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Parametric statistics

Consider a parametric family of probability densities

PΘ = {fθ;θ ∈ Θ}, with Θ ⊂ Rd open.

Typical problem (parameter estimation) :

find θ ∈ Θ such that fθ best "fits" observations x1, . . . ,xn

Natural questions :

1. how much information on θ is contained in a sample x ∼ fθ ?

2. if I transform my observations (x1, . . . ,xn) 7→ T(x1, . . . ,xn), how much
information on θ do I loose?

Answers :

1. Fisher information :

Iθ(X) = Eθ

(
∇θ log fθ(X) ·∇θ log fθ(X)

⊤
)
=−Eθ (Hessθ log fθ(X)) .

→ if fθ does not depend on θ, Iθ(X) = 0
→ if X,Y ∼ fθ are independant, then Iθ((X,Y)) = Iθ(X)+ Iθ(Y).

2. We have Iθ(T(X))≤ Iθ(X)→ Information lost : Iθ(X)− Iθ(T(X))
equality iff T is a sufficient statistic : Pθ(X|T(X)) is independant of θ.
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The parametric Fisher-Rao metric

The Fisher information is a d×d symmetric positive semi-definite matrix

I(θ) = Eθ

(
∇θ log fθ(X) ·∇θ log fθ(X)

⊤
)

When definite, it defines a Riemannian metric on the parameter space Θ ⊂ Θ

(Rao 1945, Jeffreys 1946), called the Fisher-Rao metric

⟨u,v⟩θ = u⊤I(θ)v, u,v ∈ TθΘ ≃ Rd

▶ The Fisher-Rao metric is invariant w.r.t. transformation of the statistical model by
a sufficient statistic : if T is a sufficient statistic,

T∗PΘ = {T∗fθ;θ ∈ Θ} is isometric to PΘ = {fθ;θ ∈ Θ}

for the Fisher-Rao metric.

▶ Cencov 1972 : it is the only Riemannian metric with this property (up to scalar
multiplication).
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The parametric Fisher-Rao metric

▶ The Fisher-Rao metric is invariant to diffeomorphic parametrization change
ϕ : θ 7→ θ̃ → The geometric structure does not depend on the parametrization.

▶ It gives a metric approximation of the Kullback-Leibler divergence
KL(p|q) = Ep log(p/q)

KL(fθ|fθ+dθ) =
1
2

dθ
⊤I(θ)dθ+O(|dθ|3)≈ 1

2
∥dθ∥2

θ

▶ "Displacement is cheaper in zones of lower information."

Example : normal distributions (Atkinson & Mitchell 81, Skovgaard 84)

I((µ,σ)) = 1
σ2 I2

Figure from
Costa, Santos, Strapasson 2015

Fisher-Rao geometry amounts to hyperbolic geometry.
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Non parametric Fisher-Rao metric

Let M be a closed manifold.

The spaces of all smooth (probability) densities on M w.r.t. the volume measure dx

Dens+(M) = {ρdx; ρ > 0}, Prob(M) = {ρdx; ρ > 0,
∫

M
ρdx = 1}

are Fréchet manifolds with tangent spaces

TρDens+(M) = {adx}, TρProb(M) = {adx;
∫

M
adx = 0}.

Friedrich, 1991 : the Fisher-Rao metric on Dens+(M) or Prob(M) is

⟨a,b⟩ρ =
∫

M

a
ρ

b
ρ

ρdx.

7 / 31



Link to the parametric setting

A parametric statistical model PΘ = {fθdx; θ ∈ Θ} defines a submanifold of Prob.

The non parametric Fisher-Rao metric restricted to such a submanifold PΘ is the
parametric Fisher-Rao metric defined by the Fisher information.

The tangent space to PΘ at ρ = fθ is spanned by {ei = ∂fθ/∂θi}d
i=1 and

⟨ei,ej⟩ρ =
∫ ∂fθ

∂θi

fθ

∂fθ
∂θj

fθ
fθdx = Eθ

(
∂

∂θi
log fθ(X) ∂

∂θj
log fθ(X)

)
= I(θ)ij

If M is a compact manifold without boundary of dimension greater than 1, it is the only
Riemannian metric, up to a multiplicative factor, invariant under the action of
diffeomorphisms of M (Bauer, Bruveris, Michor 16, Ay, Jost, Lê, Schwachhöfer 15).

Remark : Parametric and non parametric Fisher-Rao define very different geometries !

8 / 31



Link to the parametric setting

A parametric statistical model PΘ = {fθdx; θ ∈ Θ} defines a submanifold of Prob.

The non parametric Fisher-Rao metric restricted to such a submanifold PΘ is the
parametric Fisher-Rao metric defined by the Fisher information.

The tangent space to PΘ at ρ = fθ is spanned by {ei = ∂fθ/∂θi}d
i=1 and

⟨ei,ej⟩ρ =
∫ ∂fθ

∂θi

fθ

∂fθ
∂θj

fθ
fθdx = Eθ

(
∂

∂θi
log fθ(X) ∂

∂θj
log fθ(X)

)
= I(θ)ij

If M is a compact manifold without boundary of dimension greater than 1, it is the only
Riemannian metric, up to a multiplicative factor, invariant under the action of
diffeomorphisms of M (Bauer, Bruveris, Michor 16, Ay, Jost, Lê, Schwachhöfer 15).

Remark : Parametric and non parametric Fisher-Rao define very different geometries !

8 / 31



Link to the parametric setting

A parametric statistical model PΘ = {fθdx; θ ∈ Θ} defines a submanifold of Prob.

The non parametric Fisher-Rao metric restricted to such a submanifold PΘ is the
parametric Fisher-Rao metric defined by the Fisher information.

The tangent space to PΘ at ρ = fθ is spanned by {ei = ∂fθ/∂θi}d
i=1 and

⟨ei,ej⟩ρ =
∫ ∂fθ

∂θi

fθ

∂fθ
∂θj

fθ
fθdx = Eθ

(
∂

∂θi
log fθ(X) ∂

∂θj
log fθ(X)

)
= I(θ)ij

If M is a compact manifold without boundary of dimension greater than 1, it is the only
Riemannian metric, up to a multiplicative factor, invariant under the action of
diffeomorphisms of M (Bauer, Bruveris, Michor 16, Ay, Jost, Lê, Schwachhöfer 15).

Remark : Parametric and non parametric Fisher-Rao define very different geometries !

8 / 31



Square-root transform

Let φ : Dens+(M)→ C∞(M),
φ(ρ) =

√
ρ

Then

∥Tρφ(δρ)∥2
L2 =

1
4

∫
M

δρ

ρ1/2
δρ

ρ1/2
dx =

1
4

∫
M

δρ

ρ

δρ

ρ
ρdx =

1
4
⟨δρ,δρ⟩ρ.

The Fisher-Rao metric is the pullback of the L2 metric by the square-root transform.

The Fisher-Rao geometry is thus flat on Dens+(M), and its geodesics are pullbacks
of straight lines

ρ(t) = ((1− t)
√

ρ0 + t
√

ρ1)
2.

On Prob(M), it is spherical, and its geodesics are pullbacks of L2-sphere geodesics.
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Remarks

▶ Linked to known PDEs in mathematical physics : using

Prob(M)≡ Diff(M)/Diffdx(M)

Khesin, Lenells, Misiolek & Preston (2013) show that a right-invariant Ḣ1-metric
on Diff(M) induces the Fisher-Rao metric on Prob(M) and complete
integrability of a generalization of the Hunter-Saxton equation. cf Modin (2015).

▶ Used for Riemannian geometric learning on probability distributions, in
• image processing (Schwander & Nielsen 2012, Angulo et al. 2024)
• diffusion tensor imaging (Pennec, Sommer, Fletcher 2019)
• econometrics (Marriott & Salmon 2000)
• functional shape and data analysis (Srivastava & Klassen 2016)

Many parametric Fisher-Rao geometries are implemented in the Python
package Geomstats (Miolane et al. 2020, Le Brigant et al. 2023).
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Statistical curvature

In statistics, exponential families are parametric families of probability distributions

E = {fθ; θ ∈ Θ}
that enjoy nice properties :

▶ for hypothesis testing (locally most powerful test is uniformly most powerful)

▶ for estimation (MLE for θ is a sufficient statistic, achieves the Cramer-Rao bound)

In 1975, Efron introduces a "statistical curvature" that quantifies how much a
parametric family deviates from exponentiality. Exponential families have zero
curvature.

Efron’s "statistical curvature" corresponds to the curvature induced by a non-metric
affine connection ∇e (Dawid, 1975).

(Amari) Inside a exponential family, a (smoothly embedded) sub-family is again an
exponential family if and only if its extrinsic curvature w.r.t. ∇e is zero.

A similar notion of curvature can be defined for mixture families, corresponding to an
affine mixture connection ∇m (Kass, 1989).
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α-connections

Let PΘ = {fθ; θ ∈ Θ} be parametric family of probability distributions.

The α-connections on PΘ are a family of affine connections

∇
(α), −1 ≤ α ≤ 1

such that

▶ ∇(−1) = ∇m, ∇(1) = ∇e, ∇(0) = ∇FR

▶ ∇(−α) and ∇(α) are dual w.r.t. the Fisher-Rao metric.

i.e. X⟨Y,Z⟩= ⟨∇(α)
X Y,Z⟩+ ⟨X,∇(−α)

X Z⟩, ∀X,Y,Z vector fields

Introduced by Amari (1982), discussed by Centsov (1972) in the discrete case.
Allowed Amari to express statistical estimation results in geometric terms.

e.g. Expectation-Maximization
algorithm (Amari 2016)
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i.e. X⟨Y,Z⟩= ⟨∇(α)
X Y,Z⟩+ ⟨X,∇(−α)

X Z⟩, ∀X,Y,Z vector fields

More explicitly, ∇(α) is defined by

⟨∇(α)
ei ej,ek⟩θ = Eθ

[(
∂i∂jℓθ +

1−α

2 ∂iℓθ ∂jℓθ

)
∂kℓθ

]
where ⟨·, ·⟩ is the Fisher-Rao metric, ℓθ := log fθ, and ei := ∂

∂θi
.
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Link to α-divergences

The α-divergences are a family of divergences that include the Kullback-Leibler
divergence :

D(α)(fθ|fθ′) = 4
1−α2

(
1−

∫
f

1−α

2
θ

f
1+α

2
θ′ dx

)
if α ̸=±1

D(−1)(fθ|fθ′) = D(1)(fθ′ |fθ) =
∫

fθ log
fθ
fθ′

dx = KL(fθ|fθ′)

The α-connection can be obtained as

⟨∇(α)
ei ej,ek⟩θ =− ∂

∂θi

∂

∂θj

∂

∂θ′
k
D(α)(fθ|fθ′)

∣∣∣
θ=θ′

where ⟨·, ·⟩ is the Fisher-Rao metric and ei := ∂

∂θi
.

In an exponential family, the orthogonal projection
onto a sub-family w.r.t ∇(α) gives the best
approximation in terms of the α-divergence
(Amari).
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Non parametric setting : densities

For a,b,c vector fields on Dens+(M), define the α-divergence

D(α)(ρ|ρ̄) :=
2

1−α

∫
M

ρ̄(x)dx+
2

1+α

∫
M

ρ(x)dx− 4
1−α2

∫
M

ρ(x)
1−α

2 ρ̄(x)
1+α

2 dx,

On Prob :

D(α)(ρ|ρ̄) :=
4

1−α2

(
1−

∫
M

ρ(x)
1−α

2 ρ̄(x)
1+α

2 dx
)
.

The α-connection ∇
(α)

on Dens+(M) is defined by

⟨(∇(α)
a b)ρ,cρ⟩ρ :=−∂ρ

(
∂ρ∂ρ̄ D(α)(ρ|ρ̄)[b,c]

)
[a]
∣∣∣
ρ̄=ρ

with ⟨aρ,bρ⟩ρ :=
∫

M

a
ρ

b
ρ

ρdx.

(∇
(α)
a b)ρ = Db(a)− 1+α

2
a
ρ

b
ρ

ρ.
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Non parametric setting : probability densities

On Prob(M), tangent vectors are zero-mean functions → for any a,b ∈ TProb(M),

⟨(∇(α)
a b)ρ,cρ⟩ρ :=

∫
M

Db(a)
ρ

c
ρ

ρdx− 1+α

2

∫
M

a
ρ

b
ρ

c
ρ

ρdx ∀c s.t.
∫

M
cdx = 0,

with
∫

M
∇
(α)
a bdx = 0.

This gives (∇
(α)
a b)ρ = Db(a)− 1+α

2
a
ρ

b
ρ

ρ︸ ︷︷ ︸
∇
(α)

a b on Dens+

+ element of (TρProb)⊥.

Since (TρProb)⊥ = span(ρ),

element of (TρProb)⊥ = kρ with k =
1+α

2

∫
M

a
ρ

b
ρ

ρdx.

and we get

(∇
(α)
a b)ρ = Db(a)− 1+α

2

(
a
ρ

b
ρ
−

∫
M

a
ρ

b
ρ

ρdx
)

ρ.
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Remarks

▶ The geodesic equation of ∇
(α)

on Dens+ is locally well-posed

∇
(α)
ρ̇ ρ̇ = 0 ⇔ ρ̈ =

1+α

2
ρ̇2

ρ
.

▶ The geodesic equation of ∇(α) on Prob(M) is locally well-posed

∇
(α)
ρ̇

ρ̇ = 0 ⇔ ρ̈− 2
1+α

ρ
−1

ρ̇
2 =− 2

1+α

(∫ (
ρ̇

ρ

)2
ρ

)
ρ.

▶ The α-connection projects orthogonally, with respect to the Fisher-Rao metric,
from Dens+, to Prob, to any parametric statistical model PΘ.

Dens+ ⊃ Prob ⊃ PΘ

∇
(α) −→

FR ⊥ proj
∇
(α) −→

FR ⊥ proj
∇
(α)
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The Lp-Fisher-Rao metrics

Let p ∈ (1,+∞). Given a (probability) density ρ and a tangent vector a at ρ, we define
the Lp-Fisher-Rao metric

Fp(ρ,a) =
(∫

M

∣∣∣∣ aρ
∣∣∣∣p ρdx

)1/p

▶ F2 coincides with the Fisher-Rao norm F2(ρ,a) =
√
⟨a,a⟩ρ.

▶ Fp defines a Finsler metric : collection of norms on the tangent spaces.
▶ Fp defines a notion of geodesics as minimizers of the p-length

L(ρ) =
∫ 1

0

(∫
M

∣∣∣∣ ρ̇ρ
∣∣∣∣p ρdx

)1/p

dt,

where ρ : [0,1]→ Dens+ such that ρ(0) = ρ0, ρ(1) = ρ1, or equivalently, local
minimizers of the p-energy

Ep(ρ) =
1
p

∫ 1

0

∫
M

∣∣∣∣ ρ̇ρ
∣∣∣∣p ρdxdt.

▶ The Fp are an information-geometric counterpart of the Lp-Wasserstein metrics.
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The p-root transform

For p ∈ (1,∞), define the p-root transform

Φp(ρdx) = ρ
1/p.

Theorem (Bauer, L., Lu, Maor)
▶ Φp is an isometric embedding

(Dens+(M), 1
p Fp)→ (C∞(M),∥ · ∥Lp).

Thus the Fp-geodesic and geodesic distance between ρ0 and ρ1 are

ρ(t) = ((1− t) p
√

ρ0 + t p
√

ρ1)
p , dp(ρ0,ρ1) =

(∫
M
| p
√

ρ1 − p
√

ρ0|p dx
)1/p

.

▶ Φp is an isometric embedding

(Prob(M), 1
p Fp)→ (Sp,∥ · ∥Lp)

where Sp := {f ∈ C∞(M) : ∥f∥Lp = 1} is the Lp-sphere equipped with the
restriction of the standard Lp-norm.
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The p-root transform

This generalizes the square root transform and its link to the Fisher-Rao metric.

Fisher-Rao

Lp-Fisher-Rao
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Link between Fp and ∇(α) on Dens+

Theorem (Bauer, L., Lu, Maor) Let M be a closed manifold, p > 1, and α = 1− 2
p .

▶ On Dens+(M), the Lp-Fisher-Rao metric and the α-connection define the same
geodesics.

▶ Equivalently : the Chern connection associated to the Finsler Lp-Fisher-Rao
metric coincides with the α connection :

∇
ν
aν = ∇

(α)
a ν

for every nowhere vanishing vector field ν and any a ∈ TDens+(M).

▶ Equivalently : the ∇(α) geodesics are energy-minimizing curves for

E 2
1−α

(ρ) =
1−α

2

∫ 1

0

∫
M

∣∣∣∣ ρ̇ρ
∣∣∣∣ 2

1−α

ρdxdt.

The Fp-geodesics on Dens+(M) previously described are also the ∇(α)-geodesics !
This relates to the work of Giblisco and Pistone (1998), who have studied the
α-connections in the non-parametric setting using a similar p-root transform.
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Link between Fp and ∇(α) on Prob

On Prob(M), Fp and ∇(α) no longer define the same geodesics !
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∇(α)-geodesics on Prob

Consider the connection on Sp := {f ∈ C∞(M) : ∥f∥Lp = 1} defined as

∇
p
UV = π

p (
∇

tr
UV
)

the projection of the trivial connection w.r.t. the splitting Tf C∞ = Tf Sp ⊕ span(f ).
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∇(α)-geodesics on Prob

Theorem (Bauer, L., Lu, Maor)
▶ The pullback of Φ∗

p∇p coincides with ∇(α) up to a constant depending only on

the footpoint. In particular, the geodesics of Φ∗
p∇p and ∇(α) coincide.

▶ Geodesics on Sp for ∇p with initial conditions γ(0) = f , γ̇(0) = U are given by

γ(t) =
f + τ(t)U

∥f + τ(t)U∥Lp
, t ∈ I,

where τ : I → R verifies

τ̈(t) = 2
∫

M |f + τ(t)U|p−2(f + τ(t)U)U dx∫
M |f + τ(t)U|p dx

τ̇(t)2, τ(0) = 0, τ̇(0) = 1.

Geodesics of ∇(α) are obtained by pulling back these geodesics using Φp.
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Summary

Let α ∈ (−1,1) and p = 2
1−α

.

3 notions of geodesics :

(1) the ∇(α)-geodesic = Lp-Fisher-Rao geodesic on Dens+(M)

(2) the ∇(α)-geodesic on Prob(M)

(3) the Lp-Fisher-Rao geodesic on Prob(M)
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3 notions of geodesics

Dens+, Fp/∇
(α) Prob, ∇

(α) Prob, Fp

p = 2

p = 3

Different notions of geodesics between distributions on [0,1].
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...and sometimes, a fourth !

Lp-Fisher-Rao metric on a parametric statistical model PΘ = {fθdx; θ ∈ Θ} :

Fp(θ,v) = E(|⟨∇θℓ(X,θ),v⟩|p)1/p

▶ Fp defines a Finsler metric on the parameter space Θ

▶ For p = 2 we retrieve the Fisher information metric

F2(θ,v)2 =E
(
⟨∇θℓ(X,θ),v⟩2

)
= v⊤E

(
∇θℓ(X,θ)∇θℓ(X,θ)

⊤
)

v= v⊤I(θ)v= ⟨v,v⟩θ.

Example : normal distributions

Fp geodesics ∇(α)-geodesics
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Concluding remarks

▶ The Lp-Fisher-Rao metric Fp already appeared in the definition of the
generalized unbalanced optimal transport metric in Chizat, Schmitzer, Peyré,
Vialard (2018)

▶ Fp relates to known PDEs on Prob(M)≡ Diff(M)/Diffdx(M) :

• On any closed M, a family of right-invariant Ẇ1,p-Finsler metrics on Diff(M) induce
Fp on Prob(M). This generalizes the work of Khesin et al. (2013) on Hunter-Saxton.

• Fp - geodesic on Prob(S1)→ periodic r-Hunter–Saxton equation (r = 1/p)
∇(α)-geodesic on Prob(S1)→ generalized periodic inviscid Proudman-Johnson eq.
(Lenells Misiolek 2014).

• ∇(α) / Fp-geodesics on Dens+(R)→ generalized non-periodic inviscid
Proudman-Johnson equation ≡ non-periodic r-Hunter-Saxton equation (r = 1/p)
(Bauer, Lu, Maor 2022).

▶ More details in our paper :

Bauer, Lu, Le Brigant, Maor 2024 : The Lp-Fisher-Rao metric and Amari-Cencov
alpha-connections. Calculus of Variations and Partial Differential Equations.

Thank you for your attention !
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