Discussion on Alessandra Frabetti's talk: Direct connections on jet groupoids

Imma Gálvez Carrillo

ESI, Wien, Higher Structures Emerging from Renormalisation November 19, 2021

Direct connections and jets: motivation and strategy

- Underlying motivation: understand regularity structures better
- First step (today): understand the underlying geometric framework better.
- Regularity structures enable us to attack SPDEs via fixed-point problems, by considering 'Taylor expansions' of solutions.
- Direct connections are a generalisation of the notion of connection that, in particular, can be defined "where differentiability is not available".
- **Example:** direct connections relate the corresponding Taylor expansions around different points.
- Jets, on the other hand, can be thought of as a coordinate-free approach to Taylor expansions.

Lie groupoids

• Recall: a groupoid G is a "group-with-a-set-of-basepoints" S,

 $(s,t): G \rightrightarrows S, \quad m: G \times_S G \rightarrow G, \quad e: S \rightarrow G, \quad i: G \rightarrow G$

(or a "category-with-invertible-arrows"),

Group of symmetries of an object ~> groupoid of symmetries of some objects.

- Smooth version:
 - A Lie groupoid \mathcal{G} is a "Lie-group-with-a-manifold-of-basepoints" M,

 $(s,t): \mathcal{G} \rightrightarrows M, \quad m: \mathcal{G} \times_M \mathcal{G} \to \mathcal{G}, \quad e: M \to \mathcal{G}, \quad i: \mathcal{G} \to \mathcal{G}$

 $(\mathcal{G}, M \text{ smooth manifolds}, s, t \text{ surjective submersions}).$

• We may identify *M* with the submanifold of identities e(M) in *G*. We assume *M* is a connected manifold in the following.

Gauge Lie groupoids

• Consider principal bundles $\pi : P \to M$ with structure group G and hence:

associated vector bundles of the form $E = P \times_G V$ over M and the gauge groups $\hat{G} = Aut_M(P)$

• The gauge groupoid $\mathcal{G}(\pi) \rightrightarrows M$ of a principal bundle $\pi: P \rightarrow M$ is

$$P imes P/_{(p_1,p_2) \sim (p_1g,p_2g)} \ \ \, \Rightarrow \ \ \, M$$

with composition, identities and inverses induced by

$$(p_1, p_2)(p_2, p_3) = (p_1, p_3)$$

 $e(\pi(p)) = (p, p)$
 $(p_1, p_2)^{-1} = (p_2, p_1)$

A Lie groupoid G ⇒ M arises as a gauge groupoid G(π)
 ⇒ G is transitive (i.e., 'connected' as a graph).

Examples: the pair and the frame gauge groupoids

• The identity id: $M \rightarrow M$ is a principal bundle with gauge groupoid

 $\mathsf{Pair}(M) = M \times M \rightrightarrows M$

Arrows are $(x, y) : x \to y$ with the obvious composition. The submanifold of identities is the diagonal $\Delta(M) = \{(x, x)\}$.

• Consider a vector bundle $E \to M$ and its frame bundle $F(E) \to M$. The fibres of the frame bundle are just the frames on the fibres:

$$F(E)_x = \operatorname{Iso}(\mathbb{R}^r, E_x)$$
 $r = \operatorname{rank}(E), x \in M$

• The frame bundle is a principal $GL_r(\mathbb{R})$ -bundle with gauge groupoid

$$\mathcal{G}(F(E)) = F(E) \times F(E)_{/\sim} \cong \operatorname{Iso}(E) = \bigcup_{x,y \in M} \operatorname{Iso}(E_y, E_x) \implies M$$

Direct connections on a Lie groupoid $\mathcal{G} \rightrightarrows M$

• The anchor $s, t: \mathcal{G} \to \operatorname{Pair}(M)$ is a canonical Lie groupoid morphism (preserves source, target, identites, inverses, and composition)

- A direct connection Γ is a local section relative to M of the anchor.
 section of the anchor: preserves source & target, (s, t)Γ(x, y) = (x, y)
 relative to M: preserves the submanifold of identities, ΓΔ(x) = e(x)
 local: domain is an open neighbourhood of the submanifold ΔM
- Curvature $R^{\Gamma}: M^3 \longrightarrow \mathcal{G}$ on an open neighbourhood of the 3-diagonal $\Gamma(x, z) \cdot R^{\Gamma}(x, y, z) = \Gamma(x, y) \cdot \Gamma(y, z)$

A direct connection Γ is flat if it is a (partial) groupoid morphism.

Local bisections and jet prolongation of Lie groupoids

Local bisections (σ, U_x) of G are sections of s : G → M defined in U_x around x ∈ M, such that tσ is a local diffeomorphism on M

- Local bisections form a groupoid with objects \mathcal{U}_X , arrows $\mathcal{U}_X \xrightarrow{\sigma} \mathcal{V}_y$, identities $\mathcal{U}_X \xrightarrow{e_{|\mathcal{U}_X}} \mathcal{U}_X$. The composition $\mathcal{U}_X \xrightarrow{\sigma} \mathcal{V}_y \xrightarrow{\tau} \mathcal{W}_z$ is the local bisection $M \to \mathcal{G}$ sending p in \mathcal{U}_X to $p \xrightarrow{\sigma p} t \sigma p \xrightarrow{\tau t \sigma p} t \tau t \sigma p$ in \mathcal{G} .
- Consider *n*-jets: equivalence classes $j_x^n \sigma = [\sigma, \mathcal{U}_x]$ of local bisections whose derivatives evaluated at x coincide for orders $0 \le k \le n$
- The groupoid structure on local bisections induces, on equivalence classes, the *n*-jet prolongation Lie groupoid $J^n \mathcal{G} \rightrightarrows M$ of $\mathcal{G} \rightrightarrows M$

Jet prolongation of direct connections on Lie groupoids

- Let us start simply, considering some direct connection Γ⁽ⁿ⁾ defined on the jet prolongation JⁿG ⇒ M of a Lie groupoid G ⇒ M, i.e. a local section of the anchor JⁿG → Pair(M), [σ, U_x] ↦ (x, tσx) extending Γⁿ(x, x) = [e_{|U_x}] to a neighbourhood of the diagonal.
- A principal bundle P→M has an n-principal prolongation WⁿP→M. The gauge groupoid of the prolongation G(WⁿP) ⇒ M coincides with the prolongation of the gauge groupoid JⁿG(P) ⇒ M.
- Therefore we can generalise the result that any Lie groupoid admitting a direct connection arises as a gauge groupoid of a principal bundle: If JⁿG ⇒ M has a direct connection Γ⁽ⁿ⁾, then its constant term (evaluate each j_x at x) defines a local section Γ⁽⁰⁾ of the anchor of G. So G has a direct connection and is a gauge groupoid of some P → M Thus: a prolonged groupoid JⁿG with a direct connection is the gauge groupoid of a prolonged principal bundle WⁿP.

Infinitesimal structure of Lie groupoids $\mathcal{G} ightarrow M$

- To define the Lie algebroid $\mathcal{LG} \xrightarrow{q} M$ of a Lie groupoid \mathcal{G} , consider the tangent maps $ds, dt : T\mathcal{G} \rightrightarrows TM$, $\mathcal{L}(G) \xrightarrow{i} \ker ds$ the subbundle ker $ds \rightarrow \mathcal{G}$ of $T\mathcal{G} \rightarrow \mathcal{G}$, $q \downarrow \xrightarrow{i} \qquad \downarrow$ and its pullback \mathcal{LG} along $e : M \rightarrow \mathcal{G}$. $M \xrightarrow{e} \mathcal{G}$
- The pullback just says $(\mathcal{LG})_x \cong T_{e(x)}s^{-1}(x)$ for each $x \in M$.
- The Lie bracket of vector fields on G restricts to induce, by right translation, a bracket on sections of q, and the anchor is

 $a: \mathcal{LG} \xrightarrow{i} \ker ds \hookrightarrow T\mathcal{G} \xrightarrow{dt} TM.$

- The tangent bundle *TP* → *P* with the bracket of vector fields can be seen as the Lie algebroid of the gauge groupoid Pair(*P*) ⇒ *P*
- The Atiyah Lie algebroid $A(P) \xrightarrow{q} M$ on a principal bundle $P \to M$ is the Lie algebroid $\mathcal{LG}(P)$ of the gauge Lie groupoid $\mathcal{G}(P) \rightrightarrows M$, or alternatively is the quotient TP/G of the tangent bundle TP by G.

Jet prolongation of direct connections on Lie groupoids II

- Suppose *M* has an affine connection and we have parallel transport $\tau^{M}(y, x) : T_{x}M \longrightarrow T_{y}M$ (along unique small geodesics).
- One can then define local bisections $(\sigma, \mathcal{U}_x) : \mathcal{U}_x \to \mathcal{V}_y$ for $\mathsf{Pair}(M)$

$$\sigma(z) = \left(z, \exp_z(\tau^M(z, x)(\exp_x^{-1}(y)))\right)$$

whose jets define a direct connection on $J^n Pair(M)$.

- Given a bundle E → M and principal bundle P ⊂ F(E), and a direct connection Γ on the gauge groupoid G(P) ⇒ M, one constructs a model (Πⁿ, Γ̂ⁿ) using 'short geodesics' x → z:
- The direct connection $\{\hat{\Gamma}^n(y,x)\}$ on $J^n\mathcal{G}(P)$ sends $j_x^n f$ to $j_y^n(\prod_{x,y}^n f)$.
- Here $\Pi_x^n : J_x^n E \to \mathcal{D}'(\mathcal{U}_x, E)$ sends a jet $j_x^n f$ to the distribution

$$z \longmapsto \Gamma(z,x) \sum_{k=0} \left. \frac{1}{k!} \frac{d^k}{dt^k} \Gamma(x,\gamma(t)) f(\gamma(t)) \right|_{t=0}$$

- ABFP Sara Azzali, Younes Boutaïb, Alessandra Frabetti, Sylvie Paycha: Groupoids equipped with direct connections and their jet prolongations.
- Bra H.Brandt Über eine Verallgemeinerung des Gruppenbegriffes Math.Ann. 96 (1926) 360-366
- Bro Ronnie Brown. Topology and Groupoids. 2006
- BCCH Y.Bruned, A.Chandra, I.Chevyrev, M.Hairer, Renormalising SPDEs in regularity structures, JEMS, 23,2021, n.3, 869-947.
- BGHZY.Bruned, F.Gabriel, M.Hairer, L.Zambotti. Geometric stochastic heat equations. archiv: 1902.02884v2
- CFP B.T.Costa, M.Forger, L.H.P.Pêgas. Lie groupoids in classical field theory I: Noether's theorem, J. Geom. Phys. 131 (2018). II: gauge theories, minimal coupling and Utiyama's theorem. J. Geom. Phys. 169 (2021).
- DDD A.Dahlqvist, J.Diehl, B.Driver The parabolic Anderson model on Riemann surfaces Prob Thy Rel F,174,2019,369-444.
- E52 C.Ehresmann Les connexions infinitésimales dans un espace fibré différentiable. Sém. N.Bourbaki, exp.24, 1952, 153-168.
- E55 C.Ehresmann Les prolongements d'un espace fibré différentiable. CRAS Paris 240 (1955) 1755-1757.
- H23 J. Hjelmsvled Die natürliche Geometrie, Abhandlungen Math Sem Hamburg (2), (1923), pp. 1-36.
- K89 A.Kock On the integration theorem for Lie groupoids, Czech Math J. v0l 39, n.3, 1989, 423-431.
- K03 A.Kock Differential Calculus and Nilpotent Real Numbers The Bulletin of Symbolic Logic, Vol. 9, No. 2 (Jun., 2003), pp. 225-230
- K07 A.Kock Principal bundles, groupoids and connections, in Geometry and topology of manifolds Banach C. Pubs, 76, IMPASW 2007.
- K17 A.Kock New methods for old spaces: synthetic differential geometry. arxiv 1610.00286v2,2017.
- KMP I.Kolár, P.Michor, J.Slovak, Natural operations in differential geometry,
- KT J.Kubarski, N.Teleman, Linear direct connections in The Mathematical Legacy of Charles Ehresmann, Banach C. Pubs, 76, IMPASW 2006.
- Ma K.C.H.Mackenzie, General Theory of Lie Groupoids and Lie Algebroids, LMSLNS, 213, CUP, 2005
- MM I.Moerdijk, J.Mrcun, Introduction to foliations and Lie Groupoids, CUP, 2003.
- Mo The differentiable structures on Milnor classifying spaces, simplicial complexes and geometric realizations.
- P67 J.Pradines, Théorie de Lie pour les groupoïdes différentiables. Calcul différentiel dans la catégorie des groupoïdes infinitésimaux, CRAS, 264,1967, A245-A248.
- S89 J.D.Saunders The geometry of jet bundles. LMS LNS 142. CUP 1989
- SW15 A. Schmieding, Ch.Wockel The Lie group of bisections of a Lie groupoid. Ann.Glob.An.Geom, 48, 2015,87.
- S78 J.D.S.Stasheff Continuous cohomology of groups and classifying spaces. BAMS78
- T07 N.Teleman Direct connections and Chern character . Singularity theory. Proceedings in honour of J.P.Brasselet, Marseilles, (2007).

Thank you!