?—s—P—s—ueV %4

with P the infinite harmonic oscillator and V a GMC type potential (> < 2)
[eS) 27 2
P =" n(xudy, — 8, +yndy, — 85,), V(p):= / 7?0~ T BN gy
n=1 0

Write Hy for the free Hamiltonian H,—o.
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Strategy of proof: Hamiltonian of Liouville CFT

o On the Hilbert space L3(RR x Q, dc ® P), the Hamiltonian H of Liouville theory is the Schrédinger type
operator
1. @ c
H:—Ec?c—k?—s—P—s—ueV %4

with P the infinite harmonic oscillator and V a GMC type potential (> < 2)

oo 27 2
P =" n(xudy, — 8, +yndy, — 85,), V(p):= / 7?0~ T BN gy
0

n=1

Write Hy for the free Hamiltonian H,—o.
o Probabilistic representation for Ho
2
e Mf(cp)=e T'E, [f (c 4+ B, Xoe ' — B,) ]

where By = ;- [2" X(e~'€"?)d# is a Brownian motion.

19/20



Strategy of proof: Hamiltonian of Liouville CFT

o On the Hilbert space L3(RR x Q, dc ® P), the Hamiltonian H of Liouville theory is the Schrédinger type
operator

o1, QP

H —_ _Eﬁc 2

with P the infinite harmonic oscillator and V a GMC type potential (> < 2)

+P+pue’v

P .= i N(xnOx, — 05, + Yndy, — 3,), V(p) = /0 o o790~ S E2O) gp
n=1
Write Hy for the free Hamiltonian H,—o.
o Probabilistic representation for H
e Mf(c, o) = e_%'Ew [f (c+ B.,Xoe ! B,) e 1o “‘”BS)V(X"E’S*BSWS)}

where By = ;- [2" X(e~'€"?)d# is a Brownian motion.
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Strategy of proof: Hamiltonian of Liouville CFT

o On the Hilbert space L2(RR x Q, dc ® P), the Hamiltonian H of Liouville theory is the Schrédinger type
operator

2
H:f%8§+%+P+ue”Cv

with P the infinite harmonic oscillator and V a GMC type potential (2 < 2)

oo 2m 2
P .= n(xads, — 0%, + Yndy, — 97,), V(p):= / g ?(O)= T E* 0 gg
JO

n=1

Write Hy for the free Hamiltonian H,,—o.

o Probabilistic representation for H
'*,2 n 2
X(2)- G EX@?) 4,

2 —u 1
e_tHOf(Cv QD) = e—%l‘Ew f(C+ Bf,XO e_t — Bt) e wl z|>e~t Z\wQe

where B; = ;- [2" X(e~'e”)d is a Brownian motion.
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Strategy of proof: Diagonalization of the Hamiltonian using scattering theory

Theorem

For~ € (0,2), the spectrum of H = [ X +00), is absolutely continuous and there is a complete family of

generalized eigenstates Vq.ip . € Lenlarged(IR x Q) labeled by P € R and Young diagrams v, v (discrete) such
that

HVo ipus = (T2 + ] + 7)) Varie s
and diagonalizing H: for each u, v € L*(R x Q)

1 o oA -
(uv)e =5 > / (U, Waripws)u(Waripw o, VIHQng,p (1, V') Qag, o (5, 7') AP
v, v D! 0

Moreover
(Voripw,o, U(Va, (0) Vay(2)))2 = V(Aa1 s Doy, Basip, P)V(Aay, Doy, Agrip, V)

CDOZZ(a1,a2 QJrIP)Zl v o ‘\Z\ (Agrip—Aay—Aay)
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Perspectives

@ Modular and higher genus Bootstrap of Liouville CFT on the torus using Segal’s axioms (GKRV)
o Probabilistic formulas for F»(z) (Ghosal-Remy-Sun-Sun)
o CFT of CLE/SLE: "Imaginary" DOZZ formula, etc... (works by Ang, Holden, Remy, Sun). Construction of
imaginary Liouville CFT?
Beyond CFT?

o Rigorous definition of the 2d sinh-Gordon model (GKRV). Proof of DOZZ type formulas?

o Rigorous definition of the 2d sine-Gordon model?



	Probabilistic construction of Liouville CFT
	Main result
	Strategy of proof

