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§1. Introduction

To do

Construct the BV and BFV formalism of the H-twisted Poisson

sigma model

Purpose

Geometry and quantization of the twisted Poisson and the Dirac

structure (and higher structures)

Generalization of the AKSZ sigma models
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Plan of Talk

(H-)twisted Poisson sigma model

BV Lagrangian formalism

Generalization of AKSZ formalism

(BFV Hamiltonian formalism)
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§2. (H-)twisted Poisson sigma model (HPSM)

Twisted Poisson structure Klimcik-Strobl, Park, Ševera-Weinstein

Definition 1. Let M be a smooth manifold. π ∈ Γ(∧2TM) and

H ∈ Ω3(M) is a closed 3-form. (M,π,H) is a twisted Poisson

structure if
1
2[π, π] = ⟨π ⊗ π ⊗ π,H⟩ .

Note : It is a Dirac structure on TM ⊕ T ∗M .

Theorem 1. Let (M,π,H) be a twisted Poisson structure. Then,

a Lie algebroid is defined on T ∗M .
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Define

ρ = −π♯,

[α, β]π = Lπ♯(α)β − Lπ♯(β)α− d(π(α, β)) +H(π♯(α), π♯(β),−).

Here π♯ : T ∗M → TM and α, β ∈ Ω1(M). Then, (ρ, [−,−]π) is a

Lie algebroid on T ∗M ,

Definition 2. A Lie algebroid (E, [·, ·], ρ) is a vector bundle

E → M together with a bundle morphism ρ : E → TM as well

as a Lie algebra (Γ(E), [·, ·]), satisfying the Leibniz rule [s, fs′] =

f [s, s′] + ρ(s)f s′ for all s, s′ ∈ Γ(E) and f ∈ C∞(M).
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Twisted Poisson sigma model Klimcik-Strobl,Park

(M,π,H): twisted Poisson manifold.

N : 3D manifold with a 2D boundary Σ = ∂N .

Fields: (X,A).

X : N → M

A = Aµdσ
µ: 1-form on Σ taking a value on X∗T ∗M . (σµ) ≡

(σ0, σ1) are coordinates on Σ.

(X,A) is regarded as a local coordinate of maps, a : TΣ → T ∗M .
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The classical action functional is

S =

∫
Σ=∂N

Ai ∧ dXi + 1
2X

∗πijAi ∧Aj +

∫
N

X∗H .

Note : If H = 0, it reduces to the Poisson sigma model (PSM).

Equations of motion are (πij,k≡ ∂πij/∂xk)

F i := dXi + πijAj = 0 ,

Gi := dAi +
1
2π

jk,iAj ∧Ak +
1
2HijkdX

j ∧ dXk = 0 .
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Hamiltonian formalism

Let Σ = R×S1 or T 2. Let pi = A1i, which is the spatial component

of Ai. The symplectic form is

ω =

∮
S1

dσ
(
δXi ∧ δpi +

1
2Hijk(X) ∂XiδXj ∧ δXk

)
,

where σ ≡ σ1 is the spatial coordinate and ∂ ≡ ∂/∂σ. This gives

the following fundamental classical Poisson brackets

{Xi(σ), Xj(σ′)} = 0, {Xi(σ), pj(σ
′)} = δijδ(σ − σ′),

{pi(σ), pj(σ′)} = −Hijk(X)∂Xkδ(σ − σ′).
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The Hamiltonian is

H =

∮
S1

dσA0iJ
i,

where J i ≡ F i
1 = ∂1X

i + πij(X)pj is a constraint.

Theorem 2. If (π,H) is a twisted Poisson structure, J i consists

of a closed Lie algebra,

{J i(σ), Jj(σ′)} = −f ij
k (X(σ)) Jk(σ)δ(σ − σ′) ,

where f ij
k are the structure functions of the Lie algebroid induced
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from the twisted Poisson structure,

f ij
k ≡ πij,k+πilπjmHklm .

The mechanics is consistent with the twisted Poisson structure on

M . J i are called first class constraints.
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Gauge transformation

Theorem 3. If (π,H) is a twisted Poisson structure, the action

functional S is invariant under the following gauge transformation,

Kotov-Salnikov-Strobl

δXi = −πijϵj,

δAi = dϵi + πjk,iAjϵk +
1
2π

jkHijl(dX
l − πlmAm)ϵk.

= dϵi + f jk
i Ajϵk +

1
2π

jkHijlF
l ϵk,

where F i = dXi + πijAj and ϵi ∈ C∞(N,X∗T ∗M).
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§3. Geometry of BV formalism

Gauge transformation

δXi = −πijϵj,

δAi = dϵi + f jk
i Ajϵk +

1
2π

jkHijlF
l ϵk.

Meaning of the third term in δAi becomes clear by introducing a

target space connection.

Gauge transformation with connection

The the action S of the HPSM is also invariant under the target

11



space covariant gauge transformation with a connection,

δ∇Xi = −πijϵj,

δ∇Ai = dϵi + f jk
i Ajϵk−Γk

ij F
j ϵk.

Here the Christoffel symbol of an affine connection ∇ on the target

space M is

Γk
ij =

◦
Γk
ij −1

2π
kmHmij ,

with a torsion Θ = ⟨π,H⟩ and
◦
Γk
ij=

◦
Γk
ji. Nonzero H introduces the

torsion.
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BRST transformation

We consider on-shell closed BRST transformations. Replace

gauge parameters ϵ by odd and anti-commuting ghost fields

c ∈ C∞(Σ, X∗T ∗[1]M).

sXi = −πijcj,

sAi = dci + f jk
i Ajck − Γk

ilF
lck.

We put the BRST transformation of c,

sci := −1
2[c, c]i = −1

2f
jk
i cjck .
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Then, s2 are

s2Xi = s2ci = 0 .

However s2Ai ̸= 0,

Lemma 1. [I-Strobl] s2Ai = −1
2Sij

klF jckcl,

where Mayer-Strobl, Abad-Crainic, Blaom, Kotov-Strobl

S = ∇T + 2Alt(ιρR∇) ∈ Γ(Λ2TM ⊗ S2T ∗M).

is a basic curvature.
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Here R∇ ∈ Ω2(M,EndTM) is the curvature of the affine

connection ∇.

ρ ∈ Γ(T ∗M ⊗ TM) is the anchor map, and Alt denotes an

antisymmetrization over T ∗M ⊗ T ∗M .

T ∈ Γ(Λ2TM ⊗ T ∗M) is the E-torsion of the Lie algebroid

covariant derivative,

T (e, e′) = −∇ρ(e)e
′ +∇ρ(e′)e+ [e, e′].

e, e′ ∈ Γ(TM).
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Space of fields in BV

The space with classical fields and ghosts (fields in BRST) is

MBRST := {
(
X : Σ → M, A ∈ Ω1(Σ, X∗T ∗M), c ∈ C∞(Σ, X∗T ∗[1]M)

)
} .

The space of fields of the BV formulation is

MBV := T ∗[−1]MBRST .

MBV is equipped with a degree −1 BV symplectic form,

ωBV =

∫
Σ

(
δXi ∧ δX+

i + δAi ∧ δA+i + δci ∧ δc+i
)
.
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Bigrading fdeg is the form degree. gh is the ghost number.

fdeg(Φ+) = 2− fdeg(Φ), gh(Φ+) = −1− gh(Φ).

fdeg(Xi) = 0 , gh(Xi) = 0,

fdeg(Ai) = 1 , gh(Ai) = 0,

fdeg(ci) = 0 , gh(ci) = 1,

fdeg(X+
i ) = 2 , gh(X+

i ) = −1,

fdeg(A+i) = 1 , gh(A+i) = −1,

fdeg(c+i) = 2 , gh(c+i) = −2.
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BV functional

We construct a BV action functional which satisfies the classical

master equation,

(SBV , SBV ) = 0 ,

where (−,−) is a BV bracket defined from ωBV . The BV functional

is determined by the addition of further contributions to the minimal

BRST extension of the classical action:

SBV = S
(0)
BV + S

(1)
BV + S

(2)
BV + · · · ,
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where (k) is the order of antifields Φ+.

S
(0)
BV = Scl,

S
(1)
BV =

∫
Σ

(−1)gh(Φ)Φ+sΦ =

∫
Σ

(
X+

i sXi +A+i sAi − c+i sci
)
,

where Φ denotes all fundamental fields in MBRST . In general, the

expansion does not terminate.

Proposition 1. [I-Strobl] In the HPSM, it does at level two,

SBV = S
(0)
BV + S

(1)
BV + S

(2)
BV ,
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where

S
(2)
BV =

∫
Σ

1
4Snk

ij(X)A+nA+kcicj .

Proof. (SBV , SBV ) = 0 is proven using the expansion SBV =

S
(0)
BV + S

(1)
BV + S

(2)
BV and the BV brackets of fields.

A nontrivial identity is (S
(1)
BV , S

(2)
BV ) = 0, which comes from the

Bianchi identity of the basic curvature:

πm[l∇mSnk
ij] + T [jl

m Snk
i]m + Tm[i

n Smk
jl] + T

m[l
k Snm

ij] = 0.

2
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The resulting BV action functional is

SBV =

∫
Σ

(
Ai ∧ dXi + 1

2π
ijAi ∧Aj

)
+

∫
N

H

+

∫
Σ

[
−πijX+

i cj +A+i ∧
(
dci + f jk

i Ajck − Γk
ijF

jck

)
+ 1

2f
ij
k c+kcicj

]
+

∫
Σ

1
4Snk

ijA+n ∧A+kcicj.
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Manifestly target space covariant form

We define the covariantized antifield of Xi:

X+∇
i := X+

i + Γk
ji(A

+j ∧Ak + c+jck).

The manifestly covariant BV action is

S∇
BV =

∫
Σ

[
⟨A,dX⟩+ 1

2(π ◦X)(A,A)
]
+

∫
N

X∗H

+

∫
Σ

[
⟨A+,Dc− (T ◦X)(A, c)⟩ − (π ◦X)(X+∇, c)

−1
2⟨c

+, (T ◦X)(c, c)⟩
]
+

∫
Σ

1
4⟨A

+, (S ◦X)(A+, c, c)⟩.
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§4. Superfield formalism

We consider an AKSZ-like formulation on a graded manifold. Here

we put
◦
Γk
ij= 0. (Even in the PSM, the AKSZ construction works in

this case.) Setting Γk
ij 7→ −1

2π
klHijl,

SBV =

∫
Σ

(
Ai ∧ dXi + 1

2π
ijAi ∧Aj

)
+

∫
N

H

+

∫
Σ

[
−πijX+

i cj +A+i ∧
(
dci + f jk

i Ajck +
1
2π

klHijlF
jck

)
+1

2f
ij
k c+kcicj − 1

4

(
f ij
n ,k+

1
2π

ciπjaπbdHnabHkcd

)
A+n ∧A+kcicj

]
.
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Mapping space of graded manifolds

All the fields in the BV phase space can be combined into elements

of the space of (not necessarily degree-preserving) maps:

MBV
∼= Hom(T [1]Σ, T ∗[1]M).

Let (σµ, θµ) be coordinates on T [1]Σ of degree (0, 1). Superfields
are

Xi(σ, θ) ≡ Xi(σ)−A+i(σ, θ) + c+i(σ, θ)

:= Xi(σ)− θµA+i
µ (σ) + 1

2θ
µθνc+i

µν(σ),

Ai(σ, θ) ≡ −ci(σ) +Ai(σ, θ) +X+
i(σ, θ)

:= −ci(σ) + θµAµi(σ) +
1
2θ

µθνX+
µνi(σ).
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deg(ϕ) := fdeg(ϕ) + gh(ϕ).

deg(Xi) = 0 and deg(Ai) = 1,

The BV symplectic form is combined into the natural symplectic

form:

ω =

∫
T [1]Σ

d2σd2θ δXiδAi.

Note : MBV and ω are the same as the AKSZ construction of the

PSM.
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AKSZ procedure does not work

In the case of the PSM (H = 0), the BV functional S is simply

obtained from the classical action, Scl, by the replacementsX 7→ X,

A 7→ A, the derivatives to the superdrerivatives, and the integration

on Σ to T [1]Σ: Scl 7→ SBV . Alexandrov-Kontsevich-Schwartz-Zaboronsky

This procedure does not work in the case H ̸= 0. In fact,

SBV =

∫
T [1]Σ

d2σd2θ
[
Ai dX

i + 1
2π

ij(X)AiAj

]
+

∫
T [1]N

d3σd3θH(X)

does not satisfy the classical master equation, (SBV , SBV ) ̸= 0.

Park, I-X.Xu
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Theorem 4. [I-Strobl] The BV action functional in terms of the

superfields X and A is ( ε is the Euler vector field, ε = θµ ∂
∂θµ. )

SBV =

∫
T [1]Σ

d2σd2θ
[
Ai dX

i + 1
2π

ij(X)AiAj

]
+

∫
T [1]N

d3σd3θH(X)

+

∫
T [1]Σ

d2σd2θ
[
1
4(π

ilπjmHlmk)(X)AiAjεX
k

+1
2(π

ilHjkl)(X)Ai(dX
j)εXk

]
+

∫
T [1]Σ

d2σd2θ
[
1
8(π

imπjnπpqHmqlHnpk)(X)AiAj(εX
k)εX l

]
.
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Proof. The expansion of SBV coincides with the BV action

functional SBV in Section 3. 2
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Generalized AKSZ sigma model

Let Σ be a d dimensional manifold and M is a graded manifold.

Assume the BV symplectic form ω of degree −1 on the mapping

space,

MBV
∼= Hom(T [1]Σ,M).

The BV action functional SBV , which is a homological function

(SBV , SBV ) = 0 is constructed by

SBV =

d∑
k=0

SBV (k),

where SBV (k) is the k-th order part of the Euler vector field ε.
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Here SBV (0) is simply the replacement of fields to superfields in the

classical action Scl.

1. SBV (k) = 0 for k ≥ 1 is the normal AKSZ formulation,

2. In the HPSM, SBV (k) = 0 for k ≥ 3.
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§5. BFV formalism

The BFV formalism is a pair of odd and even functions

(SBFV ,HBFV ) with a BFV symplectic form ωBFV such that

{SBFV , SBFV } = {SBFV ,HBFV } = {HBFV ,HBFV } = 0,

where {−,−} is a Poisson bracket induced from ωBFV .

HBFV is an extension of the Hamiltonian.

SBFV is an extension of the ’charge’ of the symmetry.

31



BFV formulation of twisted Poisson sigma models

We introduce two odd fields ci(σ) ∈ C∞(S1, X∗T ∗[1]M) and

bi(σ) ∈ C∞(S1, X∗T [−1]M), such that the fundamental Poisson

brackets are {ci(σ), bj(σ′)} = δi
jδ(σ − σ′).

The BFV symplectic form is

ωBFV =

∮
S1

dσ
(
δXi ∧ δpi + δci ∧ δbi + 1

2Hijk(X)∂XiδXj ∧ δXk
)
.

HBFV ≈ 0 in the HPSM.
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SBFV

SBFV =

∮
S1

dσ
(
ci J

i + 1
2f

ij
k cicjb

k
)

=

∮
S1

dσ
[
ci(∂X

i + πijpj) +
1
2(π

ij
,k + πilπjmHklm)bkcicj

]
.

From the Poisson bracket

{J i(σ), Jj(σ′)} = −f ij
k (X(σ)) Jk(σ)δ(σ − σ′) ,

we obtain {SBFV , SBFV } = 0.
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Superfield formalism

We reformulate SBFV using superfields.

S1 is extended to a super-circle T [1]S1 parametrized by the

coordinates (σ, θ) of degree zero and one, respectively. We consider

the super BFV phase space,

MBFV = Hom(T [1]S1, T ∗[1]M) .

Coordinates are the following superfields of degree 0 and 1,

respectively:

X̃i(σ, θ) := Xi(σ) + θ bi(σ), Ãi(σ, θ) := −ci(σ) + θ pi(σ).
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Now the BFV symplectic form and the BFV-BRST charge become

ωBFV =

∫
T [1]S1

dσdθ
(
δX̃i ∧ δÃi +

1
2Hijk(X̃)d̃X̃iδX̃j ∧ δX̃k

)
,

SBFV =

∫
T [1]S1

dσdθ
(
Ãid̃X̃

i + 1
2π

ij(X̃)ÃiÃj

+1
2π

ilπjmHklm(X̃) ÃiÃj ε̃X̃
k
)
,

where d̃ = θ∂ is a super-derivative on T [1]S1, and ε̃ denotes the

Euler vector field, ε̃ = θ ∂
∂θ.
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§9. Conclusions

• We have constructed the BV formalism of the twisted Poisson

sigma model (HPSM).

• We analyzed geometric structures of the BFV and BV formalisms

by introducing a target space connection. They are described by

geometry of a Lie algebroid.

• The superfield formulation is a generalization of the AKSZ sigma

models.

• We constructed the BFV formalism of the twisted PSM.
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Further work

[I-Strobl arXiv:2007.15912] We applyed the formula of Grigoriev-

Damgaard to construct the BV action from the Hamiltonian-BFV

formalism to the HPSM. A generalization of GD formalism is needed.

Outlook

• Quantization (a generalization of the deformation quantization)

Kontsevich, Cattaneo-Felder

• A generalization to the Dirac structure or higher structures. (a

Dirac sigma model, Kotov-Schaller-Strobl etc.)

• Generalized AKSZ sigma models?
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Thank you for your attention!
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