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Direct connections and jets: motivation and strategy

Underlying motivation: understand regularity structures better
First step (today):
understand the underlying geometric framework better.
Regularity structures enable us to attack SPDEs via fixed-point
problems, by considering ‘Taylor expansions’ of solutions.
Direct connections are a generalisation of the notion of connection
that, in particular, can be defined

“where differentiability is not available”.
Example: direct connections relate the corresponding Taylor
expansions around different points.
Jets, on the other hand, can be thought of as a coordinate-free
approach to Taylor expansions.



Lie groupoids

Recall: a groupoid G is a “group-with-a-set-of-basepoints” S ,

(s, t) : G ⇒ S , m : G ×S G → G , e : S → G , i : G → G

(or a “category-with-invertible-arrows”),

Group of symmetries of an object
 groupoid of symmetries of some objects.

Smooth version:
A Lie groupoid G is a “Lie-group-with-a-manifold-of-basepoints” M,

(s, t) : G ⇒ M, m : G ×M G → G, e : M → G, i : G → G

(G,M smooth manifolds, s, t surjective submersions).

We may identify M with the submanifold of identities e(M) in G.
We assume M is a connected manifold in the following.



Gauge Lie groupoids

Consider principal bundles π : P → M with structure group G

and hence:
associated vector bundles of the form E = P ×G V over M
and the gauge groups Ĝ = AutM(P)

The gauge groupoid G(π)⇒ M of a principal bundle π : P → M is

P × P/(p1,p2)∼(p1g ,p2g) ⇒ M

with composition, identities and inverses induced by
(p1, p2)(p2, p3) = (p1, p3)

e(π(p)) = (p, p)

(p1, p2)−1 = (p2, p1)

A Lie groupoid G ⇒ M arises as a gauge groupoid G(π)
⇐⇒ G is transitive (i.e., ‘connected’ as a graph).



Examples: the pair and the frame gauge groupoids

The identity id: M → M is a principal bundle with gauge groupoid

Pair(M) = M×M ⇒ M

Arrows are (x , y) : x → y with the obvious composition.
The submanifold of identities is the diagonal ∆(M) = {(x , x)}.

Consider a vector bundle E → M and its frame bundle F (E )→ M.
The fibres of the frame bundle are just the frames on the fibres:

F (E )x = Iso(Rr ,Ex) r = rank(E), x ∈ M

The frame bundle is a principal GLr (R)-bundle with gauge groupoid

G(F (E )) = F (E )×F (E )/∼ ∼= Iso(E ) =
⋃

x ,y∈M
Iso(Ey ,Ex) ⇒ M



Direct connections on a Lie groupoid G ⇒ M

The anchor s, t : G → Pair(M) is a canonical Lie groupoid morphism
(preserves source, target, identites, inverses, and composition)

G Pair(M)

M M

(s,t)

ts

Γ

e ∆

A direct connection Γ is a local section relative to M of the anchor.
section of the anchor: preserves source & target, (s, t)Γ(x , y) = (x , y)
relative to M: preserves the submanifold of identities, Γ∆(x) = e(x)
local: domain is an open neighbourhood of the submanifold ∆M

Curvature RΓ:M3 99KG on an open neighbourhood of the 3-diagonal

Γ(x , z) · RΓ(x , y , z) = Γ(x , y) · Γ(y , z)

A direct connection Γ is flat if it is a (partial) groupoid morphism.



Local bisections and jet prolongation of Lie groupoids

Local bisections (σ,Ux) of G are sections of s : G → M defined in Ux
around x ∈ M, such that tσ is a local diffeomorphism on M

G

x ∈ Ux ⊆M M

diffeomorphism
tσ : Ux ∼= Vy
tσ(x) = y

s t

‘source lifting’ σ

tσ

Local bisections form a groupoid with objects Ux , arrows Ux
σ→Vy ,

identities Ux
e|Ux−→Ux . The composition Ux

σ−→ Vy
τ−−→Wz is the local

bisection M→G sending p in Ux to p
σp−→ tσp

τ tσp−−−→ tτ tσp in G.

Consider n-jets: equivalence classes jnx σ=[σ,Ux ] of local bisections
whose derivatives evaluated at x coincide for orders 0≤k≤n

The groupoid structure on local bisections induces, on equivalence
classes, the n-jet prolongation Lie groupoid JnG ⇒ M of G ⇒ M



Jet prolongation of direct connections on Lie groupoids

Let us start simply, considering some direct connection Γ(n) defined
on the jet prolongation JnG ⇒ M of a Lie groupoid G ⇒ M, i.e.
a local section of the anchor JnG → Pair(M), [σ,Ux ] 7→ (x , tσx)
extending Γn(x , x) = [e|Ux ] to a neighbourhood of the diagonal.

A principal bundle P→M has an n-principal prolongation W nP→M.
The gauge groupoid of the prolongation G(W nP)⇒M coincides with
the prolongation of the gauge groupoid JnG(P)⇒ M.

Therefore we can generalise the result that any Lie groupoid admitting
a direct connection arises as a gauge groupoid of a principal bundle:
If JnG ⇒ M has a direct connection Γ(n), then its constant term
(evaluate each jx at x) defines a local section Γ(0) of the anchor of G.
So G has a direct connection and is a gauge groupoid of some P → M

Thus: a prolonged groupoid JnG with a direct connection is the
gauge groupoid of a prolonged principal bundle W nP .



Infinitesimal structure of Lie groupoids G ⇒ M

To define the Lie algebroid LG q→ M of a Lie groupoid G, consider
the tangent maps ds, dt : TG ⇒ TM,
the subbundle ker ds → G of TG → G,
and its pullback LG along e : M → G.

L(G ) ker ds

M G

y

i

q

e

The pullback just says (LG)x ∼= Te(x)s
−1(x) for each x ∈ M.

The Lie bracket of vector fields on G restricts to induce, by right
translation, a bracket on sections of q, and the anchor is

a : LG i→ ker ds ↪→ TG dt−→ TM.

The tangent bundle TP
q→ P with the bracket of vector fields can be

seen as the Lie algebroid of the gauge groupoid Pair(P)⇒ P

The Atiyah Lie algebroid A(P)
q→ M on a principal bundle P → M is

the Lie algebroid LG(P) of the gauge Lie groupoid G(P)⇒ M, or
alternatively is the quotient TP/G of the tangent bundle TP by G .



Jet prolongation of direct connections on Lie groupoids II

Suppose M has an affine connection and we have parallel transport
τM(y , x) : TxM −→ TyM (along unique small geodesics).
One can then define local bisections (σ,Ux) : Ux → Vy for Pair(M)

σ(z) =
(
z , expz(τM(z , x)(exp−1

x (y)))
)

whose jets define a direct connection on JnPair(M).

Given a bundle E → M and principal bundle P ⊂ F (E ),
and a direct connection Γ on the gauge groupoid G(P)⇒ M,
one constructs a model (Πn, Γ̂n) using ‘short geodesics’ x

γ
 z :

The direct connection {Γ̂n(y , x)} on JnG(P) sends jnx f to jny (Πn
x j

n
x f ).

Here Πn
x : Jnx E → D′(Ux ,E ) sends a jet jnx f to the distribution

z 7−→ Γ(z , x)
∑
k=0

1
k!

dk

dtk
Γ(x , γ(t))f (γ(t))

∣∣∣∣
t=0
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