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The idea of smooth-automorphic forms is not new

In his 1989 paper Introduction to the Schwartz space of Γ\G , W.
Casselman wrote:

“. . . one plausible, and perhaps useful, extension of the
notion of automorphic form would be to include functions
in Aumg (Γ\G ) which are Z (g)-finite but not necessarily K -
finite.”
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Recently. . .

Smooth-automorphic forms played a role in:

the formulation of global GGP conjectures (2012)

a proof of the global GGP conjectures for unitary groups
Un × Un+1 in the endoscopic cases
(Beuzart-Plessis–Chaudouard–Zydor 2020).

A detailed study of smooth-automorphic forms has begun:

explicit construction of cuspidal smooth-automorphic forms
using Poincaré series (Muić 2016).
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A basic question about smooth-automorphic forms

How to topologize spaces of smooth-automorphic forms,
turning them into smooth group representations?
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Throughout this talk, let:

G be a connected reductive group def. over a number field F

A = the adele ring of F

Af = the subring of finite adeles of F

S = S∞ ∪ Sf be the set of (non-trivial) places of F

G∞ =
∏

v∈S∞ G (Fv ) and g∞ = Lie(G∞) ; G (A) = G∞×G (Af )

U(g) = the universal enveloping algebra of g∞ ⊗R C
Z(g) = the center of U(g)

P0 = L0 n N0 be a fixed minimal parabolic F -subgroup of G

KA = K∞ × KAf
be a maximal compact subgroup of G (A) that is in

good position with respect to P0 = L0 n N0

(Kn)n∈Z>0 be a decreasing cofinal sequence of compact open
subgroups Kn of G (Af )

G (A)1 =
⋂
χ∈X∗(G) ker |χ| and AR

G
∼= RR

>0 s.t. G (A) = AR
G ×G (A)1

[G ] = G (F )AR
G\G (A) ; vol([G ]) <∞.
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Functions of uniform moderate growth

We fix an embedding ι : G → GLN defined over F and define the
adelic group norm ‖ · ‖ : G (A)→ R>0,

‖g‖ =
∏
v∈S

max
1≤i ,j≤N

{
|ι(gv)i ,j |v ,

∣∣ι(g−1
v )i ,j

∣∣
v

}
.

A function f ∈ C∞(G (F )\G (A)) is of uniform moderate growth
of exponent d ∈ Z≥0 if

pd ,X (f ) := sup
g∈G(A)

|(Xf )(g)| ‖g‖−d <∞, X ∈ U(g).

/ The space C∞umg ,d(G ) of such functions, equipped with the
locally convex topology defined by seminorms pd ,X , is not
complete!

, For every n ∈ Z>0, the seminorms pd ,X define a Fréchet
topology on the subspace C∞umg ,d(G )Kn .
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Strict inductive limits of sequences of locally convex spaces

Let (Vn)n∈Z>0 be a sequence of complex, Hausdorff, locally convex
spaces such that for every n,

Vn is a closed topological vector subspace of Vn+1.

The strict inductive limit

lim−→
n

Vn

is the space V =
⋃∞

n=1 Vn equipped with the finest locally convex
topology with respect to which the inclusion maps Vn ↪→ V are
continuous.

Properties:

For every n, Vn is a closed topological subspace of lim−→n
Vn.

If each Vn is complete (resp., barrelled), then so is lim−→n
Vn.

If each Vn is Fréchet, we say that lim−→n
Vn is an LF-space.
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Smooth functions of uniform moderate growth

Recall:

, For every n ∈ Z>0, the seminorms

pd ,X (f ) := sup
g∈G(A)

|(Xf )(g)| ‖g‖−d <∞, X ∈ U(g),

define a Fréchet topology on C∞umg ,d(G )Kn .

; We define the LF-space

C∞umg ,d(G ) = lim−→
n

C∞umg ,d(G )Kn .

Sonja Žunar Smooth-automorphic forms 8/29



Smooth-automorphic forms

The space A∞(G ) of smooth-automorphic forms on G (A)
consists of the functions f ∈ C∞umg (G ) :=

⋃
d C
∞
umg ,d(G ) that are

Z(g)-finite, i.e. satisfy

dimCZ(g)f <∞.

The space A(G ) of (classical) automorphic forms on G (A)
consists of the functions f ∈ A∞(G ) that are additionally
K∞-finite, i.e., satisfy

dimC spanCR(K∞)f <∞.

Note:

A∞(G ) is a G (A)-invariant subspace of C∞umg (G ).

A(G ) is “just” a (g∞,K∞,G (Af ))-module.
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The space A∞J (G )

From now on, we fix an ideal J of finite codimension in Z(g). We
will define an LF-topology on the space

A∞J (G ) := {f ∈ A∞(G ) : J nf = 0 for some n ∈ Z>0} .

Lemma 1. There exists d = d(J ) ∈ Z≥0 such that

A∞J (G ) ⊆ C∞umg ,d(G ).

Let us fix d as in Lemma 1.

For every n ∈ Z>0,

A∞(G )Kn,J n
:= C∞umg ,d(G )Kn,J n

is a closed G∞-invariant subspace of the Fréchet space
C∞umg ,d(G )Kn .

We define the LF-space

A∞J (G ) = lim−→
n

A∞(G )Kn,J n
.
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Smooth representations of G (A)
Let V be a complete complex Hausdorff locally convex space, and
let (π,V ) be a continuous representation of G (A).

We equip the subspace

V∞R = {v ∈ V : the orbit map π( · )v : G∞ → V is smooth}
of G∞-smooth vectors in V with the locally convex topology
defined by the seminorms of the form

p ◦ π(X ),

where p is a continuous seminorm on V and X ∈ U(g).

We define the space V∞A of G (A)-smooth vectors in V by

V∞A := lim−→
n

(V∞R)Kn .

We say that (π,V ) is a smooth representation of G (A) if

V = V∞A or equivalently V∞R = V = lim−→
n

VKn .
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The space A∞J (G )

Lemma 2. Acted upon by right translations, the space

A∞J (G ) = lim−→
n

A∞(G )Kn,J n

is a smooth representation of G (A).
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Classical automorphic (sub)representations

Let

AJ (G ) = {f ∈ A(G ) : J nf = 0 for some n ∈ Z>0}
= A∞J (G )(K∞).

In this talk:

A classical automorphic subrepresentation is a
(g∞,K∞,G (Af ))-submodule of AJ (G ).

A classical automorphic representation is a
(g∞,K∞,G (Af ))-subquotient of AJ (G ).
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Smooth-automorphic (sub)representations

In this talk:

A smooth-automorphic subrepresentation is a closed
G (A)-invariant subspace U of A∞J (G ).

A smooth-automorphic representation is a quotient
representation U/W for some closed G (A)-invariant
subspaces W ⊆ U of A∞J (G ).

" A closed subspace U of an LF-space V is not necessarily an
LF-space!

" The quotient U/W of a complete Hausdorff locally convex
space U by a closed subspace W is not necessarily complete!
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A natural question

Does the assignment V 7→ V(K∞) define a 1-1 correspondence

smooth-automorphic
(sub)representations

↔
classical automorphic
(sub)representations?
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Smooth- vs. classical automorphic subrepresentations

Proposition 3. If V0 is a classical automorphic subrepresentation,
then

V := ClA∞J (G)V0

is a smooth-automorphic subrepresentation.

Theorem 4. The assignments

V 7→ V(K∞) and ClA∞J (G)V0 ←[ V0

define a 1-1 correspondence
admissible

smooth-automorphic
subrepresentations V

 ↔


admissible

classical automorphic
subrepresentations V0


which restricts to a 1-1 correspondence

irreducible
smooth-automorphic
subrepresentations V

 ↔


irreducible

classical automorphic
subrepresentations V0

 .
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Casselman-Wallach representations

A representation (π,V ) of G∞ on a Fréchet space V is of
moderate growth if for every continuous seminorm p on V , there
exist m ∈ Z>0 and a continuous seminorm q on V such that

p(π(g)v) ≤ ‖g‖m q(v), g ∈ G∞, v ∈ V .

A Casselman-Wallach representation of G∞ is a smooth
(Fréchet) representation (π,V ) of G∞ of moderate growth such
that the (g∞,K∞)-module V(K∞) is admissible and finitely
generated.

A Casselman-Wallach representation of G (A) is a smooth
representation (π,V ) of G (A) such that for every n ∈ Z>0, VKn is
a Casselman-Wallach representation of G∞.

Sonja Žunar Smooth-automorphic forms 17/29



Casselman-Wallach representations

Wallach’s results on Casselman-Wallach representations of G∞
easily imply:

Lemma 5.

(i) If U is a closed G (A)-invariant subspace of a
Casselman-Wallach representation (π,V ) of G (A), then U
and V /U are Casselman-Wallach representations of G (A).

(ii) Two Casselman-Wallach representations (π,V ) and (σ,W ) of
G (A) are equivalent if and only if the
(g∞,K∞,G (Af ))-modules V(K∞) and W(K∞) are isomorphic.
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Casselman-Wallach representations

Lemma 6. We have
irreducible

smooth-automorphic
subrepresentations

 ⊆


finitely generated
smooth-automorphic

subrepresentations


⊆


Casselman-Wallach

representations
of G (A)

 ⊆


admissible
representations

of G (A)

 .
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Smooth- vs. classical automorphic representations

Proposition 7.

(i) If V is an irreducible smooth-automorphic representation, then
V(K∞) is an irreducible classical automorphic representation.

(ii) Every irreducible smooth-automorphic representation V is
admissible.

Theorem 8. The assignment[
V
]
7→
[
V(K∞)

]
defines a bijection

equivalence classes
of irreducible

Casselman-Wallach
smooth-automorphic

representations

 ↔


equivalence classes

of irreducible
classical automorphic

representations

 .
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Tensor product theorem

Theorem 9. Let (π,V ) be an irreducible smooth-automorphic
Casselman-Wallach representation of G (A). Then, for each v ∈ S ,
there exists a unique irreducible smooth admissible representation
(πv,Vv) of G (Fv), which is of moderate growth if v ∈ S∞, such
that as G (A)-representations,

π ∼=
⊗

pr
v∈S∞

πv ⊗in

⊗
v∈Sf

′
πv,

where the restricted tensor product
⊗′

v∈Sf πv is equipped with the
finest locally convex topology.
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Another natural question

Do the famous direct sum decompositions of AJ (G ) along
parabolic and cuspidal support have their smooth-automorphic
counterparts?
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LF-compatible smooth-automorphic subrepresentations

We say that a smooth-automorphic subrepresentations V is
LF-compatible if

V = lim−→
n

VKn,J n
.

Examples of LF-compatible smooth-automorphic
subrepresentations:

A∞J (G )

A∞J ([G ]) := A∞J (G ) ∩ C∞(G (F )AR
G\G (A))

smooth-automorphic subrepresentations annihilated by a
power of J .
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Crucial proposition

Proposition 10. Let V be an LF-compatible smooth-automorphic
subrepresentation. Suppose that

V(K∞) =
⊕
i∈I

V0,i

for some (g∞,K∞,G (Af ))-submodules V0,i ⊆ V0. Then, we have
the following decomposition into a locally convex direct sum of
LF-compatible smooth-automorphic subrepresentations:

V =
i∈I

ClA∞J (G) V0,i .
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Parabolic support of a smooth-automorphic form

We say a function f ∈ C∞umg (G ) is negligible along a parabolic
F -subgroup P = Ln N of G , if∫

L(F )\L(A)1

fP(lg)ϕ(l) dl = 0, g ∈ G (A), ϕ ∈ A(∞)
cusp([L]),

where

fP(g) =

∫
N(F )\N(A)

f (ng) dn, g ∈ G (A).

Denoting by {P} the associate class of P, let:

C∞umg ,{P}(G ) =
{
f ∈ C∞umg (G ) : f is negligible along all Q /∈ {P}

}
A∞J ,{P}([G ]) = A∞J ([G ]) ∩ C∞umg ,{P}(G )

AJ ,{P}([G ]) = AJ ([G ]) ∩ C∞umg ,{P}(G ).
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Decompositon of A∞J ([G ]) along parabolic support

Langlands’s algebraic direct sum decomposition

C∞umg (G ) =
⊕
{P}

C∞umg ,{P}(G )

easily implies the algebraic direct sum decomposition

AJ ([G ]) =
⊕
{P}

AJ ,{P}([G ]),

which, applying Prop. 10, implies

Theorem 11. We have the following decomposition of A∞J ([G ])
into a locally convex direct sum of LF-compatible
smooth-automorphic subrepresentations:

A∞J ([G ]) =

{P}

A∞J ,{P}([G ]).
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Decomposition of A∞J ,cusp([G ]) = A∞J ,{G}([G ])

Gelfand–Piatetski-Shapiro: We have an orthogonal sum
decomposition

L2
cusp([G ]) =

⊕̂
i∈I
Hi

into irreducible closed G (A)-invariant subspaces.

; There exists a subset I (J ) ⊆ I such that

AJ ,cusp([G ]) =
⊕

i∈I (J )

H∞A
i ,(K∞),

which, applying Prop. 10 and results on CW-reps, easily implies

Theorem 12. We have the following decomposition of A∞J ,cusp([G ])
into a locally convex direct sum of irreducible smooth-automorphic
subrepresentations:

A∞J ,cusp([G ]) =

i∈I (J )

H∞A
i .

Sonja Žunar Smooth-automorphic forms 27/29



Decomposition of A∞J ,{P}([G ])

Franke–Schwermer: For every {P}, we have a direct sum
decomposition

AJ ,{P}([G ]) =
⊕

ϕ∈ΦJ ,{P}

AJ ,{P},ϕ([G ])

into (g∞,K∞,G (Af ))-submodules, where:

ΦJ ,{P} is the set of suitable associate classes ϕ of irreducible
cuspidal (classical or smooth-) automorphic
subrepresentations of Levi components of elements of {P}
AJ ,{P},ϕ([G ]) is spanned by the derivatives of regularized
values of Eisenstein series attached to the associate class ϕ.

Theorem 13. For every {P}, we have the following decomposition
of A∞J ,{P}([G ]) into a locally convex direct sum of LF-compatible
smooth-automorphic subrepresentations:

A∞J ,{P}([G ]) =
ϕ∈ΦJ ,{P}

ClA∞J ([G ])AJ ,{P},ϕ([G ]).
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Happy birthday, Prof. Savin!
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