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Outline N

Material class in focus:
Elastic solids with stiff and soft components arranged into checkerboard-type structure in 2d

e Interplay of two main features

> special geometric arrangement of heterogeneities
» high-contrast: stiff vs. soft components

e Goals: A variational viewpoint

> characterization of macroscopically attainable deformations
> homogenization via ['-convergence
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Outline N

Material class in focus:
Elastic solids with stiff and soft components arranged into checkerboard-type structure in 2d

e Interplay of two main features
> special geometric arrangement of heterogeneities

» high-contrast: stiff vs. soft components
e Goals: A variational viewpoint

> characterization of macroscopically attainable deformations
> homogenization via ['-convergence

~» mechanical metamaterial with auxetic deformation behavior
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What are auxetic metamaterials?

e Metamaterial: fabricated materials designed to have properties that do not naturally occur
(mechanical, electrical, magnetic, acoustic, etc.)

e Auxetics: special case of mechanical metamaterial with negative Poisson’s ratio, i.e., under stretching
in uniaxial direction, thickening in the direction orthogonal to the applied force occurs

Carolin Kreisbeck |  Variational analysis of auxetic metamaterials of checkerboard-type



What are auxetic metamaterials?

e Metamaterial: fabricated materials designed to have properties that do not naturally occur
(mechanical, electrical, magnetic, acoustic, etc.)

o Auxetics: special case of mechanical metamaterial with , i.e., under stretching
in uniaxial direction, thickening in the direction orthogonal to the applied force occurs

e Applications: shock absorbing shoes, kirigami-inspired medical stents, shape memory foams, ...
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Some literature on the topic 9‘5\

Selection of related references:

Engineering viewpoint on auxetics

[Voigt 1928], [Lakes 1987], [Grima & Evans 2000, 2006], [Grima, Alderson, & Evans 2004],
[Milton 2012]....

Approach from algebraic-geometry for analysis of crystalline structures
[Borcea & Streinu 2018, 2020],...

Homogenization problems with high-contrast and stiff inclusions
[Braides & Garroni 1995], [Cherdantsev & Cherednichenko 2012],

[Davoli, Gavioli & Pagliari 2022],...

Reinforced materials with stiff fibers and layers

[Pideri & Seppecher 1997], [Bellieud & Bouchitté 1998], [Brillard & El Jarroudi 2001, 2007],
[EL Jarroudi 2013], [Paroni & Sili 2016], [Bellieud 2013 2017], ...

Asymptotic rigidity
[Christowiak & K. 2017, 2020], [Davoli, Ferreira & K. 2021], [Engl, K. & Ritorto 2022], ...

[Engl et al. 2022, M3AS]
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Quantitative geometric and asymptotic rigidity

Generalization of on smooth local isometries:

Let U ¢ R? be a bounded Lipschitz domainand p > 1.
o Ifu e WP(U;R?) with Vu € SO(2) a.e. in U, there exist R € SO(2) and b € R? such that

u=Rx+b.
o There exists a constant Cyy > 0 such that for every u € W''P(U; R?) there is a rotation R € SO(2)

with
IVu = Rl pur2x2) < Culldist(Vu, SO2))||Lew)-

Observation: The statements fail when U is not connected.
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Quantitative geometric and asymptotic rigidity

Generalization of on smooth local isometries:

Let U ¢ R? be a bounded Lipschitz domainand p > 1.
o Ifu e WP(U;R?) with Vu € SO(2) a.e. in U, there exist R € SO(2) and b € R? such that

u=Rx+b.
o There exists a constant Cyy > 0 such that for every u € W''P(U; R?) there is a rotation R € SO(2)

with
IVu = Rl pur2x2) < Culldist(Vu, SO2))||Lew)-

Observation: The statements fail when U is not connected.

Global effects through specific geometric arrangement of stiff structures on a fine scale

~» restricted macroscopic material response
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Set-up: The geometry !“!]

e Q c R? a bounded Lipschitz domain
v v e Y = (0, 1]? periodicity cell
e Y =Yy UYzand Yeor = Y2 U Vs,
Q Y, Y, both extended periodically
Y <T> e Ae(0,1)

length scale parameter € > 0
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Set-up: Admissible deformations !‘s\]

General assumptions: ® u € W'P(Q;R?) with p > 2

e Orientation preservation |det(Vu) >0 a.e.inQ

e Ciarlet-Necas condition / |[det(Vu)| dx < |u(Q)]
Q

~» general class of admissible deformations A
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Set-up: Admissible deformations !‘s\]

General assumptions: ® u € W'P(Q;R?) with p > 2

e Orientation preservation |det(Vu) >0 a.e.inQ

e Ciarlet-Necas condition / |[det(Vu)| dx < |u(Q)]
Q

~» general class of admissible deformations A
Condition on stiff components:

Rigidity (for now)

Vu € S0(2) a.e.in eYgig N Q

~> Jﬂ?g
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Characterizing macroscopic deformations
- The rigid case



Attainable macroscopic deformations !‘El

Set of attainable macroscopic deformations :

M = {ue WPQR?) : up — uin WP(QR?)  with u, € AL}

Theorem 1 (Diill, Engl & K. 23)

With
K:={AS+(1=AR:R,S €50(2),Re; - Sey > 0}

= {aQ: Q €50(2), |Yauir| < a® <1},
it holds that M = {u: Q — R? : u(x) = Fx + bwith F < K and b € R?}.

Observations:
e Limit deformation are affine conformal contractions

e Poisson ratiov = —1
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Decomposition result at the local level !;!\]

iii) 7

ii) ’ 7

Letp>2and D C R2 be an open rectangle with sides ;D fori =1,...,4.
If u € WHP(D; R?) with det Vu > O a.e. in D satisfies

ulgp = Rix + b; with R; € SO(2) and b; € R? for j = 1,...,4,

then there exist R, S € S0(2) with det(Se(|Se;) = Se; - Re; > 0,be R?and ¢ ¢ W(;'p(D; R?) such
that

[u(x) = (Sei|Rex)x + b+ <p(x)] fora.e. x € D.
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Decomposition result at the local level ;:s\]
D ) l ) .
— ] =< %

Letp>2and D C R2 be an open rectangle with sides ;D fori =1,...,4.
If u € WHP(D; R?) with det Vu > O a.e. in D satisfies

ulgp = Rix + b; with R; € SO(2) and b; € R?fori = 1,...,4,

then there exist R, S € S0(2) with det(Se(|Se;) = Se; - Re; > 0,be R?and ¢ ¢ WO“’J(D; R?) such
that

[u(x) = (Sei|Rex)x + b+ <p(x)] fora.e. x € D.
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Proof of Theorem 1: Necessity ;:s\

To show: If u, — uin W'P(Q; R?) with u, € ﬂgg, thenVu = F € K.

e Apply Reshetnyak’s rigidity theorem to u, restricted to each rigid component.
e Decomposition result applied to all soft components yields

Us=ve+p.onQ € Q,

where @, € W”’(Q'; IRZ) with . = 0on eYyig N Q" and v, : R2 — RZ continuous given by

Se on ey,
R, on Y3, .

Vv, = with S¢, R, € SO(2) such that S.e; - R.e; > 0.
(Ssel |R532) ongYs,

(Ree1]|Sce2) oneYy,

e Observe that Vo, — 0in LP(Q;R??)and Vv, — AS + (1 — A)R =: F for some S, R € SO(2) with
Rei - Se; > 0.

Carolin Kreisbeck |  Variational analysis of auxetic metamaterials of checkerboard-type



Proof of Theorem 1: Sufficiency é@]

To show: Every affine u : Q — R with Vu = F = AS + (1 — A)R with S, R € SO(2) such that
Se; - Rey > 0 can be approximated weakly in W'(Q; R?) by u, € ALE.

Strategy: Hands-on construction of continuous piecewise affine functions v, : Q — R2Z:
e ifdet(Seq|Rey) = Seq - Rey > 0, take u, such that Vu, = SineY; and Vu, = RingYs;

o ifdet(Sej|Rey) = Ser - Rey = 0, then first approximate S by (S¢). C SO(2) such that
Sce1 - Rey > 0and use S, in place of S.

Then, u, is injective and orientation preserving with Vu, € SO(2) a.e. in eYgig N Q, hence, u, € Iﬂgg.
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Discussion of assumptions i‘s\]

e Dropping orientation preservation or Ciarlet-Necas condition

Statement of Theorem 1 still holds. /

e Dropping orientation preservation and Ciarlet-Necas condition
Similar characterization result for A = 1/2 with affine macroscopic deformations v : Q — R?

satisfying
Vu=Fe{aQ: Qe€S0(2),0<a<1}.
e Casep =2
Same characterization result holds / due to trace theorems for curvilinear polygons [Grisvard
1985].

e Casel < p<2
Theorem 1 fails )L, instead: Any affinemapu: Q — R? can be approximated weakly in
WP (Q; R?) by a sequence (u;), € WP(Q; R?) with fQ Uy dx = fQ udx and

Vu, € SO(2) a.e. in Q N &Ygg.
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Characterizing macroscopic deformations
- The stiff case



From fully rigid to stiff components /;4?]

Questions:

e How robust are the previous observations to changes in the set-up?
e What is the effect of softening the rigid components by incorporating elastic energy?
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From fully rigid to stiff components /;4?]

Questions:

e How robust are the previous observations to changes in the set-up?
e What is the effect of softening the rigid components by incorporating elastic energy?

P
Relaxed assumption:
Rigid components Stiff components with diverging elastic constants
Vu € S0(2) ae.in eYgig N Q ~ / dist?(Vu, S0(2)) dx < cef
&YairNQ

B > O sufficiently large
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Characterization of macroscopic deformations

Theorem 2 (Diill, Engl & K. 2023)

Letp > 2,3 > 2p—2,and let (u;). C A be a sequence that satisfies
/ dist?(Vu,, SO(2)) dx < Ce”.
&YairNQ

If ug — uin W"P(Q; R?) for some u € W'P(Q; R?), then

u is offine with Vu € K = {@Q : Q € S0(2), |Yar| < a® < 1}.

e Consistency check with rigid case (
e Optimality of scaling regime for § is currently open

Carolin Kreisbeck |  Variational analysis of auxetic metamaterials of checkerboard-type



Characterization of macroscopic deformations

Theorem 2 (Diill, Engl & K. 2023)

Letp > 2,3 > 2p—2,and let (u;). C A be a sequence that satisfies
/ dist?(Vu,, SO(2)) dx < Ce”.
&YairNQ

If ug — uin W"P(Q; R?) for some u € W'P(Q; R?), then

u is offine with Vu € K = {@Q : Q € S0(2), |Yar| < a® < 1}.

e Consistency check with rigid case (
e Optimality of scaling regime for § is currently open

Main proof ingredients:
e Tool 1: Quantitative rigidity estimate for cross structures
e Tool 2: Poincaré-type inequality for checkerboard structures
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Tool 1: Quantitative rigidity estimate for cross structures

Lemma 1 (Diill, Engl & K. 2023)

Let p > 2. There are constants C, 8y > O such that for every u € W'P(E; R?) satisfying the
Ciarlet-Necas condition on £’ := £ \ E° and ||dist(Vu, S0(2))|ler(e7) < S0, there exist R, S € SO(2)
such that

1/2
”VU — S”LP(E1UE3;R2X2) + ||VU R”Lp(EzuEA RZXZ) < C||d|st(Vu 50(2))||L£(E'

and Re; - Sey > —C||dist(Vu, so(2))||lf,fE,
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Proof of Lemma 1 for 4 = 1 (in pictures) @‘E}

Step 1: Apply [Friesecke, James & Miiller 2002] to each
individual rigid square to obtain S7, S3, R2, R4 € SO(2).
Set np := C||dist(Vu, SO(2))||r(£7)-

Step 2: Construct a continuous piecewise affinemap v : £ —
R?, determined by the polygon 3b&d, such that

”U — V|IW1'P(E’;R2) < CI]1/3.
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Proof of Lemma 1 for 4 = 1 (in pictures)

Z2 Z3

v
E? E° g TN

T T4

173, analogously for Ry — Ral.

Step 3: Derive estimate for |S; — S3| in terms of Cn
e 7(9OEP) forms parallelogram / by Step 2
e 7(9EY) is degenerate with sufficiently large angle v
° V(OEO) is degenerate with small angle x by approximate Ciarlet-Necas condition on rigid parts

Step 4: Improve estimate to C‘r]”2 by repeating Steps 2 and 3and set S := Sjand R := R,.
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Tool 2: Poincarée-type estimate for checkerboard structures

Lemma 2 (Diill, Engl & K. 2023)

Let p > 2, U’ € U be bounded Lipschitz domains, and M > 0. There exists a constant C > 0
independent of € such that for all u € W'-P(U; R?) with

/ udx =0
&YaigNU’

and ”u”LP(e‘YsﬁﬁﬂU;Rz) < M“u”Lp(S)/stiffnU,;Rz)’ it holds that

lulleevmnurr2) < ClIVUllLr ey enumee2)-
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Proof of Lemma 2

Step 1: Basic Poincaré inequality for union of Lipschitz domains with path connected closure

Step 2: Approximate extension by modification of [Acerbi, Chiadé Piat, Dal Maso & Percivale 1992]:
For U’ € U and r > 0 sufficiently small, two-step construction of a linear bounded operator

Er : WHP(U N &Y R?) N CO(U N & Yeurr; R?) — WP(U;R?)

suchthat &, = vae onU' NeYyr \ B,

IErullrwrm2) < C(f)||U||LP(UmeYsm;R2)] and [”V(Sru)”LP(U';RZXZ) < CNDNIVUllpuneyyr2<2)

@

;

L

@

Step 3: Mimick indirect standard proof of Poincaré inequality, with contradiction for r small enough.
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Proof of characterization result for macroscopic deformations

Recall Theorem 2: Let p > 2, B > 2p — 2, and let (ug)s C A be a sequence that satisfies

/ dist? (Vug, SO(2)) dx < CeP
&YairNQ

Ifug — uin W1’p(Q; Rz), then u is affine with Vu € K.

Proof: Approach shows parallels with
[Friesecke, James & Miiller ‘02, Christowiak & K. '20, Engl, K. & Ritorto '22]

Step 1: Local rigidity argument on each cross structure
Apply Tool 1 (along with a scaling argument) to find in each cross E, x to
find Sk, Rex € SO(2) such that

Ss,k+ez

Re k—ey

Re ke

e(k+Y)

SEJC‘FE]

Re k—ey

1 . 1
IVue - Seak”LP(E;vkuEg’k;[R{ZX?) + ||Vue - RE’kHLP(EEZ’kUE;"k;R?X?) < Cegr ”dISt(VUS’50(2))||L2P(E;k)'

Define two auxiliary piecewise constant maps S, R, : Q — SO(2) as

Se =Xk Sekleksy)y and  Re:= 3 Rekloksy)

4

]
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Proof of characterization result for macroscopic deformations !‘s

Step 2: Strong convergence of the rotation maps  For Q' € Q,

/ |S(x) = Se(x + §)IP dx < C(JglPe! © 7+ £1*F)
o

By Frechet-Kolmogorov and due to 8 > 2p — 2,

Key estimate

S, — Sin LP(Q;R??) with S € SO(2) constant;

analogously, R, — R in LP(Q’;R??) and R € S0(2).
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Proof of characterization result for macroscopic deformations

Step 2: Strong convergence of the rotation maps  For Q' € Q,

/ 1S.(x) = So(x + E)P dx < C(|§|ps1’§’p + s”g> Key estimate
QI

By Frechet-Kolmogorov and due to 8 > 2p — 2,
S, — Sin LP(Q;R??) with S € SO(2) constant;
analogously, R, — R in LP(Q’;R??) and R € S0(2).

Step 3: Approximating (u,). by piecewise affine functions
Let (w, ). piecewise affine with vanishing mean value s.ith. Vw, = Son €Y7 and Vw, = R on gY3. Then,

we = win LP(Q;R?)  with Vw = AS + (1 = AR < K.

. B
With Step 2, || Vue - VWEHIZ'D(Q/OSYSHH;RZXZ) e S”fﬁ(g';wxz) *lIRe - R”fﬂ(g';wﬂ)) -0
Along with Tool 2, |lue — Well p(@/nevymr2) — O, and by a shifting argument, u; — w in LP(Q’; R?).

4

]
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Homogenization via [ -convergence - An
application



Variational problem at finite length scale %

Energy functional

For & > 0, consider Z, : Lg(Q; R?) — [0, co] given by

I (u) =

/ WE(E,VU(X)) dx ifueA,
o) P>

(0]

otherwise,

Ystiff
Y2 Y3
" Yy
Y
Ysoﬂ

where W, : R? x R?*2 — [0, co] is the inhomogeneous energy density

We(.y’ F) = M/soﬂ(F)ﬂ Ysoﬂ(.y) + Wi (F)1 Ysuﬁ<)/)7

and A = {u € WIP(Q;R3): detVu > Oa.e.in Q and u satisfies Ciarlet Necas}.
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Elastic strain densities %5]

Elastic strain density in the soft part, cf. [Conti & Dolzmann "15]

Wior : R?*2 — [0, 00] is continuous with
o Wir(F) =00 ifdetF <0

o L|FIP+ L6(det F) — C < Wior(F) < CIF|P + CO(det F) + C  if detF >0
with C > 0 and a convex function 6 : (0, c0) — [0, 00) such that 8(xy) < C(1 + 8(x))(1 + 8(y))
forall x, y € (0, c0).

Elastic strain density in the stiff part

Witif.e = e P Wi for B > O sufficiently large

Wi : RZ? — [0, oo] is continuous with
o Wyin(F) =00 ifdetF <0
o Waig = 00onSO(2)
o & dist’(F,S0(2)) < Wayr(F) if det F > O with a constant C > 0
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Homogenization result ",]

Define Zhom : LZ(Q; R?) — [0, co] by

_ |QUWhom(F) ifVu=F €K,
jhom(u) = {oo '

otherwise,

with Wion(F) = 5| Yeort MiNg seso@)as+(1-0)R=F Re; -se; 20 W (Se1|Rez) + WIS (Req|Sey).

Theorem 3 (Dull, E. & Kreisbeck 2023)
Ifp>2B>2p—2and Wi = WP, then

soft’

F(w-W'P)-lim I, = [(LP)- lim I, = 7y,
-0 e—0

Moreover, any sequence (u,). with (u;) C Lg(Q; R?) and sup, Z(us) < oo has a subsequence that
converges weakly in W'P(Q; R?)/strongly in LP(Q; R?) to an affine function with gradient in K.
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Discussion of homogenized energy density

Consider

1

— : qc qc
Whom(F) = Eleoft| E 5630(2)/15_'_(1@}{)‘,?:’__ Re;-Se; 20 Wsoft(se1 |R32) + Wsoﬁ(Rel |SeZ)

for F € K.
Properties of Wjon:

e Simple minimization problem, in fact, at most two choices of R, S to consider for each F

o For Wioq frame-indifferent, i.e., Wioq(QF) = Wior(F) forall F € R?? and Q € SO(2), it holds
that

Whom(F) = Whom(lFe1 | |C|) for F € K.
o If Wog is frame-indifferent and isotropic, and A = %, then

Whom(F) = |Ysoft|WS(2,(1:1((|Fe1| + V1 - |F61|2) Id)'
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Proof of the liminf inequality @

Given (u;)e with uniformly bounded energy s.th. u; — uvin W'P(Q;R?)and Vu = AS + (1 —A)R € K.

C

Step 1: Exploit W2 (F) = WPC(F) = g(F, det F) with g convex and lower semicontinuous,

oft
T(ug) = Z / Wi (Vue) dx > Z Q' N eYj| g(][ (Vug, detVu,) dx).
ie{2,4) Y NEY] ic(24) QNeY;
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Proof of the liminf inequality @v]

Given (u;)e with uniformly bounded energy s.th. u; — uvin W'P(Q;R?)and Vu = AS + (1 —A)R € K.

Step 1: Exploit W2 (F) = WPC(F) = g(F, det F) with g convex and lower semicontinuous,

soft
TI.(ug) > Z / W (Vug) dx > Z Q' N eYi| g(][ (Vug,det Vu,) dx).
ie{2,4} 'NeY; je{2,4} Q'NeY;

Step 2: Compare with piecewise affine approximation w, satisfying Vw, = Son gY, and Vw, = R
on Y4 with

|/ (Vug, det Vug) — (Vwe, det Vw,) dx| — 0| ase — Ofori € {2,4}.
‘NeY;

e Linear extension operator bounded uniformly regarding & [Grisvard 1985, Lamberti & Provenzano 2020]
L:WP(Q N eYaim R?) N COQ N e Yaim R?) — WIP(Q;R?);

e Null-Lagrange property of minors to replace u, and w, by Lu, and Lw, on Q' N &Yses;

e Uniform boundedness of L together with ||z — we |l 100y, pmm) — Oas e — 0.
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Proof of the liminf inequality @

Given (u;)e with uniformly bounded energy s.th. u; — uvin W'P(Q;R?)and Vu = AS + (1 —A)R € K.

C

Step 1: Exploit W2 (F) = WPC(F) = g(F, det F) with g convex and lower semicontinuous,

oft
T(u) = Z / W (Vug) dx > Z Q' N eYj| g(][ (Vug, detVu,) dx).
ic{2.4) Y NEY; ic(24) QNeY;

Step 2: Compare with piecewise affine approximation w, satisfying Vw, = SoneY, and Vw, = R
on &Yy with

|/ (Vare, det Vi) — (Vwe, det Vwe) dx| — 0| as & — Ofor € {2,4).
‘NeY;

Step3: Conclude |im inf I, (u,) > Z |Q’||Y,-|g(liminf][ (ng,detig)dx)
£—0 £—0

ic(2.4) ey
=|Q'||Y2lg((Sei1|Rey), Ser - Req) + |Q'[|Yalg ((Re1|Sez), Rey - Sey)

Y.
— |Q'|| soft| (ch

> on(Ser|Rez) + w

soft

(Re1|Sez)) > |Q|Whom(F).
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Construction of recovery sequences ,‘,]

Given an affine map u(x) = (AR + (1 — A)S)x + bwith R, S € SO(2), b € R2.
Strategy: Construct approximating sequences that are rigid body motions on stiff parts.

Step 1: Basic global construction of piecewise affine functions u, € ﬂgg and Vu, = AS + (1 - AR
in LP(Q; RP?) with Q  Q
Step 2: Perturbation in softer components to enforce optimal energy

Orientation preservation via approach through inner perturbations a la [Conti & Dolzmann 2015]
(usj)j c WP(e(k + Y;); R?) such that for i € {2,4}

u/;j —u, inW'"P(e(k +Y;);R?)asj — co and uf’j =u, ond(elk+Y)),

and

lim sup/ Wsoﬂ(Vu’;j) dx < / WS (Vug) dx.
Jooo Je(k+(YoUYa)) ‘ e(k+(Y2UY4))

Ciarlet-Necas condition is also satisfied by construction [Ball 1981].
Step 3: Diagonalization argument
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Summary and outlook

e Characterization of macroscopically attainable
deformations as globally affine conformal maps

> in case of full rigidity
> for stiff components with diverging elastic constants

e Homogenization result via "-convergence
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Summary and outlook

e Characterization of macroscopically attainable
deformations as globally affine conformal maps

> in case of full rigidity
> for stiff components with diverging elastic constants

e Homogenization result via "-convergence

What can be next?

e Optimality of the scaling regime

Other geometries of stiff components such as triangles

Higher dimensions and non-periodic structures

Perturbations in the geometric arrangement, including stochastic effects

Optimal design of stiff components
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e Characterization of macroscopically attainable
deformations as globally affine conformal maps

> in case of full rigidity
> for stiff components with diverging elastic constants

e Homogenization result via "-convergence
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e Optimality of the scaling regime
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