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Embedding of physical systems into larger systems requires

characterization of subsystems

understanding relations between subsystems
(independence versus determinism, correlations,
entanglement)

Characterization of subsystems by their material content
(“a system of two electrons”) turns out to be problematic:

Particle number not well defined during interaction

Because of nontrivial particle statistics systems with n
particles cannot identified in a natural way as subsystems of a
system with m > n particles
(e.g. Hanbury Brown Twist effect: Photons from different
sources are entangled)
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Haag (1957): Algebras of observables measurable in some finitely
extended region of spacetime are good subsystems.

Needs an a priori notion of spacetime and therefore cannot directly
be applied to quantum gravity,

but turned out to cover the essence of relativistic quantum field
theory,

in particular due to the stability of this concept in time because of
the finite velocity of light.

In nonrelativistic physics the identification of an algebra which is
invariant under time evolution for an interesting dynamics is more
difficult.

(see no go theorems by Narnhofer and Thirring and the recent
work of Buchholz (resolvent algebra) for progress).
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Haag-Kastler Axioms

Haag’s concept of algebras of local observables can be summarized
as follows:

A quantum system is represented by a C*-algebra with unit,

i.e. an algebra with unit over the complex numbers with an
antilinear involution A 7→ A∗

and a norm which satisfies the condition ||A∗A|| = ||A||2 such that
the algebra is complete with respect to the induced topology.

These algebras are isomorphic to norm closed algebras of Hilbert
space operators, but might admit mutually inequivalent
representations.

The theory is defined in terms of an association of algebras to
spacetime regions O 7→ A(O).
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O 7→ A(O) (the “Haag Kastler net”) is assumed to satisfy the
conditions

Inclusion: O1 ⊂ O2 ⇒ A(O1) ⊂ A(O2)

Local commutativity: If O1,O2 ⊂ O and O1 is spacelike
separated from O2

then the commutator [A1,A2] ∈ A(O)

vanishes for all A1 ∈ A(O1),A2 ∈ A(O2).

Covariance If L is a symmetry of the spacetime then there
exist isomorphisms αL,O : A(O)→ A(LO) such that

αL,O2|A(O1)

= αL,O1 for O1 ⊂ O2

and
αL1L2,O = αL1,L2O ◦ αL2,O .
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States: positive linear functionals ω with ω(1) = 1
(expectation value)

Representations: homomorphisms π : A→ B(H)
(bounded linear operators on some Hilbert space H)

GNS-construction: ω → (H, π,Ω) , ω(•) = 〈Ω, π(•)Ω〉

Application to Minkowski space: Poincaré group used for
interpretation of states

ω invariant, with positive energy (“vacuum”)

induced GNS representation: H vacuum Hilbert space, π vacuum
representation, Ω vacuum vector

irreducible representation of Poincaré group: particle states

Haag-Ruelle scattering theory: existence of states which can be
interpreted as outging or incoming multi particle states
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Superselection sectors and DHR theory

The state space of a typical C*-algebra of local observables is huge.
It contains not only states which admit an interpretation in terms
of scattering states of particles, but also condensates, thermal
equilibrium states and all sorts of nonequilibrium situations. The
induced GNS representations are generically inequivalent.

Representation category:

Objects: representations π

Morphisms: intertwiners T : H → H ′ with Tπ(•) = π′(•)T
Treatment impossible (?)

Subclass of representations “of interest for particle physics”
(Doplicher, Haag and Roberts 1969-74)
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π0 distinguished irreducible faithful representation (“vacuum”)

π DHR representation ⇐⇒
π equivalent to π0 after restriction to the algebra of the spacelike
complement O′ of some finitely extended region O

Space of intertwiners (π ← π0)(O) is bimodule over A(O)

F ,G ∈ (π ← π0)(O) =⇒ F ∗G ∈ (π0 ← π0)(O) = π0(A(O′))′

Assumption: π0(A(O′))′ = π0(A(O)) (Haag duality)

satisfied in typical cases, related to PCT theorem
(Bisognano-Wichmann 1974) and to Unruh and Hawking radiation
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Consequence: DHR intertwiner spaces are closed under bimodule
tensor products:

Fi ,F
′
i ∈ (πi ← π0)(O), Φ,Φ′ ∈ H0, F ∗2 F

′
2 = π0(A), A ∈ A(O)

The left module

(π2 ← π0)(O)⊗ (π1 ← π0)(O)⊗ H0

equipped with the scalar product

〈F2 ⊗ F1 ⊗ Φ,F ′2 ⊗ F ′1 ⊗ Φ′〉 = 〈F1Φ, π1(A)F ′1Φ′〉

defines a new DHR representation π2 × π1 (fusion).

Klaus Fredenhagen Advances in Algebraic Quantum Field Theory



Additional structure from positivity condition on the energy
spectrum:

Reeh-Schlieder Theorem and Borchers’ property =⇒:

DHR representations are of the form π0 ◦ ρ
with an endomorphism ρ of A.

Fusion=multiplication of endomorphisms

Monoidal category with endomorphisms as objects and intertwiners
between them as morphisms.

Local commutativity =⇒ braiding structure, trivializes to
symmetry if spacelike complement of a point is connected.

In the latter case: DHR category equivalent to representation
category of some compact group with a distinguished element of
order 2 (corresponding to fermions) (Doplicher, Roberts 1990).
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Locally covariant QFT

Generalization to globally hyperbolic spacetimes
(i.e. with a Cauchy surface):

Inclusion and local commutativity o.k.
but covariance axiom trivial in generic case

Problems:

No good concept of vacuum and of particles

Singularities at different points are unrelated
=⇒ huge ambiguities in renormalization

Solution: Locally covariant QFT
(Brunetti,KF,Hollands,Kay,Verch,Wald 2000)
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A locally covariant QFT is a functor

A : ghyp→ Cstar

ghyp category of globally hyperbolic spacetimes of a fixed
dimension
(with causality preserving isometric embeddings as morphisms)

Cstar category of unital C*-algebras
(with unital monomorphisms as morphisms)

Axiom

χi : Mi → N such that χ1(M1) spacelike to χ2(M2) =⇒

[Aχ1(A1),Aχ2(A2)] = 0 , Ai ∈ A(Mi ) .

Restriction to globally hyperbolic subregions of a fixed spacetime
yields Haag-Kastler net (covariance and inclusion follow from
functoriality).
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Additional axiom implementing existence of a deterministic
dynamical law:

Time slice axiom:

χ : M → N with χ(M) ⊃ Σ Cauchy surface of N

=⇒ Aχ(A(M)) = A(N)

χ Cauchy morphism (weak equivalence).
Closed paths of weak equivalences induce automorphisms
describing intermediate changes of the metric.

Infinitesimal: Energy momentum tensor.

General covariance =⇒ covariant conservation law
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Dynamics

Up to now only generic properties of QFT, no specification of the
model.

Now: L Lagrangian of classical field theory of scalar field φ,
E = C∞ space of smooth field configurations.

L(jx(φ)) =

(
1

2
g−1(dφ(x), dφ(x))− V (φ(x))

)
dµg (x)

Canonical quantization: Foliation by Cauchy surfaces

M ≡ R× Σ , g(t, x) = a(t, x)2dt2 − ht(x)

a > 0, (ht)t smooth family of Riemannian metrics on Σ.
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L = Ldt, L density on Σ, ∂nφ = a−1φ̇ normal derivative,

π =
∂L

∂(∂nφ)
= φ̇dµht canonical momentum

[φ(t, x), π(t, y)] = iδx(y) , δx Dirac measure at x

canonical commutation relation
(=⇒ algebraic structure does not depend on t)

Time evolution by Heisenberg equation

d

dt
A(t) = i

∫
[H(t, x),A(t)]

Hamiltonian density
H = πφ̇− L
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Reformulation:

F [φ] =
∫
f (φ(t, x), t, x) local functional,

f = 0 for (t, x) 6∈ K , K compact (“support” of F ).

Operation on the system by interaction f , i.e. S-matrix S(F ))

Dyson series:

S(F ) =
∞∑
n=0

in
∫
tn>···>t1

f (φ(tn, xn), tn, xn) . . . f (φ(t1, x1), t1, x1)

φ solution of Heisenberg equation for Hamiltonian derived from L.
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Boboliubov: construction of field with Lagrangian L + f :

Split F = F≤t + F>t with F≤t =
∫
t′≤t f . Then from Dyson’s

formula
S(F ) = S(F>t)S(F≤t)

hence

d

dλ |λ=0
S(F )−1S(F + λφ(t, x)) = S(F≤t)

−1φ(t, x)S(F≤t)

solves the modified Heisenberg equation.

S-matrix for local functional G for time evolution from L + f :

SF (G ) = S(F )−1S(F + G )

with the factorization

SF (G ) = SF (G>t)SF (G≤t)
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hence we obtain the general causal factorization

S(F + G + H) = S(F + G )S(G )−1S(G + H)

if suppF is in the future and suppH in the past of some Cauchy
surface.

Note that this relation does not use any space time splitting. It
does not specify the dynamics.
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Specification of the dynamics:

A shift φ→ φ+ ψ, ψ with compact support produces an
isomorphic theory with the Lagrangian

L[•+ ψ]

The interaction δL(ψ) =
∫
L[•+ ψ]− L can be removed and one

obtains an automorphism of the original theory

α(S(F )) = S(δL(ψ))−1S(δL(ψ) + F [•+ ψ])

For suppψ in the future and suppF in the past of some Cauchy
surface
=⇒ α(S(F )) = S(F ) by causal factorization

=⇒ α = id (time slice axiom)
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Special case: F = δL(ψ′) =⇒

S(δL(ψ))S(δL(ψ′)) = S(δL(ψ + ψ′))

i.e. λ 7→ S(δL(λψ)) 1-parameter group with generator 〈 δ
∫
L

δφ , ψ〉

=⇒ S(δL(ψ)) = 1 (equation of motion)

Proposal (Detlev Buchholz, KF 2020):
The algebra of a scalar quantum field with Lagrangian L is
generated by unitaries S(F ), F compactly supported local
functional of φ, S(0) = 1. The unitaries satisfy the relations

S(F + G + H) = S(F + G )S(G )−1S(G + H)
if suppF is in the future and suppH in the past of some
Cauchy surface.

S(F ) = S(F [•+ ψ] + δL(ψ)), ψ compactly supported

Klaus Fredenhagen Advances in Algebraic Quantum Field Theory



Perturbative AQFT

Assumption: F 7→ S(F ) is differentiable to all orders.

Dynamical equation

0 =
d

dλ
|λ=0S(δL(λψ) + F [•+ λψ])

=
d

dλ
|λ=0S(F + λ〈

δ
∫
L

δφ
+ F ′, ψ〉)

(Schwinger Dyson equation)

Causal factorization: (G = 0)

〈S (n+m)(0),F⊗n ⊗ H⊗m〉 = 〈S (n)(0),F⊗n〉〈Sm(0),H⊗m〉

=⇒ Higher derivatives can be constructed from lower derivatives
up to coinciding points.
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Starting point for Epstein Glaser renormalization:

〈S (1)(0),F 〉 =:F: normal ordering

for a free (i.e. quadratic) Lagrangian.

Inductive construction of higher derivatives in 2 steps:

By causal factorization up to coinciding points and then extension
to coinciding points by extending distributions in several variables.

Second step corresponds to renormalization.

Not unique, classification by renormalization group (in the sense of
Stückelberg-Petermann)(Stora-Popineau).
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Framework (see text books by Kasia Rejzner and Michael Dütsch)

E space of smooth field configurations

F functionals on E with suitable smoothness properties
(“microcausal”) and compact support.

F ⊃ Floc real valued local functionals

F [φ] =

∫
f (jx(φ))

jx(φ) jet of φ at x , f density with compact support.

Normal ordering (formally):

:F:H= e
1
2
~〈H, δ2

δφ2 〉F

H Hadamard solution of free e.o.m., selects positive frequencies in
the commutator function ∆, e.g. Wightman 2-point function
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H,H ′ Hadamard =⇒ H − H ′ smooth =⇒

:F:H=:e
1
2
~〈(H−H′), δ2

δφ2 〉F:H′

A = {:F:H |F ∈ F} independent of H

?-product of normal ordered (microcausal) functionals

:F:H ? :G:H=:F ?H G:H

with

(F ?H G )[φ] =

(
e
~〈H, δ2

δφ1δφ2
〉
F [φ1]G [φ2]

)
|φ1=φ2=φ

(A, ?) associative algebra of formal power series.
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Time ordered product ·T : Commutative product on a subspace of
A containing Aloc with causal factorization

:F: ·T :G:=:F: ? :G:

if suppF is in the future and suppG in the past of some Cauchy
surface.

Example: F =
∫

1
2 f (x)φ(x)2 ,G =

∫
1
2g(x)φ(x)2

:F:H ·T :G:H=:F ·T ,H G:H

F ·T ,H G [φ] = F [φ]G [φ] + ~〈HF , φf ⊗ φg〉+
1

2
~2〈H2

F , f ⊗ g〉

with HF (x , y) = H(x , y)(θ(t − t ′) + H(y , x)θ(t ′ − t) for some time
coordinate t = t(x), t ′ = t(y) and

H2
F (x , y) = H2(x , y)(θ(t − t ′) + H2(y , x)θ(t ′ − t) for x 6= y .

H2
F not unique (renormalisation)
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Renormalized time ordered product yields S-matrix:

S(F ) = expT :F:µ (exponential series w.r.t. ·T )

:F:µ locally covariant normal ordering (natural transformation
Floc → Aloc), depends on mass scale µ for scalar field in d = 4).
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C*-algebras

Perturbation theory yields formal power series of Hilbert space
operators.

After truncation: Explicit formulas, can be compared to
experiments, but little (no?) control over errors.

Alternative: Consider the C*-algebra generated by the S-matrices
and their relations (Buchholz, KF 2020)

=⇒ Haag-Kastler net for any given Lagrangian.

Restriction to the free Lagrangian L and affine functionals
F [φ] =

∫
f φ+ c yields closed algebra.
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K = −(� + m2), δL(ψ) =
∫

(Kψ)φ+ 1
2ψKψ

f , g compactly supported =⇒ f = f0 + Kψ with ψ compactly
supported and suppf0 does not intersect the past of suppg . It
follows

∫
f φ =

∫
f0φ+ δL(ψ)− 1

2

∫
ψKψ

By the dynamical equation

S(
∫
f φ) = S(

∫
f0(φ− ψ)− 1

2

∫
ψKψ)

Causal factorization implies

S(
∫
f φ)S(

∫
gφ) = S(

∫
f0(φ− ψ)− 1

2

∫
ψKψ +

∫
gφ)

Applying again the dynamical equation yields

S(
∫
f0φ+

∫
(Kψ)φ+

∫
g(φ+ ψ)) = S(

∫
(f + g)φ+

∫
gψ)

Since ψ = ∆R(f − f0) and suppg ∩ supp∆R f0 = ∅ we arrive at

S(
∫
f φ)S(

∫
gφ) = S(

∫
(f + g)φ+

∫
(∆R f )g)
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Conclusion: The proposed axioms imply Weyl relations and
therefore canonical commutation relations:

1-parameter group

λ 7→ S(
∫
λf φ+ 1

2λ
2
∫

(∆R f )f ) = W (λf ) (Weyl operator)

Weyl relation:

W (f )W (g) = S( 1
2

∫
(g∆R f − f ∆Rg))W (f + g)

Set S(c) = e ic for a constant functional c,

φ(x) = 1
i

δ
δf (x)W (f )|f = 0 =⇒

[φ(x), φ(y)] = i∆(x , y) = i(∆R(x , y)−∆R(y , x))
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Noether’s Theorem in QFT

(Brunetti, Dütsch, KF, Rejzner, in preparation)

Symmetries and conservation laws are intimately connected by
Noether’s Theorem.

In QFT, renormalization might break this connection (anomalies).
Can one understand this connection in the C*-algebraic setting?

Enrich the formalism of locally covariant QFT by interactions:
(for an n-component scalar field φ)

Category Dyn with objects M = (M, L, t)
with a globally hyperbolic spacetime M, a Lagrangian L and a
distinguished time orientation t.

Klaus Fredenhagen Advances in Algebraic Quantum Field Theory



Morphisms ι ∈ Hom(M,M′) are compositions of elementary
morphisms

ιχ: embedding χ : M → M ′, χ∗L′ = L, χ∗t ′ = t

ιΦ: affine field redefinition Φ : φ 7→ Aφ+ φ0, M ′ = M,
L′ ◦ Φ = L, t ′ = t

ιV ,+: retarded interaction M ′ = M, L′ + V = L,
suppV past compact

ιV ,−: advanced interaction M ′ = M, L′ + V = L,
suppV future compact

Functor A :

{
Dyn → Cstar
M 7→ A(M)

A(M) C*-algebra generated by S-matrices S(F ) by the relations
Causal factorization and Dynamics
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Elementary morphism ι• mapped to homomorphisms Aι• = α•:

αχ(S(F )) = S(χ∗F )

αΦ(S(F )) = S(F ◦ Φ−1)

αV ,+(S(F )) = S(V (f ))−1S(V (f ) + F )

αV ,−(S(F )) = S(F + V (f ))S(V (f ))−1

f compactly supported and equal to 1 on a sufficiently large region
(depending on F )
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Special cases:
(1) M ′ = M, χ compactly supported diffeomorphism of M,
χ∗L′ = L, χ∗t ′ = t.

Set δχL =
∫
L′ − L.

Then ιχ ∈ Hom(M,M′), ιδχL,± ∈ Hom(M′,M)
and α± = αδχL,± ◦ αχ are automorphisms of A(M).

α+(S(F )) = S(δχL)−1S(δχL + χ∗F )

α−(S(F )) = S(χ∗F + δχL)S(δχL)−1

Causal factorization + Time slice =⇒ α± = id
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(2) M ′ = M, Φ compactly supported affine field redefinition,
L′ ◦ Φ = L, t ′ = t.

Set δΦL =
∫
L′ − L.

Then ιΦ ∈ Hom(M,M′), ιδΦL,± ∈ Hom(M′,M)
and α± = αδΦL,± ◦ αΦ are automorphisms of A(M).

α+(S(F )) = S(δΦL)−1S(δΦL + F ◦ Φ−1)

α−(S(F )) = S(F ◦ Φ−1 + δΦL)S(δΦL)−1

Causal factorization + Time slice =⇒ α± = id

G c group generated by compactly supported diffeomorphisms and
affine field redefinitions
G 3 g = (A, φ0, χ), gφ = A(φ ◦ χ−1) + φ0, g∗F = F ◦ g−1

S(F ) = S(δgL)−1S(δgL+g∗F ) , g ∈ G c (Unitary Master Ward Identity)

(infinitesimal version known in perturbation theory (Dütsch et al))
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Application to Noether’s theorem:
G generated by diffeomorphisms and affine field redefinitions
(without support restrictions),
G ⊃ GL subgroup which leaves L invariant.

Let g ∈ GL and h ∈ G c such that (g−1φ)(x) = (h−1φ)(x) for
x ∈ J∩(suppF ). (J∩ = J+ ∩ J−)

Then g∗F = h∗F and suppδhL ∩ suppF = ∅.
Decompose δhL = Q+ + Q− such that suppQ+ ∩ J−(suppF ) = ∅
and suppQ− ∩ J+(suppF ) = ∅. Then by the unitary master Ward
identity

S(F ) = S(Q++Q−)−1S(Q++Q−+g∗F ) = S(Q−)−1S(g∗F )S(Q−)

hence the automorphism S(F ) 7→ S(g∗F ) is implemented by the
unitary S(Q−).
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Outlook

Concepts of AQFT, combined with ideas from category
theory, solve longstanding problems of QFT.

Problem of existence of QFT’s reduced to search for suitable
states.

Formalism has to be generalized to Fermi fields and gauge
theories.

Perturbatively more or less understood by BV-BRST
formalism, but C*-algebraic formulation unknown.

See the talk of Alexander Schenkel next week for further
progress, in particular for gauge theories.
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