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Part IV: The Hawking effect
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S. W. Hawking, Particle creation by black holes, Comm.
Math. Phys. 43 (1975), 199-220

“...quantum mechanical effects cause black holes to create and emit
particles as if they were hot bodies with temperature
hκ

4π2k ∼ 10−6
(
Mo

M

)
K, where κ is the surface gravity of the black hole.”

“It is now generally believed that, according to classical theory, a
gravitational collapse will produce a black hole which will settle down
rapidly to a stationary axisymmetric equilibrium state characterized by its
mass, angular momentum and electric charge... The Kerr-Newman
solution represent one such family of black hole equilibrium states and it
seems unlikely that there are any others. ... Because these solutions are
stationary there will not be any mixing of positive and negative
frequencies and so one would not expect to obtain any particle creation...
To understand how the particle creation can arise from mixing of positive
and negative frequencies, it is essential to consider not only the
quasistationary final state of the black hole but also the time-dependent
formation phase.”

Dietrich Häfner (Université Grenoble Alpes) Dirac fields on Kerr spacetime and the Hawking radiation IV



IV.1 The model of the collapsing star
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The model of the collapsing star 1

Assumption : The metric outside the collapsing star is the Kerr
metric. Surface at Boyer-Lindquist time t = 0 : S0. x0 ∈ S0 moves
along certain timelike geodesics γp.
(A) L = 0,
(B) Ẽ = a2(E2 − p) = 0 (rotational energy vanishes),
(C) Q = 0 (total angular momentum about the axis of symmetry
vanishes).

Lemma

Let σ2 = (r2 + a2)2 − a2∆ sin2 θ. Along γp :

∂θ

∂t
= 0,

∂ϕ

∂t
=

2amr

σ2
(local angular velocity of space-time).

Lemma

There exists a variable r̂ associated to null geodesic γ with
L = Q = 0 (SNG’s) s.t. ∂tr̂ = ±1 along γ (Bondi-Sachs type).
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The model of the collapsing star 2

Lemma

Along γp we have uniformly in θ when t→∞ :

r̂ = −t− Â(θ)e−2κ+t + B̂(θ) +O(e−4κ+t), Â(θ) > 0.

Asymptotic assumption : B̂(θ) = 0, (1)

S = {(t, ẑ(t, θ), ω); t ∈ R, ω ∈ S2}, (2)

∀t ≤ 0, θ ∈ [0, π] ẑ(t, θ) = ẑ(0, θ) < 0, (3)

ẑ(t, θ) = −t− Â(θ)e−2κ+t +O(e−4κ+t), t→∞, Â(θ) > 0. (4)

κ+ : surface gravity at outer horizon.

Mcol =
⋃
t

Σcolt , Σcolt = {(t, r̂, ω) ∈ Rt × Rr̂ × S2
ω; r̂ ≥ ẑ(t, θ)}.

Remark (Dirac equation on Mcol)

We use a MIT boundary condition. The Dirac equation is then solved by
an isometric propagator U(t, s).
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IV.2 Dirac quantum fields
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Dirac quantum fields (Dimock)

Mcol =
⋃
t∈R Σcol

t , Σcol
t = {(t, r̂, θ, ϕ); r̂ ≥ ẑ(t, θ)}.

Dirac field Ψ0 and the CAR-algebra U(H0) constructed in the
usual way.

Scol :
(C∞0 (Mcol))

4 → H0

Φ 7→ ScolΦ :=
∫
R U(0, t)Φ(t)dt

Quantum spin field :

Ψcol :
(C∞0 (Mcol))

4 → CAR(H0)
Φ 7→ Ψcol(Φ) := Ψ0(ScolΦ)

Ucol(O) = algebra generated by Ψ∗col(Φ
1)Ψcol(Φ

2), supp Φj ⊂ O.

Ucol(Mcol) =
⋃

O⊂Mcol

Ucol(O).

Same procedure on MBH :
S : Φ ∈ (C∞0 (MBH))4 7→ SΦ :=

∫
R e
−itHΦ(t)dt.
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States

1 Ucol(Mcol)
Vacuum state :

ωcol(Ψ
∗
col(Φ1)Ψcol(Φ2)) := ωvac(Ψ

∗
0(ScolΦ1)Ψ0(ScolΦ2))

= 〈1R+(H0)ScolΦ1, ScolΦ2〉.

2 UBH(MBH)
1 Vacuum state

ωvac(Ψ
∗
BH(Φ1)ΨBH(φ2)) = 〈1R+(H)Sφ1, Sφ2〉.

2 Thermal Hawking state

ωη,σHaw(Ψ∗BH(Φ1)ΨBH(Φ2)) = 〈µeσH(1 + µeσH)−1SΦ1, SΦ2〉H
=: ωη,σKMS(Ψ∗(SΦ1)Ψ(SΦ2)),

THaw = σ−1, µ = eση, σ > 0.

THaw Hawking temperature, µ chemical potential.
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The Hawking effect

Φ ∈ (C∞0 (Mcol))
4, ΦT (t, r̂, ω) = Φ(t− T, r̂, ω).

Theorem (Hawking effect, H ’09)

Let Φj ∈ (C∞0 (Mcol))
4, j = 1, 2. Then we have

lim
T→∞

ωcol(Ψ
∗
col(Φ

T
1 )Ψcol(Φ

T
2 ))

= ωη,σHaw(Ψ∗BH(1R+(P−)Φ1)ΨBH(1R+(P−)Φ2))

+ ωvac(Ψ
∗
BH(1R−(P−)Φ1)ΨBH(1R−(P−)Φ2)),

THaw = 1/σ = κ+/2π, µ = eση, η =
aDϕ

r2+ + a2
.
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Remarks

Remark

1 The limit state is the Unruh state.

2 ScolΦ
T =

∫ b
a U(0, T )U(T, s+ T )Φ(s)ds = U(0, T )SΦ.

Remark

Spherical symmetry

First theorem by Bachelot (’99) for bosons.

Fermions treated by Melnyk (’04). He also shows that the
initial state can be a KMS state with arbitrary temperature.

In the Λ > 0 case one can show exponentially fast
convergence towards the Unruh state : Drouot (’17).
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Explanation

Change in frequencies : mixing of positive and negative
frequencies.

Remark

The figure shows a simplified situation where Huygens’ principle holds. In
the proof this has to be replaced by a ”weak Huygens’ principle” which
follows from suitable propagation estimates.
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IV.3 Toy model
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Toy model : The moving mirror 1

z(t)

z ∈ C2(R), ∀t ≤ 0, z(t) = 0,

∀t ≥ 1, z(t) = −t−Ae−2κt; A > 0, κ > 0,
∂tΨ = iHΨ,

ψ1(t, z(t)) = −
√

1−ż
1+żψ2(t, z(t))

Ψ(t = s, .) = Ψs(.)

, H = ΓDx, Γ =

(
1 0
0 −1

)
.

Solution given by a unitary propagator U(t, s). Conserved L2 norm
: ||ψ||2Ht =

∫∞
z(t) |ψ|

2(t, x)dx. Explicit solution :

x > z(t), ψ2(t, x) = ψs2(x− t),
x > z(s) + s− t, ψ1(t, x) = ψs1(x+ t− s),
z(t) < x < z(s) + s− t,
ψ1(t, x) = −Z(τ(x+ t))ψs2(x+ t+ s− 2τ(x+ t)).
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Toy model : the moving mirror 2

Here, τ(x) is given by

z(τ(x)) + τ(x) = x⇔ τ(x) = − 1

2κ
ln

(
−x
A

)
and Z(t) by Z(t) =

√
1−ż
1+ż . We have

Z(τ(x)) =
1√
−κx

+O(x), x→ 0−.

When s = T, we obtain

ψ1(t, x) ∼ − 1√
−κ(x+ t)

ψT2 ((x+ t+ T − 2τ(x+ t))

= − 1√
−κ(x+ t)

ψT2

(
x+ t+ T +

1

κ
ln

(
−(x+ t)

A

))
∼ − 1√

−κ(x+ t)
ψT2

(
1

κ
ln

(
−(x+ t)

A
eκT
))
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Toy model : the moving mirror 3

For f ∈ C∞0 (R) we define fT (x) = 1√
−κxf

(
1
κ ln

(−x
A e

κT
))

(geometric optics approximation). Let

H0 = (L2(]z(0),∞[; dx)2, H∞ = (L2(R; dx))2.

Unitary transform P : H0 → H∞, g = Pf with

x ≥ z(0), g(x) = f(x),

x ≤ z(0), g1(x) = −f2(2z(0)− x), g2(x) = −f1(2z(0)− x).

We have HPf = PHf for f ∈ H1
0 and H0 is unitary equivalent to

− ξ√
4π

Γ by the Fourier transform. We obtain :

1R+(H0) = P−1F−1
(

1R+(ξ) 0
0 1R+(−ξ)

)
FP.
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Toy model : the moving mirror 4

Now,

2π‖1R+(H0)fT ‖2

=

∫ ∞
0

|F(fT )(ξ)|2dξ

= lim
ε→0

Aκ

∫ ∞
0

∣∣∣∣∫
R
ei(A+iε)ζeκyeκ/2yf(y)dy

∣∣∣∣2 dζ.
= lim

ε→0+

∫
R×R

1

ε cosh [κ2 (y1 − y2)]− iA sinh [κ2 (y1 − y2)]
f(y1)f̄(y2)dy1dy2.

= lim
ε→0+

Aκ

4π

∫
R
|f̂(ξ)|2F

(
1

ε cosh(κ2x)− iA sinh(κ2x)

)
(−ξ)dξ.

Let h(x) = e−ixξ

ε cosh(κ2 x)−iA sinh(κ2 x)
.
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Toy model : the moving mirror 5

Integrating h(x) along a suitable path and using Cauchy’s formula
gives : ∫

R
h(x)dx = 2πi

∞∑
n=1

ρn(ε),

where ρn(ε) are the residues of h(x) at the poles
zn(ε) ∈ {z ∈ C; Im z > 0}. One can check that

zn(ε) =
2i

κ

(
nπ − arctan

( ε
A

))
,

sup
n≥1
|ρn(ε)− (−1)ne

2πn
κ
ξ| ≤ Cε,

hence we get that for ξ < 0 we have∣∣∣∣F ( 1

ε cosh(κ2x)− iA sinh(κ2x)

)
(ξ)− 4π

Aκ
e

2π
κ
ξ
(

1 + e
2π
κ
ξ
)−1∣∣∣∣ ≤ Cε.
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IV.4 Elements of the proof
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The analytic problem

Let f(r∗, ω) ∈ (C∞0 (R× S2))4. We have to show

lim
T→∞

||1[0,∞)(H0)U(0, T )f ||20

= 〈1R+(P−)f, µeσH(1 + µeσH)−11R+(P−)f〉
+ ||1[0,∞)(H)1R−(P−)f ||2, (5)

where

µ = eση, η =
aDϕ

r2+ + a2
, σ =

2π

κ+
.
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The three time intervals

Collapse of the star.

[T/2 + c0, T ] : Scattering at fixed energy.

[tε, T/2 + c0] : High frequency problem : Duhamel formula ?

[0, tε] : propagation of singularites.
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A new Newman-Penrose tetrad

Lemma

There exists a Newman-Penrose tetrad and a coordinate system
(t, r̂, ω) s.t. :
H = ΓDr̂ + Pω +W, Γ = Diag(1,−1). Pω is a differential
operator with derivatives only in the angular directions and W is a
potential.

In the above lemma n and l are the generators of the simple null
geodesics. Comparison dynamics

H← = ΓDr̂ −
a

r2+ + a2
Dϕ.
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Outline of the proof 1

Decouple the problem at infinity from the problem near the
horizon.

Consider U(t, T )f on Λ. Data : gT . Consider U←(t, T )Ω−←f
on Λ. Data : gT←.
Solve characteristic Cauchy problem with data gT←,R:

G(gT←,R) = U(0, T/2 + c0)Φ(T/2 + c0),

where φ(T/2 + c, 0) is the solution of the characteristic
Cauchy problem in the whole space.
We also consider G(gT ) and G←(gT←,R).
Asymptotic completeness :

gT − gT←,R → 0

Continuous dependence on the data :

G(gT )−G(gT←,R)→ 0.
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Outline of the proof 2

We write

G(gT←,R)−G←(gT←,R)

= U(0, T/2 + c0)(Φ(T/2 + c0)− Φ←(T/2 + c0))

+ (U(0, T/2 + c0)− U←(0, T/2 + c0))Φ←(T/2 + c0).

The first term becomes small when T becomes large
(scattering). New tetrad : ∀ε > 0, ∃tε > 0

||Jε(r̂)(U(tε, T/2+c0)−U←(tε, T/2+c0))Φ←(T/2+c0)|| < ε

uniformly in T large.

Dietrich Häfner (Université Grenoble Alpes) Dirac fields on Kerr spacetime and the Hawking radiation IV



Outline of the proof 3

Thus

lim
T→∞

||1[0,∞)(H0)j−U(0, T )f ||20

∼ lim
T→∞

||1[0,∞)(H0)U(0, tε)U←(tε, T/2 + c0)Φ←(T/2 + c0)||20,

where j− is a smooth cut-off which equals 1 near the
boundary and 0 at infinity.

Replace U←(tε, T/2 + c0)Φ←(T/2 + c0) by a geometric optics
approximation F Ttε with :

suppF Ttε ⊂ (−tε − |O(e−κ+T )|,−tε), F Ttε ⇀ 0, T →∞,
∀λ > 0 Op(χ(〈ξ〉 ≤ λ〈α〉))F Ttε → 0, T →∞.

Here ξ and α are the dual coordinates to r̂, θ respectively.
We show that for λ sufficiently large possible singularities of

Op(χ(〈ξ〉 ≥ λ〈α〉))FTtε are transported by the group e−itεH in such

a way that they always stay away from the surface of the star.
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Dietrich Häfner (Université Grenoble Alpes) Dirac fields on Kerr spacetime and the Hawking radiation IV



Outline of the proof 3

Thus

lim
T→∞

||1[0,∞)(H0)j−U(0, T )f ||20

∼ lim
T→∞

||1[0,∞)(H0)U(0, tε)U←(tε, T/2 + c0)Φ←(T/2 + c0)||20,

where j− is a smooth cut-off which equals 1 near the
boundary and 0 at infinity.
Replace U←(tε, T/2 + c0)Φ←(T/2 + c0) by a geometric optics
approximation F Ttε with :

suppF Ttε ⊂ (−tε − |O(e−κ+T )|,−tε), F Ttε ⇀ 0, T →∞,
∀λ > 0 Op(χ(〈ξ〉 ≤ λ〈α〉))F Ttε → 0, T →∞.

Here ξ and α are the dual coordinates to r̂, θ respectively.
We show that for λ sufficiently large possible singularities of

Op(χ(〈ξ〉 ≥ λ〈α〉))FTtε are transported by the group e−itεH in such

a way that they always stay away from the surface of the star.
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Outline of the proof 4

Let φδ be a cut-off outside the surface of the star at time 0. If
φδ = 1 sufficiently close to the surface of the star at time 0
we see by the previous point that

(1− φδ)e−itεHF Ttε → 0, T →∞. (6)

Using (6) we show that (modulo a small error term):

(U(0, tε)− φδe−itεH)F Ttε → 0, T →∞.

Therefore it remains to consider :

lim
T→∞

||1[0,∞)(H0)φδe
−itεHF Ttε ||0.
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Outline of the proof 5

We show that we can replace 1[0,∞)(H0) by 1[0,∞)(H). This
will essentially allow to commute the energy cut-off and the
group. We then show that we can replace the energy cut-off
by 1[0,∞)(H←). We end up with :

lim
T→∞

||1[0,∞)(H←)e−itεH←F Ttε ||. (7)

We compute the limit in (7) explicitly.
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